Exercícios de Análise Combinatória ano: 2013

Tamanho: px
Começar a partir da página:

Download "Exercícios de Análise Combinatória ano: 2013"

Transcrição

1 Página1 Exercícios de Análise Combinatória ano: (Pucrj) Em uma sorveteria há sorvetes nos sabores morango, chocolate, creme e flocos. De quantas maneiras podemos montar uma casquinha com duas bolas nessa sorveteria? a) 10 maneiras b) 9 maneiras c) 8 maneiras d) 7 maneiras e) 6 maneiras 2. (Uerj) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela e verde. Observe a figura: Considere as seguintes informações: cada módulo pode acender apenas uma lâmpada por vez; qualquer mensagem é configurada pelo acendimento simultâneo de três lâmpadas vermelhas, duas verdes e uma amarela, permanecendo dois módulos com as três lâmpadas apagadas; duas mensagens são diferentes quando pelo menos uma das posições dessas cores acesas é diferente. Calcule o número de mensagens distintas que esse sistema pode emitir. 3. (Pucrj) Em uma sorveteria, há sorvetes nos sabores morango, chocolate, creme e flocos. De quantas maneiras podemos montar uma casquinha, com dois sabores diferentes, nessa sorveteria? a) 6 maneiras b) 7 maneiras c) 8 maneiras d) 9 maneiras e) 10 maneiras 4. (Ufsm) As doenças cardiovasculares aparecem em primeiro lugar entre as causas de morte no Brasil. As cirurgias cardíacas são alternativas bastante eficazes no tratamento dessas doenças.

2 Página2 Supõe-se que um hospital dispõe de 5 médicos cardiologistas, 2 médicos anestesistas e 6 instrumentadores que fazem parte do grupo de profissionais habilitados para realizar cirurgias cardíacas. Quantas equipes diferentes podem ser formadas com 3 cardiologistas, 1 anestesista e 4 instrumentadores? a) 200. b) 300. c) 600. d) 720. e) (Epcar (Afa)) Num acampamento militar, serão instaladas três barracas: I, II e III. Nelas, serão alojados 10 soldados, dentre eles o soldado A e o soldado B, de tal maneira que fiquem 4 soldados na barraca I, 3 na barraca II e 3 na barraca III. Se o soldado A deve ficar na barraca I e o soldado B NÃO deve ficar na barraca III, então o número de maneiras distintas de distribuí-los é igual a a) 560 b) 1120 c) 1680 d) (Upe) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista que sorteará bolsas de estudo no exterior. A probabilidade de essas duas pessoas escolhidas pertencerem ao grupo das que pretendem fazer intercâmbio no Chile é a) 1/5 b) 1/15 c) 1/45 d) 3/10 e) 3/7 7. (Fuvest) Vinte times de futebol disputam a Série A do Campeonato Brasileiro, sendo seis deles paulistas. Cada time joga duas vezes contra cada um dos seus adversários. A porcentagem de jogos nos quais os dois oponentes são paulistas é a) menor que 7%. b) maior que 7%, mas menor que 10%. c) maior que 10%, mas menor que 13%. d) maior que 13%, mas menor que 16%. e) maior que 16%.

3 Página3 8. (Ufmg) Permutando-se os algarismos do número , formam-se números de seis algarismos. Supondo-se que todos os números formados com esses seis algarismos tenham sido colocados numa lista em ordem crescente, a) DETERMINE quantos números possui essa lista. b) DETERMINE a posição do primeiro número que começa com o algarismo 4. c) DETERMINE a posição do primeiro número que termina com o algarismo (Upe) Oito amigos entraram em um restaurante para jantar e sentaram-se numa mesa retangular, com oito lugares, como mostra a figura a seguir: Dentre todas as configurações possíveis, quantas são as possibilidades de dois desses amigos, Amaro e Danilo, ficarem sentados em frente um do outro? a) b) c) d) e) (Unicamp) Para acomodar a crescente quantidade de veículos, estuda-se mudar as placas, atualmente com três letras e quatro algarismos numéricos, para quatro letras e três algarismos numéricos, como está ilustrado abaixo. ABC 1234 ABCD 123 Considere o alfabeto com 26 letras e os algarismos de 0 a 9. O aumento obtido com essa modificação em relação ao número máximo de placas em vigor seria a) inferior ao dobro. b) superior ao dobro e inferior ao triplo. c) superior ao triplo e inferior ao quádruplo. d) mais que o quádruplo.

4 Página4 11. (Uel) Os clientes de um banco, ao utilizarem seus cartões nos caixas eletrônicos, digitavam uma senha numérica composta por cinco algarismos. Com o intuito de melhorar a segurança da utilização desses cartões, o banco solicitou a seus clientes que cadastrassem senhas numéricas com seis algarismos. Se a segurança for definida pela quantidade de possíveis senhas, em quanto aumentou percentualmente a segurança na utilização dos cartões? a) 10% b) 90% c) 100% d) 900% e) 1900% 12. (Uerj) Na ilustração abaixo, as 52 cartas de um baralho estão agrupadas em linhas com 13 cartas de mesmo naipe e colunas com 4 cartas de mesmo valor. Denomina-se quadra a reunião de quatro cartas de mesmo valor. Observe, em um conjunto de cinco cartas, um exemplo de quadra: O número total de conjuntos distintos de cinco cartas desse baralho que contêm uma quadra é igual a: a) 624 b) 676 c) 715 d) 720

5 Página5 13. (Uerj) A tabela abaixo apresenta os critérios adotados por dois países para a formação de placas de automóveis. Em ambos os casos, podem ser utilizados quaisquer dos 10 algarismos de 0 a 9 e das 26 letras do alfabeto romano. País Descrição Exemplo de placa X 3 letras e 3 algarismos, em qualquer ordem Y um bloco de 3 letras, em qualquer ordem, à esquerda de outro bloco de 4 algarismos, também em qualquer ordem Considere o número máximo de placas distintas que podem ser confeccionadas no país X igual a n e no país Y igual a p. A n p razão corresponde a: a) 1 b) 2 c) 3 d) (Unicamp) O grêmio estudantil do Colégio Alvorada é composto por 6 alunos e 8 alunas. Na última reunião do grêmio, decidiu-se formar uma comissão de 3 rapazes e 5 moças para a organização das olimpíadas do colégio. De quantos modos diferentes pode-se formar essa comissão? a) b) c) d) (Uerj) Todas as n capitais de um país estão interligadas por estradas pavimentadas, de acordo com o seguinte critério: uma única estrada liga cada duas capitais. Com a criação de duas novas capitais, foi necessária a construção de mais 21 estradas pavimentadas para que todas as capitais continuassem ligadas de acordo com o mesmo critério. Determine o número n de capitais, que existiam inicialmente nesse país.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir.

Combinação. Calcule o número de mensagens distintas que esse sistema pode emitir. Combinação 1. (Uerj 2013) Um sistema luminoso, constituído de oito módulos idênticos, foi montado para emitir mensagens em código. Cada módulo possui três lâmpadas de cores diferentes vermelha, amarela

Leia mais

2º ANO 4º. Sabe-se que a soma dos elementos de uma coluna do triângulo de Pascal pode ser calculada pela

2º ANO 4º. Sabe-se que a soma dos elementos de uma coluna do triângulo de Pascal pode ser calculada pela DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 2013 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 2º ANO 4º ALUNO 1. (Uerj 2014) Em um escritório, há dois porta-lápis: o porta-lápis

Leia mais

Análise Combinatória. Parte I. www.soexatas.com Página 1

Análise Combinatória. Parte I. www.soexatas.com Página 1 Parte I Análise Combinatória 1. (Ufmg 2013) Permutando-se os algarismos do número 123456, formam-se números de seis algarismos. Supondo-se que todos os números formados com esses seis algarismos tenham

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

Exercícios Análise Combinatória

Exercícios Análise Combinatória Exercícios Análise Combinatória 1. (Uemg 2014) Na Copa das Confederações de 2013, no Brasil, onde a seleção brasileira foi campeã, o técnico Luiz Felipe Scolari tinha à sua disposição 23 jogadores de várias

Leia mais

EXERCÍCIOS - ANÁLISE COMBINATÓRIA

EXERCÍCIOS - ANÁLISE COMBINATÓRIA EXERCÍCIOS - ANÁLISE COMBINATÓRIA CONTAGEM 1) A cantina do meu colégio vende 4 tipos de salgados e 5 marcas de refrigerantes. De quantas formas distintas posso escolher meu lanche (um salgado e um refrigerante)?

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

PROFESSOR: Cláudio Dias

PROFESSOR: Cláudio Dias PROFESSOR: Cláudio Dias BANCO DE QUESTÕES - MATEMÁTICA - 2ª SÉRIE - ENSINO MÉDIO - PARTE 1 ============================================================================================= Análise Combinatória

Leia mais

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo.

Aluno(a): Código: x 11 y x 3 e dois vértices no eixo x, como na figura abaixo. Aluno(a): Código: Série: 3ª Turma: Data: / / 01. A empresa Dk transporta 400 passageiros por mês da cidade de Vicentinópolis(Paletó) a Joviânia. A passagem custa 0 reais, e a empresa deseja aumentar o

Leia mais

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA

PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA PROFMAT - UNIRIO COORDENADOR GLADSON ANTUNES ALUNO JOÃO CARLOS CATALDO ANÁLISE COMBINATÓRIA Questão 1: Entre duas cidades A e B existem três empresas de avião e cinco de ônibus. Uma pessoa precisa fazer

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES

MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES MATEMÁTICA - 3 o ANO MÓDULO 14 PRINCÍPIO MULTIPLICATIVO E PERMUTAÇÕES A D C B D B C A B D A C C B A D Como pode cair no enem (ENEM) A escrita Braile para cegos é um sistema de símbolos no qual cada caractere

Leia mais

Disciplina: Matemática Data da entrega: 18/04/2015.

Disciplina: Matemática Data da entrega: 18/04/2015. Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Turma: 2ª série (ensino médio) Disciplina: Matemática Data da entrega: 18/04/2015. Observação: A lista deverá apresentar capa, enunciados e as

Leia mais

COLÉGIO NOSSA SENHORA DE LOURDES 2ª SÉRIE Ensino Médio -2015. Roteiro de estudos para recuperação trimestral Matemática Ticiano Azevedo Bastos

COLÉGIO NOSSA SENHORA DE LOURDES 2ª SÉRIE Ensino Médio -2015. Roteiro de estudos para recuperação trimestral Matemática Ticiano Azevedo Bastos COLÉGIO NOSSA SENHORA DE LOURDES 2ª SÉRIE Ensino Médio -2015 Disciplina: Professor (a): Roteiro de estudos para recuperação trimestral Matemática Ticiano Azevedo Bastos Conteúdo: Referência para estudo:

Leia mais

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)

PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01) Questão 01) O jogo da Mega-Sena consiste no sorteio de 6 números distintos entre 1 e 60. Um apostador escolhe 20 números distintos e faz todos os C 20,6 jogos possíveis de serem realizados com os 20 números.

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

Francisco Ramos. 100 Problemas Resolvidos de Matemática

Francisco Ramos. 100 Problemas Resolvidos de Matemática Francisco Ramos 100 Problemas Resolvidos de Matemática SUMÁRIO Questões de vestibulares... 1 Matrizes e Determinantes... 25 Geometria Plana e Espacial... 39 Aritmética... 61 QUESTÕES DE VESTIBULARES

Leia mais

01) 551 02) 552 03) 553 04) 554 05) 555

01) 551 02) 552 03) 553 04) 554 05) 555 Questão 01 PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA (FUVEST010)

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: PROBABILIDADE a SÉRIE ENSINO MÉDIO ======================================================================= ) (UF SC) Em uma caixa há 8 bombons, todos com forma,

Leia mais

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios Combinatória 1. (Espcex (Aman) 2015) De uma caixa contendo 50 bolas numeradas de 1 a 50 retiram-se duas bolas, sem reposição. A probabilidade do número da primeira bola ser divisível por 4 e o número da

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

KLAITON 1ª SEMANA - 3ª REG WS E DC MAT 4

KLAITON 1ª SEMANA - 3ª REG WS E DC MAT 4 KLAITON 1ª SEMANA - 3ª REG WS E DC MAT 4 1. Os clientes de um banco, ao utilizarem seus cartões nos caixas eletrônicos, digitavam uma senha numérica composta por cinco algarismos. Com o intuito de melhorar

Leia mais

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL

CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL CURSO ANUAL DE MATEMÁTICA REVISÃO ENEM RETA FINAL Tenho certeza que você se dedicou ao máximo esse ano, galerinha! Sangue no olho, muita garra nessa reta final! Essa vaga é de vocês! Forte abraço prof

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Análise Combinatória 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 3º Bimestre/2013 Aluno(a): Número: Turma: 1) Resolva

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO

MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO MATEMÁTICA - 3 o ANO MÓDULO 18 PROBABILIDADE DE MAIS DE UM EVENTO Como pode cair no enem (ENEM) Em um jogo disputado em uma mesa de sinuca, há 16 bolas: 1 branca e 15 coloridas, as quais, de acordo com

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO ANÁLISE COMBINATÓRIA ARRANJO SIMPLES PRINCÍPIO FUNDAMENTAL DA CONTAGEM (PFC) Importa a ordem dos elementos (PFC) n 1.n 2.n 3... total de possibilidades A p n ( n p)! Supondo que 5 colegas vão sair de carro,

Leia mais

Análise Combinatória. Prof. Thiago Figueiredo

Análise Combinatória. Prof. Thiago Figueiredo Análise Combinatória Prof. Thiago Figueiredo (Escola Naval) Um tapete de 8 faixas deve ser pintado com cores azul, preta e branca. A quantidade de maneiras que podemos pintar esse tapete de modo que as

Leia mais

8. (Uerj 2010) C30 + C20 A30 + A20

8. (Uerj 2010) C30 + C20 A30 + A20 1. (Uerj 2007) Sete diferentes figuras foram criadas para ilustrar, em grupos de quatro, o Manual do Candidato do Vestibular Estadual 2007. Um desses grupos está apresentado a seguir. Considere que cada

Leia mais

PRINCÍPIO FUNDAMENTAL DA CONTAGEM, PERMUTAÇÕES, ARRANJOS E COMBINATÓRIA

PRINCÍPIO FUNDAMENTAL DA CONTAGEM, PERMUTAÇÕES, ARRANJOS E COMBINATÓRIA MATEMÁTICA PRINCÍPIO FUNDAMENTAL DA CONTAGEM, PERMUTAÇÕES, ARRANJOS E COMBINATÓRIA 1 1. UFMS Sendo A n,3 = 3(n 1), então, n é: a) 3 ou 1 b) 1 ou 3 c) 3 d) 1 e) 3 ou 1 2. UFBA Com base nos conhecimentos

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para

Leia mais

ANÁLISE COMBINATÓRIA - ITA. Princípios Fundamentais

ANÁLISE COMBINATÓRIA - ITA. Princípios Fundamentais ANÁLISE COMBINATÓRIA - ITA Princípios Fundamentais...Pag.01 Permutações..Pag.04 Combinações.Pag.07 Permutações com Repetição...Pag.11 Princípios Fundamentais 01. Determine o número de maneiras de um professor

Leia mais

Associação Brasileira de Escolinhas de Futebol e Futsal- ABEFF

Associação Brasileira de Escolinhas de Futebol e Futsal- ABEFF Associação Brasileira de Escolinhas de Futebol e Futsal- ABEFF Diretoria de Competições Regulamento da Copa do Brasil de Escolinhas de Futebol Copa do Brasil de Escolinhas de Futebol 2016 Categorias Sub

Leia mais

d) 4 032 e) 5 760 a) 1 5 b) 2 5 c) 3 4 d) 1 4 e) 1 2

d) 4 032 e) 5 760 a) 1 5 b) 2 5 c) 3 4 d) 1 4 e) 1 2 Permutação d) 4 032 e) 5 760 1. (Upe 2013) Seguindo a etiqueta japonesa, um restaurante tipicamente oriental solicita aos seus clientes que retirem seus calçados na entrada do estabelecimento. Em certa

Leia mais

Lista de analise combinatoria

Lista de analise combinatoria 1. (Epcar (Afa)) Num acampamento militar, serão instaladas três barracas: I, II e III. Nelas, serão alojados 10 soldados, dentre eles o soldado A e o soldado B, de tal maneira que fiquem 4 soldados na

Leia mais

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA

QUESTÕES DISCURSIVAS ANÁLISE COMBINATÓRIA QUESTÕES DISCURSIVAS AÁLISE COMBIATÓRIA ) (PUC-SP) O novo sistema de placas de veículos utiliza um grupo de 3 letras(dentre 6 letras ) e um grupo de 4 algarismos (por exemplo: ABC-03). Uma placa dessas

Leia mais

TRABALHO DE MATEMÁTICA II

TRABALHO DE MATEMÁTICA II TRABALHO DE MATEMÁTICA II Prof. Sérgio Tambellini 2 o Trimestre / 2012 2 o Azul Questão 04 GRUPO 1 (FUVEST2010) Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO Prof. Ilydio Pereira de Sá www.magiadamatematica.com MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO Princípio Fundamental da Contagem

Leia mais

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03

MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 MATEMÁTICA IV PROBABILIDADE DISCURSIVAS SÉRIE AULA AULA 03 1 1) (FGV-SP 2008) Há apenas dois modos de Cláudia ir para o trabalho: de ônibus ou de moto. A probabilidade de ela ir de ônibus é 30% e, de moto,

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 20 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO Uma forma de medir o percentual de gordura corporal

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

Projeto Rumo ao ITA Exercícios estilo IME

Projeto Rumo ao ITA Exercícios estilo IME Exercícios estilo IME PROGRAMA IME ESPECIAL ANÁLISE COMBINATÓRIA PROF. PAULO ROBERTO 01. Em um baile há seis rapazes e dez moças. Quantos pares podem ser formados para a dança: a) sem restrição; b) se

Leia mais

Manual ControlWeb 3 Guia do Usuário. Control Loc

Manual ControlWeb 3 Guia do Usuário. Control Loc Manual ControlWeb 3 Guia do Usuário http://controlweb.controlloc.com.br Control Loc 2007 Data: 19/06/2007 O QUE É O ControlWeb é uma aplicação de rastreamento e comunicação veicular que utiliza os mais

Leia mais

PORTAL DE COMPRAS SÃO JOSÉ DO RIO PRETO

PORTAL DE COMPRAS SÃO JOSÉ DO RIO PRETO Compra Direta - Guia do Fornecedor PORTAL DE COMPRAS SÃO JOSÉ DO RIO PRETO Página As informações contidas neste documento, incluindo quaisquer URLs e outras possíveis referências a web sites, estão sujeitas

Leia mais

Manual de acesso ao UNICURITIBA Virtual (Moodle) para alunos EAD

Manual de acesso ao UNICURITIBA Virtual (Moodle) para alunos EAD 1 Manual de acesso ao UNICURITIBA Virtual (Moodle) para alunos EAD 2015 2 Sumário Acessando o UNICURITIBA Virtual... 4 Conhecendo o UNICURITIBA Virtual... 5 1. Foto do Perfil... 5 2. Campo de Busca...

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 5 Ọ ANO EM 2012. Disciplina:

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 5 Ọ ANO EM 2012. Disciplina: Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 5 Ọ ANO EM 2012 Disciplina: MateMática Prova: desafio nota: QUESTÃO 11 A cada quatro anos os gregos da Antiguidade em nome dos deuses

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Roteiro de Estudos do 1ª Trimestre 2ªSérie Disciplina: Matemática Professor: Hugo P.

Roteiro de Estudos do 1ª Trimestre 2ªSérie Disciplina: Matemática Professor: Hugo P. Roteiro de Estudos do 1ª Trimestre ªSérie Disciplina: Matemática Professor: Hugo P. Conteúdos para Avaliação Trimestral: Matrizes o Definição; lei de formação de uma Matriz; o Operações com matrizes (soma,

Leia mais

Manual do Sistema "Coelho - Sistema de Analise Loterica" Editorial Brazil Informatica

Manual do Sistema Coelho - Sistema de Analise Loterica Editorial Brazil Informatica Manual do Sistema "Coelho - Sistema de Analise Loterica" Editorial Brazil Informatica I Coelho - Sistema de Analise Loterica Conteudo Part I Introdução 2 1 Coelho- Sistema... de Analise Loterica 2 Part

Leia mais

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. 1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

PROBABILIDADE ESTATÍSTICA

PROBABILIDADE ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA (1000 ton) 2500 Gráfico 4.1. Produção de Arroz do Município X - 1984-1994 2000 1500 1000 500 0 84 85 86 87 88 89 90 91 92 93 94 M. Bastos 2005 SUMÁRIO 1 TEORIA DOS CONJUNTOS

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Exercícios de Microcontroladores -> Programas sequenciais

Exercícios de Microcontroladores -> Programas sequenciais Exercícios de Microcontroladores -> Programas sequenciais Prof. Gabriel Vinicios - www.gvensino.com.br Exercício 1: Cronômetro - Dificuldade: (3/5) No display, serão exibidos: minutos : segundos : décimos

Leia mais

Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75

Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem. Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Exemplos de Problemas Aplicando o Princípio Fundamental da Contagem Professor: Flávio dos Reis Moura Skype; mineironegrogalo75 Este material tem por objetivo ajudar o aluno a aplicar o Princípio Fundamental

Leia mais

Associação de Resistores

Associação de Resistores Associação de Resistores 1. (Pucrj 2013) No circuito mostrado na figura, a diferença de potencial entre os pontos B e A vale, em Volts: a) 3,0 b) 1,0 c) 2,0 d) 4,5 e) 0,75 2. (Uerj 2011) Observe a representação

Leia mais

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE

RACIOCÍNIO LÓGICO PROF PEDRÃO TABELA-VERDADE TABELA-VERDADE 01) A negação da afirmação se o cachorro late então o gato mia é: A) se o gato não mia então o cachorro não late. B) o cachorro não late e o gato não mia. C) o cachorro late e o gato não

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Considere o produto dos números naturais ímpares, 19 17 15... 3 1: Como pode ser reescrito utilizando fatorial? (a) 19! (b) 19! 20! (c) 19! 18 16... 2 (d) 19! 20 Exercício 2

Leia mais

Exercícios de Matemática Análise Combinatória - Princípio Fundamental da Contagem

Exercícios de Matemática Análise Combinatória - Princípio Fundamental da Contagem Exercícios de Matemática Análise Combinatória - Princípio Fundamental da Contagem 1. (Fuvest 2004) Três empresas devem ser contratadas para realizar quatro trabalhos distintos em um condomínio. Cada trabalho

Leia mais

SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO

SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO 01) (Enem 2014 Adaptada) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 2ª Etapa 2013 Disciplina: Matemática Ano: 3 Professor (a): Ana Cristina Turma: FG/AD Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Está apto a utilizar o sistema, o usuário que tenha conhecimentos básicos de informática e navegação na internet.

Está apto a utilizar o sistema, o usuário que tenha conhecimentos básicos de informática e navegação na internet. Conteúdo 1. Descrição geral 2 2. Resumo das funcionalidades 3 3. Efetuar cadastro no sistema 4 4. Acessar o sistema 6 5. Funcionalidades do menu 7 5.1 Dados cadastrais 7 5.2 Grupos de usuários 7 5.3 Funcionários

Leia mais

MANUAL VTWEB CLIENT URBANO

MANUAL VTWEB CLIENT URBANO MANUAL VTWEB CLIENT URBANO A marca do melhor atendimento. Conteúdo... 2 1. Descrição... 3 2. Cadastro no sistema... 3 2.1. Pessoa Jurídica... 3 2.2. Pessoa Física... 5 2.3. Concluir o cadastro... 6 3.

Leia mais

Questões utilizadas nas aulas de quinta (17/10)

Questões utilizadas nas aulas de quinta (17/10) Matemática Análise combinatória 3 os anos João/Blaidi out/13 Nome: Nº: Turma: Questões utilizadas nas aulas de quinta (17/10) 1. (Upe 2013) Seguindo a etiqueta japonesa, um restaurante tipicamente oriental

Leia mais

COMO JOGAR BURACO STBL NO JOGATINA

COMO JOGAR BURACO STBL NO JOGATINA COMO JOGAR BURACO STBL NO JOGATINA Link:http://www.jogatina.com/como-jogar-buraco-fechado-stbl.html Como começo a jogar? Para começar a jogar Buraco STBL clique em "JOGAR AGORA!" na página de seu perfil

Leia mais

CAMPEONATO BRASILEIRO DA SÉRIE A/2012 REGULAMENTO ESPECÍFICO DA COMPETIÇÃO. CAPÍTULO I Da Denominação e Participação

CAMPEONATO BRASILEIRO DA SÉRIE A/2012 REGULAMENTO ESPECÍFICO DA COMPETIÇÃO. CAPÍTULO I Da Denominação e Participação CAMPEONATO BRASILEIRO DA SÉRIE A/2012 REGULAMENTO ESPECÍFICO DA COMPETIÇÃO CAPÍTULO I Da Denominação e Participação Art. 1º - O Campeonato Brasileiro de Clubes da Série A de 2012, doravante denominado

Leia mais

CAMPEONATO BRASILEIRO DA SÉRIE B DE 2014 REC - REGULAMENTO ESPECÍFICO DA COMPETIÇÃO. CAPÍTULO I Da Denominação e Participação

CAMPEONATO BRASILEIRO DA SÉRIE B DE 2014 REC - REGULAMENTO ESPECÍFICO DA COMPETIÇÃO. CAPÍTULO I Da Denominação e Participação CAMPEONATO BRASILEIRO DA SÉRIE B DE 2014 REC - REGULAMENTO ESPECÍFICO DA COMPETIÇÃO CAPÍTULO I Da Denominação e Participação Art. 1º - O Campeonato Brasileiro de Clubes da Série B de 2014, doravante denominado

Leia mais

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries)

COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL I (ENSINO FUNDAMENTAL: 5 a e 6 a Séries) PROBLEMA 1 Numa loteria, todos os prêmios em reais são potências de 13 (isto é, R$ 1,00, R$ 13,00, R$ 169,00 etc.)

Leia mais

PA Progressão Aritmética

PA Progressão Aritmética PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0

Leia mais

MANUAL DE NAVEGAÇÃO UNICURITIBA VIRTUAL

MANUAL DE NAVEGAÇÃO UNICURITIBA VIRTUAL MANUAL DE NAVEGAÇÃO UNICURITIBA VIRTUAL ACESSANDO O UNICURITIBA VIRTUAL Acesse o site do UNICURITIBA: http://unicuritiba.edu.br Clique no link Portal do Aluno, que fica no canto superior direito. Dentro

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações

Contagem. Prof. Dr. Leandro Balby Marinho. Matemática Discreta. Fundamentos Inclusão/Exclusão Princípio da Casa dos Pombos Permutações Combinações Contagem Prof. Dr. Leandro Balby Marinho Matemática Discreta Prof. Dr. Leandro Balby Marinho 1 / 39 UFCG CEEI Motivação Contagem e combinatória são partes importantes da matemática discreta. Se resumem

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

Abordagens Matemáticas e Estatísticas para o Futebol

Abordagens Matemáticas e Estatísticas para o Futebol Universidade Estadual de Campinas UNICAMP Abordagens Matemáticas e Estatísticas para o Futebol Aluna: Juliana Mayumi Aoki Orientador: Laércio Luis Vendite Identificação do trabalho Título Abordagens Matemáticas

Leia mais

EXERCÍCIOS. 02) (UFBA) Com os dígitos 1, 2, 3, 4, 6, e 8, quantos números naturais ímpares podem-se formar com três algarismos distintos cada um?

EXERCÍCIOS. 02) (UFBA) Com os dígitos 1, 2, 3, 4, 6, e 8, quantos números naturais ímpares podem-se formar com três algarismos distintos cada um? EXERCÍCIOS 0) Considerando os algarismos,,,, 5, 6, 7 e 8, responda: a) Quantos números de quatro algarismos podemos formar? b) Quantos números pares de quatro algarismos podemos formar? c) Quantos números

Leia mais

PeçaChevrolet Catálogo de peças genuínas Chevrolet para consultas e compras online

PeçaChevrolet Catálogo de peças genuínas Chevrolet para consultas e compras online PeçaChevrolet Catálogo de peças genuínas Chevrolet para consultas e compras online O novo produto PeçaChevrolet é um catálogo eletrônico de peças indicado para utilização de oficinas e reparadores independentes

Leia mais

ANÁLISE COMBINATÓRIA. 9 9 8 7 4536 números, já que os algarismos PRÍNCIPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA. 9 9 8 7 4536 números, já que os algarismos PRÍNCIPIO FUNDAMENTAL DA CONTAGEM 1 ANÁLISE COMBINATÓRIA Considere os dois problemas abaixo: Em uma corrida envolvendo quatro corredores, quantas são as possibilidades de pódio? Para cada possível 1º lugar, existem três possíveis 2ºs lugares

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

Art. 2º - Os critérios técnicos de participação dos clubes no Campeonato são os seguintes:

Art. 2º - Os critérios técnicos de participação dos clubes no Campeonato são os seguintes: CAMPEONATO BRASILEIRO DA SÉRIE A DE 214 REC - REGULAMENTO ESPECÍFICO DA COMPETIÇÃO CAPÍTULO I Da Denominação e Participação Art. 1º - O Campeonato Brasileiro de Clubes da Série A de 214, doravante denominado

Leia mais

TRABALHO DE MATEMÁTICA II

TRABALHO DE MATEMÁTICA II TRABALHO DE MATEMÁTICA II Prof. Sérgio Tambellini 2 o Trimestre / 2012 2 o Amarelo Questão 04 FUVEST 2010 GRUPO 1 Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os

Leia mais

AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-2013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ

AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-2013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ AVALIAÇÃO MULTIDISCIPLINAR MATEMÁTICA E SUAS TECNOLOGIAS COLÉGIO ANCHIETA-BA - UNIDADE III-0 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA 0- Unicamp 0 Na figura abaixo,

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

MÓDULO DE VISITANTES SISTEMA SES-CLIENT DA SUALTECH

MÓDULO DE VISITANTES SISTEMA SES-CLIENT DA SUALTECH UNIVERSIDADE ESTADUAL DE CAMPINAS Campinas 2010 MÓDULO DE VISITANTES SISTEMA SES-CLIENT DA SUALTECH Elaboração/Revisão do Manual Edmilson Bellini Chiavegatto (Centro de Computação) José Augusto Ruzene

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (ENEM) Para construir um contrapiso, é comum, na constituição do

Leia mais

DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON

DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON REVISÃO MATEMÁTICA 2º ANO 1 DISCIPLINA: MATEMÁTICA ANO: 2º Ano do Ensino Médio - PROF.: EDSON 1. (Ufjf 2012) Uma empresa escolherá um chefe para cada uma de suas repartições A e B. Cada chefe deve ser

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

Problemas de Jogos e Tabuleiros

Problemas de Jogos e Tabuleiros Problemas de Jogos e Tabuleiros Professor Emiliano Augusto Chagas Para esquentar! 01) Duas crianças se revezam em turnos quebrando uma barra retangular de chocolate, com seis quadrados de altura e oito

Leia mais

Volpe Enterprise Resource Planning

Volpe Enterprise Resource Planning Volpe Enterprise Resource Planning Este manual não pode, em parte ou no seu todo, ser copiado, fotocopiado, reproduzido, traduzido ou reduzido a qualquer mídia eletrônica ou máquina de leitura, sem a expressa

Leia mais

INTEGRAÇÃO COM RASTREADORES

INTEGRAÇÃO COM RASTREADORES INTEGRAÇÃO COM RASTREADORES Esse procedimento descreve as operações de cadastro de rastreadores e conferência de posicionamento de equipamentos, do módulo de integração com rastreadores. SUMÁRIO SUMÁRIO...

Leia mais

Exercícios de Matemática Análise Combinatória - Combinação

Exercícios de Matemática Análise Combinatória - Combinação Exercícios de Matemática Análise Combinatória - Combinação TEXTO PARA A PRÓXIMA QUESTÃO (Puccamp 2005) O cientista John Dalton é bastante conhecido pelas suas contribuições para a Química e a Física. Descreveu

Leia mais

Revisão de Matemática para o ENEM

Revisão de Matemática para o ENEM Revisão de para o ENEM 1. (Enem 2013) As projeções para a produção de arroz no período de 2012 2021, em uma determinada região produtora, apontam para uma perspectiva de crescimento constante da produção

Leia mais

Manual Telemetria - RPM

Manual Telemetria - RPM Sumário Apresentação... 2 Home... 2 Definição do Idioma... 3 Telemetria RPM... 4 Pré-requisitos necessários para utilizar o menu Telemetria RPM... 5 Faixas RPM... 11 Configura Faixa do Veículo... 15 Acumulado

Leia mais

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS

3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 3.ª e 4.ª SÉRIES/4.º e 5.º ANOS 1) Qual das planificações abaixo não é a planificação de um cubo? Resposta: I Existem 11 planificações diferentes para o cubo, indicadas pelas letras A, B, C, D, E, F, G,

Leia mais

Sistema Web; Permite acessas todas as funcionalidades via tablete; Não precisa instalar nenhum aplicativo para acessar o sistema Web.

Sistema Web; Permite acessas todas as funcionalidades via tablete; Não precisa instalar nenhum aplicativo para acessar o sistema Web. Características Gerais: Sistema Web; Permite acessas todas as funcionalidades via tablete; Não precisa instalar nenhum aplicativo para acessar o sistema Web. Modulo Geral Secretaria Possui cadastros das

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

PRINCÍPIO DA CASA DOS POMBOS

PRINCÍPIO DA CASA DOS POMBOS PRINCÍPIO DA CASA DOS POMBOS 1) Certa noite, Carlos Eduardo resolveu ir ao cinema, mas descobriu que não tinha meias limpas pra calçar. Foi então ao quarto do pai, que estava na escuridão. Ele sabia que

Leia mais