I. Princípio Fundamental da Contagem (P.F.C.)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "I. Princípio Fundamental da Contagem (P.F.C.)"

Transcrição

1 ANÁLISE OMBINATÓRIA A principal finalidade da Análise ombinatória é estabelecer métodos de contagem. I. Princípio Fundamental da ontagem (P.F..) O P.F.., ou princípio multiplicativo, determina o número de maneiras distintas de ocorrência de um evento composto de duas ou mais etapas. Pode ser enunciado da seguinte forma: Se um evento A pode ocorrer de m maneiras diferentes, para cada maneira de A ocorrer, um evento B pode ocorrer de n maneiras diferentes; e para cada maneira de A e B ocorrerem, um evento pode ocorrer de p maneiras diferentes; então, o número de maneiras diferentes de ocorrerem A, B e é m n p. Exemplo 1: Quantos e quais são os possíveis resultados quando lançamos uma moeda três vezes consecutivas? Resolução: Vamos representar os resultados por meio de escrita (Árvore das possibilidades) tomando k = cara e = coroa 1 0 lançamento 0 lançamento 3 0 lançamento Resultados (,,) (,,) (,,) (,,) (,,) (,,) (,,) (,,) Assim, cada terno ordenado acima representa um possível resultado: (,,), (,,), (,,), (,,), (,,), (,,), (,,), (,,). Para efeito de cálculos devemos levar em consideração que cada lançamento representa um evento (lançar uma moeda) e em cada um deles existem dois resultados possíveis e, logo o total de resultados é dado pelo produto entre os números que indicam a quantidade de resultados possíveis em cada um desses eventos : 1 0 L 0 L 3 0 L possibilidades.. = 8

2 ANÁLISE OMBINATÓRIA Exemplo : (ENEM/0) O código de barras, contido na maior parte dos produtos industrializados, consiste num conjunto de várias barras que podem estar preenchidas com cor escura ou não. Quando um leitor óptico passa sobre essas barras, a leitura de uma barra clara é convertida no número 0 e a de uma barra escura, no número 1. Observe abaixo um exemplo simplificado de um código em um sistema de código com 0 barras. Se o leitor óptico for passado da esquerda para a direita irá ler: Se o leitor óptico for passado da direita para a esquerda irá ler: No sistema de código de barras, para se organizar o processo de leitura óptica de cada código, devese levar em consideração que alguns códigos podem ter leitura da esquerda para a direita igual à da direita para a esquerda, como o código , no sistema descrito acima. Em um sistema de códigos que utilize apenas cinco barras, a quantidade de códigos com leitura da esquerda para a direita igual à da direita para a esquerda, desconsiderando-se todas as barras claras ou todas as escuras, é (A) 14 (B) 1 () 8 ( D) 6 (E) 4 Resolução: Da esquerda para a direita ou da direita para a esquerda temos possibilidades para os três primeiros algarismos e para os dois seguintes apenas uma possibilidade para cada um deles, visto que os algarismos eqüidistantes dos extremos devem ser iguais. Assim: DM UM D U possibilidades = 8 Dentre as 8 possibilidades acima temos um código formado por todas as barras claras e um outro com todas as barras escuras, logo apenas 6 códigos satisfazem ao problema. Exemplo 3: Dados os algarismos 0, 1,, 3, 4 e 5, determine quantos números naturais podemos formar com 3 algarismos distintos. Resolução: Lembrando que o algarismo das centenas não pode ser zero devido ao fato de que nenhum número, em nosso sistema de numeração decimal, pode começar por zero (Salvo placas de carro, senhas e outros), então: 1,, 3,4 ou 5 0,1,, 4 ou 5 0,1, ou 4 centenas dezenas unidades possibilidades = 100

3 ANÁLISE OMBINATÓRIA Obs.: O algarismo sublinhado e em negrito indica, supostamente, que foi o escolhido dentre as opções. Exemplo 4: (ENEM/04) No Nordeste brasileiro, é comum encontrarmos peças de artesanato constituídas por garrafas preenchidas com areia de diferentes cores, formando desenhos. Um artesão deseja fazer peças com areia de cores cinza, azul, verde e amarela, mantendo o mesmo desenho, mas variando as cores da paisagem (casa, palmeira e fundo), conforme a figura. O fundo pode ser representado nas cores azul ou cinza; a casa, nas cores azul, verde ou amarela; e a palmeira, nas cores cinza ou verde. Se o fundo não pode ter a mesma cor nem da casa nem da palmeira, por uma questão de contraste, então o número de variações que podem ser obtidas para a paisagem é (A) 6 ( B) 7 () 8 (D) 9 (E) 10 Resolução: Este é um problema que deve ser feito por partes, pois fixando cada uma das possibilidades para o fundo resultará em um número de diferentes possibilidades para casa e para a palmeira, veja: Azul Verde ou amarela Verde ou cinza fundo casa palmeira possibilidades 1.. = 4 ou fundo casa palmeira possibilidades = 3 inza Verde, amarela ou azul Verde Então o número de variações que podem ser obtidas para a paisagem é = 7.

4 ANÁLISE OMBINATÓRIA Exemplo 5: Brenda possui 4 blusas diferentes e 5 saias diferentes. De quantos modos distintos ela pode se vestir? Resolução: blusas saias possibilidades 4. 5 = 0 Podemos apresentar os resultados acima através da árvore de possibilidades, veja: B 1 B B 3 B 4 S 1 B,S 1 1 S B,S 1 3 S B,S B,S 1 4 S 5 ( B,S 1 5) S ( ) S 1 B,S 1 S B,S 3 S B,S 3 4 B,S 4 S 5 ( B,S 5) S 1 S B,S ) 3 1 B,S ) 3 S 3 S B,S ) B,S ) 3 4 S 5 ( B,S 3 5) S 1 B,S 4 1) S B,S 4 S 3 S B,S B,S 4 4 S 5 ( B,S 4 5) S ( ) ada par ordenado acima representa uma possibilidade da Brenda se vestir. II. Permutações Simples Permutação simples de n elementos distintos é qualquer grupo ordenado desses n elementos. Para calcularmos uma permutação simples de n elementos usamos a seguinte fórmula: Pn = n! Exemplo 6 : Quantos são os números de 4 algarismos distintos que podemos formar com os algarismos do número 456? Resolução: Este é um problema que consiste em apenas permutar os algarismos do número 456, então o total de números é dado por P = 4! = 4. 4

5 ANÁLISE OMBINATÓRIA Exemplo 7: (UERJ) Observe o quadrinho abaixo: (O GLOBO, 03/01/93) As quatro pessoas que conversavam no banco da praça poderiam estar sentadas em outra ordem. onsiderando que o fumante ficou sempre numa das extremidades, o número de ordenações possíveis é: (A) 4 (B) 6 ( ) 1 (D) 4 (E) 48 Resolução: O problema consiste em fixar o fumante nas extremidades e logo a seguir permutar as outras pessoas nos lugares restantes. Veja: F ou F possibilidades = = 6 P3 = 3! P3 = 3! Logo o número de ordenações possíveis é 1. Exemplo 8: om relação aos anagramas da palavra VIDA, qual é o número total deles? Obs.: Anagramas são palavras que se formam, com as letras de uma determinada palavra, mesmo que não tenham significado. (Permutamos as letras da palavra primitiva) Resolução: omo cada anagrama é uma permutação simples das letras V, I, D e A, então P4 = 4! = 4 Exemplo 9:(UFF) om as letras da palavra PROVA podem ser escritos X anagramas que começam por vogal e Y anagramas que começam e terminam por consoante. Os valores de X e Y são, respectivamente: ( A ) 48 e 36 (B) 48 e 7 () 7 e 36 (D) 4 e 36 (E) 7 e 4

6 ANÁLISE OMBINATÓRIA Resolução: Primeiramente vamos determinar X: A ou O =. 4 = 48 Possibilidades. P4 = 4! = 4 P,R ou V P ou V e determinaremos agora Y : = 3.6. = 36 Possibilidades 3.. P3 = 3! = 6 Exemplo 10: (ESPM - SP) Permutam-se os algarismos,3,4,5,6 e 8 de todos os modos possíveis sem repeti-los e escrevem-se os números assim obtidos em ordem crescente de grandeza. Que posição ocupa o número ? Resolução: Para resolver esse tipo de problema, analisamos as possibilidades de cada algarismo, em cada casa, separadamente ou não. Assim teremos um maior controle sobre a posição de ,3 ou 4 (todos menores que ) = = 360 possibilidades 3 ou 3 P5 = 5! = 10 5 (todos menores que ) =. 4 = 48 possibilidades 1.. ou 3 P4 = 4! = (todos menores que ) =. 6 = 1 possibilidades ou 3 P3 = 3! = (todos menores que ) =. = 4 possibilidades P =! =

7 ANÁLISE OMBINATÓRIA possibilidades = 1 A posição do número é 45 0 que ele., pois temos = 44 números menores III. Permutações com elementos repetidos Para calcularmos uma permutação com elementos repetidos usamos a fórmula: n 1,n,n 3,...,n n! k Pn =, onde n! n! n!... n! n1+ n + n nk = n. 1 3 k Exemplo 11: Quantos são os anagramas da palavra PAPAI? Resolução: Em PAPAI temos vezes a letra P ( n 1 = ), vezes a letra A ( n = ) e somente um I ( n = 1), então: 3,,1 5! 10 P5 = = = 30!! 1! 4 Exemplo 1: Quantos são os anagramas da palavra BANANA que começam e terminam por A? Resolução: Quando for fixado nos extremos a letra A, não haverá repetições para essa letra nas outras posições e assim só haverá repetições para a letra N: A A = 1 Possibilidades 1. 1,1,1 4! 4 P4 = = = 1! 1! 1! Exemplo 13: Um menino se encontra numa extremidade O de uma sala retangular de 6 passos de comprimento por 4 passos de largura, conforme a figura. (Norte) A O (Leste)

8 ANÁLISE OMBINATÓRIA Se ele só pode dar um passo de cada vez, para o norte (N) ou para o leste (L), calcule quantos caminhos existem da origem O ao ponto A. (Obs.: A figura mostra dois caminhos diferentes) Resolução: Observe que em cada caminho o menino deu dez passos, sendo 6 para o Leste e 4 para o Norte, caracterizando assim uma permutação com elementos repetidos, pois esta regra será comum para qualquer caminho que o menino escolha. Assim o total de caminhos é 6,4 10! ! / P10 = = = 10. 6! 4! 6! / 4! IV. Arranjos simples Arranjos simples de n elementos distintos, p a p, é todo agrupamento ordenado formado por p elementos distintos escolhidos entre os n elementos dados.alculamos o número de arranjos simples da seguinte forma: n! An,p = (n p)! Exemplo 14: om os algarismos, 4, 6, 8 e 9 quantos números de dois algarismos distintos podemos formar? Resolução: Usando os algarismos e 4, por exemplo, podemos formar os números 4 e 4, assim temos um problema de arranjos simples, pois a ordem importa. O total de números 5! 5! 5 4 / 3! de dois algarismos é dado por A5, = = = = 0. (5 )! 3! 3! / Exemplo 15: (ESGRANRIO) Durante a opa do Mundo, que foi disputada por 4 países, as tampinhas de oca-cola traziam palpites sobre os países que se classificariam nos três primeiros lugares (por exemplo : 1 0 lugar : Brasil ; 0 lugar : Nigéria ; 3 0 lugar : Holanda). Se, em cada tampinha, os três países são distintos, quantas tampinhas diferentes poderiam existir? (A) 69 (B) 04 () 956 ( D ) 1144 (E) 1384 Resolução: No exemplo citado acima temos uma das 6 possibilidades de resultados com aqueles três países (basta permutá-los: P 3 = 3! = 6), ou seja, a ordem é importante. Assim o 4! 4 3 1! número de tampinhas diferentes é dado por A4,3 = = = (4 3)! 1! Obs.: O problema acima pode ser feito pelo princípio multiplicativo, veja: Possibilidades: = 1.144

9 ANÁLISE OMBINATÓRIA V. ombinações simples ombinação simples de n elementos distintos, p a p, é todo agrupamento nãoordenado formado por p elementos distintos escolhidos dentre os n elementos dados. alculamos o número de combinações simples da seguinte forma: n! n,p = p!(n p)! Exemplo 16: (UNIRIO/003) O bufê de saladas de um restaurante apresenta alface, tomate, agrião, cebola, pepino, beterraba e cenoura. Quantos tipos de saladas diferentes podem ser preparadas com cinco desses ingredientes, de modo que todas as saladas contenham alface, tomate e cebola? (A) 4 (B) 1 () 8 (D) 3 ( E ) 6 Resolução: Devemos escolher dois dos ingredientes restantes (agrião, pepino, beterraba e cenoura), sem se importar com a ordem, para completar as saladas. Desse modo o total de saladas é dado por : 4! 4 3! / 1 4, = = = = 6! (4 )!! /! Exemplo 17: (UERJ- 0 E.Q 007) Sete diferentes figuras foram criadas para ilustrar, em grupos de quatro, o Manual do andidato do Vestibular Estadual 007. Um desses grupos está apresentado a seguir. onsidere que cada grupo de quatro figuras que poderia ser formado é distinto de outro somente quando pelo menos uma de suas figuras for diferente. Nesse caso, o número total de grupos distintos entre si que poderiam ser formados para ilustrar o Manual é igual a: (A) 4 ( B ) 35 () 70 (D) 140 Resolução: omo a ordem em que as figuras vão estar expostas não importa, então temos um agrupamento que representa uma combinação. O número total de grupos é dado por : 7,4 7! 7 6 = = 4! 3! 5 4! 4! 6 = 35 Exemplo 18: A partir de um grupo de 5 rapazes e 4 moças, quantas comissões de 4 elementos podem ser formadas, havendo pelo menos uma moça na comissão?

10 ANÁLISE OMBINATÓRIA Resolução: Podemos determinar o total de grupos de 4 pessoas que podemos formar com as 9 pessoas, sem se importar com a ordem, e depois subtrair o número de grupos que só tem rapazes, restando então os grupos com pelo menos uma moça. Veja : 9! ! Total de grupos : 9,4 = = = 4! 5! 4 4 5! = 16 5! 5 4! Número de grupos formados apenas por rapazes: 5,4 = = 4!1! 4! 1 = 5 Portanto o total de grupos com pelo menos uma moça é 16 5 = 11. VI. Permutações irculares São as maneiras de se dispor elementos ao redor de um círculo. alculamos o número de permutações circulares da seguinte forma: ( ) = ( ) P n n 1! Exemplo 19: De quantas maneiras diferentes 3 pessoas podem sentar-se ao redor de uma mesa circular? Resolução: Vamos observar os deslocamentos ordenados, no sentido anti-horário, de três pessoas :A, B e. A B Observe que nas três situações ao lado todas as pessoas possuem os mesmos vizinhos à esquerda e à direita. As permutações apresentadas são idênticas. B A B A Nas três situações seguintes todas as pessoas possuem os mesmos vizinhos à esquerda e à direita, porém em relação às situações acima os vizinhos estão em posições contrárias.. As permutações abaixo são idênticas entre si, mas distintas em relação as sequências anteriores. Qualquer tentativa de se dispor as três pessoas de maneira distintas ao redor de uma mesa circular acaba repetindo uma das duas sequências: AB (AB AB BA) ou AB (AB BA BA) Deste modo existem apenas duas maneiras distintas de três pessoas sentarem ao redor de uma mesa circular. Usando a fórmula teremos : ( ) P (3) = 3 1! =! = A B A B B A

11 ANÁLISE OMBINATÓRIA VII. Partições Ordenadas e Partições não Ordenadas Vamos considerar um conjunto A e n subconjuntos de A não vazios a) A A = ( parai j) i j b) A1 A... An = A A 1, A,..., A n, tais que: - hamaremos de uma partição ordenada do conjunto A à sequência de conjuntos: ( A 1, A,..., An) Em uma sequência a ordem dos elementos (subconjuntos) é importante. - hamaremos de uma partição não ordenada do conjunto A ao conjunto: { A 1, A,..., A n} A ordem dos elementos(subconjuntos) de um conjunto não é importante. Vamos resolver alguns problemas combinatórios com auxílio dos conceitos acima. Exemplo 0: De quantas maneiras podemos dividir 9 pessoas em uma barraca de 5 lugares e duas de lugares? Resolução: ada uma das maneiras de se distribuir as 9 pessoas nas 3 barracas é uma partição ordenada, ou seja, depende da ordem com que escolhemos as barracas para a distribuição: de barraca 1 barraca barraca 3 Primeiramente escolheremos as 5 pessoas entre as 9 para ficarem na barraca 1. Isto pode ser feito maneiras. (A ordem com que escolhemos as pessoas não importa). 9,5 Em seguida, entre as 4 pessoas restantes, escolheremos, para ficarem na barraca. Isto pode ser feito de maneiras , Finalmente as pessoas restantes podem ser escolhidas de omo para cada uma das combinações na barraca 1 tereemos,, maneira para ocuparem a barraca maneiras de dispor pessoas na barraca e maneira de dispor pessoas na barraca 3, então o total de partições é: 4, 9! 4!! 9,5 4,, = = 756 5!4!!!!0! Isto é, existem 756 modos de dispormos as 9 pessoas nas 3 barracas. Exemplo 1: (UFRJ-007-N.Esp) Nove pessoas serão distribuídas em três equipes de três para concorrer a uma gincana. O número de maneiras diferentes de formar as três equipes é menor do que 300? Resolução: ada uma das maneiras de se distribuir as 9 pessoas nas 3 equipes é uma partição não ordenada, ou seja, a ordem com que iremos formar as equipes não é importante devido ao fato do

12 ANÁLISE OMBINATÓRIA número de pessoas ser igual em cada uma delas e assim permitir que três quaisquer das 9 pessoas façam parte de qualquer uma das equipes : de equipe 1 equipe equipe 3 Primeiramente escolheremos as 3 pessoas entre as 9 para compor a equipe 1. Isto pode ser feito maneiras. (A ordem com que escolhemos as pessoas não importa). 9,3 Em seguida, entre as 6 pessoas restantes, escolheremos 3, para compor a equipe. Isto pode ser feito de maneiras. 6,3 Finalmente as 3 pessoas restantes podem ser escolhidas de maneira para compor a equipe 3... omo para cada uma das combinações na equipe 1 teremos maneiras de compor a equipe e maneira de compor a equipe 3, então o total de partições é: 3,3 3,3 6,3 9! 6! 3! 9,3 6,3 3,3 = = !6! 3!3! 3!0! omo, por exemplo, as três pessoas que estão na formação inicial da equipe 1 poderiam estar na formação das equipes ou 3, então há repetições desses grupos nas formações das equipes, por isso precisamos dividir o número acima por 3! = 6 (permutação das equipes). Logo o número de partições não ordenadas é 1680 = 80 e assim o número de maneiras de se formar as três equipes é menor que VIII. Soluções inteiras não negativas de uma equação linear Teorema: O número de soluções inteiras não negativas da equação x1+ x xn = k é: ( + ) r! ( n 1 )! n k 1! Iremos em sala de aula desenvolver uma técnica de se calcular o número de soluções inteiras não negativas e soluções inteiras positivas sem o uso da fórmula. Exemplo :(UNIRIO) Uma pessoa quer comprar 6 empadas numa lanchonete. Há empada de camarão, frango, legumes e palmito. Sabendo-se que podem ser compradas de zero a 6 empadas de cada tipo, de quantas maneiras diferentes esta compra pode ser feita? Resolução: onsiderex o número de empadas de camarão y o número de empadas de frango z o número de empadas de legumes w o número de empadas de palmito, onde x, y, z e w e x+ y+ z+ w = 6 Então o número de soluções inteiras não negativas da equação x y z w = é a solução do problema.

13 ANÁLISE OMBINATÓRIA ( ) ( ) ( ) ( ) n+ k 1! ! 9! 9 = = = r! n 1! 6! 4 1! 6!3! ! 6! 6 = 84

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES A D C B D B C A B D A C C B A D Como pode cair no enem (ENEM) A escrita Braile para cegos é um sistema de símbolos no qual cada caractere

Leia mais

O princípio multiplicativo

O princípio multiplicativo A UA UL L A O princípio multiplicativo Introdução A palavra Matemática, para um adulto ou uma criança, está diretamente relacionada com atividades e técnicas para contagem do número de elementos de algum

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO Prof. Ilydio Pereira de Sá www.magiadamatematica.com MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO Princípio Fundamental da Contagem

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

ANÁLISE COMBINATÓRIA. Ex: 1) Para a eleição da associação de Pais e Mestres da Escola, há três candidatos a presidente e dois a vice-presidente.

ANÁLISE COMBINATÓRIA. Ex: 1) Para a eleição da associação de Pais e Mestres da Escola, há três candidatos a presidente e dois a vice-presidente. ANÁLISE COMBINATÓRIA A Análise Combinatória é uma parte da Matemática que estuda e desenvolve métodos para a resolução de problemas que envolvem contagem. A origem dos problemas de contagem está ligada

Leia mais

Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75

Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Este material tem por objetivo ajudar o aluno a aplicar o Princípio Fundamental

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio

Material Teórico - Aplicações das Técnicas Desenvolvidas. Exercícios e Tópicos Relacionados a Combinatória. Segundo Ano do Ensino Médio Material Teórico - Aplicações das Técnicas Desenvolvidas Exercícios e Tópicos Relacionados a Combinatória Segundo Ano do Ensino Médio Prof Cícero Thiago Bernardino Magalhães Prof Antonio Caminha Muniz

Leia mais

Cotagem de dimensões básicas

Cotagem de dimensões básicas Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar

Leia mais

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br

Leia mais

DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON

DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON REVISÃO MATEMÁTICA 2º ANO 1 DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON 1. (Ufjf 2012) Uma empresa escolherá um chefe para cada uma de suas repartições A e B. Cada chefe deve ser

Leia mais

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos

Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

TÓPICOS DE RESOLUÇÃO DE PROBLEMAS: COMBINATÓRIA

TÓPICOS DE RESOLUÇÃO DE PROBLEMAS: COMBINATÓRIA TÓPICOS DE RESOLUÇÃO DE PROBLEMAS: COMBINATÓRIA Heitor Achilles Dutra da Rosa CEFET RJ heitorachilles@aolcom Introdução Entendemos por Combinatória o ramo da Matemática que nos permite resolver problemas

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO ANÁLISE COMBINATÓRIA ARRANJO SIMPLES PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PFC) Importa a ordem dos elementos (PFC) n 1.n 2.n 3... total de possibilidades A p n ( n p)! Supondo que 5 colegas vão sair de carro,

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

OFICINA DE JOGOS APOSTILA DO PROFESSOR

OFICINA DE JOGOS APOSTILA DO PROFESSOR OFICINA DE JOGOS APOSTILA DO PROFESSOR APRESENTAÇÃO Olá professor, Essa apostila apresenta jogos matemáticos que foram doados a uma escola de Blumenau como parte de uma ação do Movimento Nós Podemos Blumenau.

Leia mais

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais ordinais Utilizar corretamente os numerais ordinais até centésimo. Contar até um milhão Estender as regras

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS

MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIS Como vimos no módulo 1, para que nós possamos extrair dos dados estatísticos de que dispomos a correta análise e interpretação, o primeiro passo deverá ser a correta

Leia mais

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco

Contagem (2) Anjolina Grisi de Oliveira. 2007.1 / CIn-UFPE. Centro de Informática Universidade Federal de Pernambuco 1 / 24 Contagem (2) Anjolina Grisi de Oliveira Centro de Informática Universidade Federal de Pernambuco 2007.1 / CIn-UFPE 2 / 24 O princípio da multiplicação de outra forma O princípio da multiplicação

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Álgebra. SeM MiSTéRio

Álgebra. SeM MiSTéRio Álgebra SeM MiSTéRio Série SeM MiSTéRio Alemão Sem Mistério Álgebra Sem Mistério Cálculo Sem Mistério Conversação em Alemão Sem Mistério Conversação em Espanhol Sem Mistério Conversação em Francês Sem

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

Como foi visto no tópico anterior, existem duas formas básicas para representar uma função lógica qualquer:

Como foi visto no tópico anterior, existem duas formas básicas para representar uma função lógica qualquer: ELETRÔNI IGITl I FUNÇÕES LÓGIS Formas de representação de uma função lógica omo foi visto no tópico anterior, existem duas formas básicas para representar uma função lógica qualquer: Soma de Produtos Produtos

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Agrupamento de Escolas Eugénio de Castro 1º Ciclo Critérios de Avaliação Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais

Leia mais

NOTAS DE AULA: LÓGICA, INDUÇÃO E INICIAÇÃO MATEMÁTICA

NOTAS DE AULA: LÓGICA, INDUÇÃO E INICIAÇÃO MATEMÁTICA NOTAS DE AULA: LÓGICA, INDUÇÃO E INICIAÇÃO MATEMÁTICA André Luiz Galdino Notas de Aula: Lógica, Indução e Iniciação Matemática 3 SUMÁRIO 3 1 Noções de Análise Combinatória 4 11 Princípio da Regra da Soma

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO Atualizado em Prof. Rui Mano E mail: rmano@tpd.puc rio.br SISTEMAS DE NUMERAÇÃO Sistemas de Numer ação Posicionais Desde quando se começou a registrar informações sobre quantidades, foram criados diversos

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Bacharelado em Economia - FEA - Noturno 1 o Semestre 2015 Gilberto A. Paula G. A. Paula - MAE0219 (IME-USP) Noções de Probabilidade 1 o Semestre 2015 1 / 59 Objetivos da Aula Sumário

Leia mais

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA QUESTÕES DISCURSIVAS AÁLISE COMBIATÓRIA ) (PUC-SP) O novo sistema de placas de veículos utiliza um grupo de 3 letras(dentre 6 letras ) e um grupo de 4 algarismos (por exemplo: ABC-03). Uma placa dessas

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA MATEMÁTICA IV ANÁLISE COMBINATÓRIA DISCURSIVAS SÉRIE AULA AULA 0 1 (UP 01 A Mega Sena é a maior loteria do Brasil realizada pela Caixa Econômica Federal (CEF. Para ganhar o prêmio da Mega Sena, o apostador

Leia mais

Representação de números em máquinas

Representação de números em máquinas Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

Cotagem de elementos

Cotagem de elementos Cotagem de elementos Introdução Na aula anterior você estudou algumas regras para cotagem e aprendeu como indicar as cotas básicas da peça. Mas, só com essas cotas, não é possível produzir peças que tenham

Leia mais

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala Escalas Introdução Antes de representar objetos, modelos, peças, etc. deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas

Leia mais

QUESTÃO 1 ALTERNATIVA D

QUESTÃO 1 ALTERNATIVA D OBMEP 015 Nível 3 1 QUESTÃO 1 Como,5 = 5 x 0,5, o tempo que o frango deve ficar no forno é 5 x 1 = 60 minutos. Logo, Paula deve colocar o frango no forno às 19 h, mas 15 minutos antes deve acender o forno.

Leia mais

MODELO DE ROTEIRO. Tela 1. Imagem:

MODELO DE ROTEIRO. Tela 1. Imagem: MODELO DE ROTEIRO Título da animação: Tela inicial Tela 1 Olá, somos os protetores da Selva. Fomos chamados pelos índios para salvar os animais em extinção da Floresta Amazônica. Escreva seu nome e vamos

Leia mais

6+3=2 8+2=4 12 + 4 = 3. Nesses exemplos, os resultados podem ser facilmente confirmados pela multiplicação, que é a operação inversa da divisão.

6+3=2 8+2=4 12 + 4 = 3. Nesses exemplos, os resultados podem ser facilmente confirmados pela multiplicação, que é a operação inversa da divisão. Três pequenas associações resolveram organizar uma festa para arrecadar fundos. "Somaremos nossos esforços e dividiremos os lucros", afirmou um dos presidentes. Pois bem, a festa aconteceu e foi um sucesso.

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano)

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano) O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de álgebra para ensino fundamental ( º ao º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) Pré-IME, Pré-ITA,

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Disciplina: Matemática Data da entrega: 18/04/2015.

Disciplina: Matemática Data da entrega: 18/04/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Turma: 2ª série (ensino médio) Disciplina: Matemática Data da entrega: 18/04/2015. Observação: A lista deverá apresentar capa, enunciados e as

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

(A) 25 (B) 35 (C) 55 (D) 85

(A) 25 (B) 35 (C) 55 (D) 85 D9 Estabelecer relações entre o horário de inicio e termino e ou intervalo da duração de um evento ou acontecimento. D10 Num problema estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro,

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma fazenda, como podemos calcular a

Leia mais

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM.

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM. O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de ÁLGEBRA do ensino fundamental (6º ao 9º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME Exercícios estilo IME PROGRAMA IME ESPECIAL ANÁLISE COMBINATÓRIA PROF. PAULO ROBERTO 01. Em um baile há seis rapazes e dez moças. Quantos pares podem ser formados para a dança: a) sem restrição; b) se

Leia mais

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por

Leia mais

CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL

CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL 1 CAPÍTULO 1 REVISÃO DE LÓGICA COMBINACIONAL Sumário 1.1. Sistemas de Numeração... 3 1.1.1. Conversão Decimal Binária... 3 1.1.2. Conversão Binária Decimal... 3 1.1.3. Conversão Binária Hexadecimal...

Leia mais

Seção Técnica de Ensino 2/8

Seção Técnica de Ensino 2/8 Escolha a única respost a certa, conform e o enunciado da quest ão, assinalandoa corretamente no CARTÃO- RESPOSTA. 01. O número natural mais próximo de ( A ) 2 ( B ) 3 ( C ) 4 ( D ) 5 ( E ) 6 3 4 7 3 5

Leia mais

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries)

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) PROBLEMA 1 Numa loteria, todos os prêmios em reais são potências de 13 (isto é, R$ 1,00, R$ 13,00, R$ 169,00 etc.)

Leia mais

Exercícios Análise Combinatória

Exercícios Análise Combinatória Exercícios Análise Combinatória 1. (Uemg 2014) Na Copa das Confederações de 2013, no Brasil, onde a seleção brasileira foi campeã, o técnico Luiz Felipe Scolari tinha à sua disposição 23 jogadores de várias

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

A B C F G H I. Apresente todas as soluções possíveis. Solução

A B C F G H I. Apresente todas as soluções possíveis. Solução 19a Olimpíada de Matemática do Estado do Rio Grande do Norte - 008 Segunda Etapa Em 7/09/008 Prova do Nível I (6 o ou 7 o Séries) (antigas 5ª ou 6ª séries) 1 a Questão: Substitua as nove letras da figura

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

PROBABILIDADE ESTATÍSTICA

PROBABILIDADE ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA (1000 ton) 2500 Gráfico 4.1. Produção de Arroz do Município X - 1984-1994 2000 1500 1000 500 0 84 85 86 87 88 89 90 91 92 93 94 M. Bastos 2005 SUMÁRIO 1 TEORIA DOS CONJUNTOS

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 ALTERNATIVA B A diferença entre o que há na primeira balança e o que há a balança do meio é exatamente o que há na última balança; logo, na última balança deve aparecer a marcação 64 41 = 23

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Configurando o estilo de Camada (Layer) no AutoCAD 2007

Configurando o estilo de Camada (Layer) no AutoCAD 2007 Configurando o estilo de Camada (Layer) no AutoCAD 2007 1 - Inicialmente, na Barra de Camadas clique no ícone (Gerenciador de Propriedades da Camada), para configurar o estilo de camada: 2 - Na caixa de

Leia mais

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA (UNIDADE ACADÊMICA DE MATEMÁTICA E ESTATÍSTICA) PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: PROF.

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Desenhando perspectiva isométrica

Desenhando perspectiva isométrica Desenhando perspectiva isométrica A UU L AL A Quando olhamos para um objeto, temos a sensação de profundidade e relevo. As partes que estão mais próximas de nós parecem maiores e as partes mais distantes

Leia mais

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva Conversões em Sistemas de Numeração José Gustavo de Souza Paiva 1 Conversões entre bases que são potências entre si Primeiro caso base binária para base octal Como 2 3 = 8, podemos separar os bits de um

Leia mais

Um jogo de preencher casas

Um jogo de preencher casas Um jogo de preencher casas 12 de Janeiro de 2015 Resumo Objetivos principais da aula de hoje: resolver um jogo com a ajuda de problemas de divisibilidade. Descrevemos nestas notas um jogo que estudamos

Leia mais

Princ ıpios b asicos Exemplo 1. Exemplo 2. Exemplo 3.

Princ ıpios b asicos Exemplo 1. Exemplo 2. Exemplo 3. Capítulo 6 Combinatória 1 Princípios básicos O princípio fundamental da contagem diz que se há x modos de tomar uma decisão D ½ e, tomada a decisão D ½,há y modos de tomar a decisão D ¾, então o número

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 01 A LEI DE OHM e AS LEIS DE KIRCHHOFF NOME: TURMA: DATA: / / OBJETIVOS: Ler o valor nominal de cada resistor através do código de cores. Conhecer os tipos de

Leia mais

A Matemática do ENEM em Bizus

A Matemática do ENEM em Bizus A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos.

Ambos têm os algarismos 7854 seguidos, a potência de dez apenas moverá a vírgula, que não afeta a quantidade de algarismos significativos. ALGARISMOS SIGNIFICATIVOS Os algarismos significativos são os algarismos que têm importância na exatidão de um número, por exemplo, o número 2,67 tem três algarismos significativos. Se expressarmos o número

Leia mais

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores ARQUITETURA DE COMPUTADORES Sistemas de Numeração 1 Sistemas de Numeração e Conversão de Base Sistema Decimal É o nosso sistema natural. Dígitos 0,1,2,3,4,5,6,7,8 e 9. Números superiores a 9; convencionamos

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II)

CURSO ONLINE RACIOCÍNIO LÓGICO. AULA ONZE: Análise Combinatória (Parte II) 1 AULA ONZE: Análise Combinatória (Parte II) Olá, amigos! Tudo bem com vocês? Esta é nossa décima primeira aula, e ainda sequer chegamos à metade de nosso curso! Longo é o caminho do Raciocínio Lógico...

Leia mais

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização

Leia mais

Índice. 1. Metodologia de Alfabetização...3. 2. Aprendizagem da Escrita...3 3. Aprendizagem da Leitura...6

Índice. 1. Metodologia de Alfabetização...3. 2. Aprendizagem da Escrita...3 3. Aprendizagem da Leitura...6 GRUPO 6.1 MÓDULO 6 Índice 1. Metodologia de Alfabetização...3 1.1. Qual o Conhecimento sobre o Sistema de Escrita dos Jovens e Adultos?... 3 2. Aprendizagem da Escrita...3 3. Aprendizagem da Leitura...6

Leia mais

Aula 2 Sistemas de Numeração (Revisão)

Aula 2 Sistemas de Numeração (Revisão) Aula 2 Sistemas de Numeração (Revisão) Anderson L. S. Moreira anderson.moreira@recife.ifpe.edu.br http://dase.ifpe.edu.br/~alsm 1 O que fazer com essa apresentação 2 Agenda Breve revisão da aula anterior

Leia mais

DEPARTAMENTO DE 1º Ciclo - Grupo 110. Planificação Anual / Critérios de avaliação. Disciplina: Matemática 2.º ano 2015/2016

DEPARTAMENTO DE 1º Ciclo - Grupo 110. Planificação Anual / Critérios de avaliação. Disciplina: Matemática 2.º ano 2015/2016 DEPARTAMENTO DE 1º Ciclo - Grupo 110 Planificação Anual / Critérios de avaliação Disciplina: Matemática 2.º ano 2015/2016 Domínio (Unidade/ tema) Subdomínio/Conteúdos Metas de Aprendizagem Estratégias/

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais