Resolução da Prova MPU Técnico Disciplina: Raciocínio Lógico Professor: Valdenilson Garcia
|
|
- Vasco Damásio Lopes
- 2 Há anos
- Visualizações:
Transcrição
1 Resolução da Prova MPU 01 - Técnico Disciplina: Raciocínio Lógico Professor: Valdenilson Garcia 01 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.
2 Texto 1: Nos termos da Lei n.º 8.666/199, É dispensável a realização de nova licitação quando não aparecerem interessados em licitação anterior e esta não puder ser repetida sem prejuízo para a administração. Considerando apenas os aspectos desse mandamento atinentes à lógica e que ele seja cumprido se, e somente se, a proposição nele contida, proposição P for verdadeira, julgue os itens seguintes. Vamos reescrever, do ponto de vista lógico, a afirmação P do texto: P: É dispensável a realização de nova licitação quando não aparecerem interessados em licitação anterior e esta não puder ser repetida sem prejuízo para a administração. Observe que o primeiro elemento que aparece ligando as proposições simples é o quando que poderá ser substituído, sem perda de sentido lógico, pelo condicional Se. O segundo elemento de ligação é o conectivo conjunção e na sua forma tradicional. Sendo assim, temos uma proposição composta condicional P dada por: P: Se não aparecerem interessados em licitação anterior e esta não puder ser repetida sem prejuízo para a administração, então é dispensável a realização de nova Agora, como é comum nas provas do CESPE, devemos renomear as proposições simples para melhor análise dos itens. Sejam: a : não aparecerem interessados em licitação anterior. b : a licitação anterior não puder ser repetida sem prejuízo para a administração. c : é dispensável a realização de nova Dessa forma, P é escrita na linguagem da lógica por: P ( a b) c Notação: o símbolo (cantoneira) será utilizado para indicar o operador lógico negação, ou seja, a indica a negação de a. Vamos agora aos itens referentes a este texto: 4 Supondo-se que a proposição P e as proposições A licitação anterior não pode ser repetida sem prejuízo para a administração e É dispensável a realização de nova licitação sejam verdadeiras, é correto concluir que também será verdadeira a proposição Não apareceram interessados em licitação anterior. Primeiro vamos escrever as proposições deste item de acordo com a nomenclatura definida anteriormente em linguagem simbólica: A proposição P é dada por: ( a b) c. A proposição A licitação anterior não pode ser repetida sem prejuízo para a administração é dada por: b. A proposição É dispensável a realização de nova licitação é dada por: c. A proposição Não apareceram interessados em licitação anterior é dada por: a. O item questiona o seguinte: Se as três proposições ( a b) c, b e c forem todas verdadeiras, a também será verdadeira? No diagrama abaixo vemos que há casos em que b é (V), c é (V) e P é (V), mas a é (F). Logo o item está Errado. P : ( a b ) c F V V F V Prof. Valdenilson Garcia
3 44 O gestor que dispensar a realização de nova licitação pelo simples fato de não ter aparecido interessado em licitação anterior descumprirá a referida lei. Observe que apareceu uma nova proposição descumprir a lei que não está renomeada. Vamos voltar ao texto base e analisar o seguinte trecho Considerando apenas os aspectos desse mandamento atinentes à lógica e que ele seja cumprido se, e somente se, a proposição nele contida, proposição P for verdadeira. Seja a proposição: d : cumprir a referida lei, logo: Desse trecho concluímos que: d P é verdadeira d P é falsa, ou seja, descumprir a lei é equivalente à proposição: P é falsa. Como P é um condicional, só há um F. caso onde P é falsa, que é o caso V Analisando quando P é falsa temos: P : ( a b ) c V V F V Então gestor descumprirá a lei apenas se e somente se: a é (V) e b é (V) e somente se: F c é (V), ou seja, se e não aparecerem interessados em licitação anterior e e esta não puder ser repetida sem prejuízo para a administração e não for dispensada a realização de nova O item questiona se: O gestor que dispensar a realização de nova licitação pelo simples fato de não ter aparecido interessado em licitação anterior descumprirá a referida lei Acabamos de descobrir que para o gestor descumprir a lei é necessário que três fatos ocorram: 1 não aparecerem interessados em licitação anterior. a licitação não puder ser repetida sem prejuízo para a administração não for dispensada a realização de nova, como no enunciado temos apenas dois fatos: não ter aparecido interessado em licitação anterior (fato 1). dispensar a realização de nova licitação (negação do fato )., sendo este descordante do º, logo o item está Errado. 45 A negação da proposição A licitação anterior não pode ser repetida sem prejuízo para a administração está corretamente expressa por A licitação anterior somente poderá ser repetida com prejuízo para a administração. A negação da proposição: A licitação anterior não pode ser repetida sem prejuízo para a administração é dada por: A licitação anterior pode ser repetida sem prejuízo para a administração que é diferente da proposição: A licitação anterior somente poderá ser repetida com prejuízo para a administração, logo o item está Errado. Prof. Valdenilson Garcia
4 46 A negação da proposição Não apareceram interessados na licitação anterior e ela não pode ser repetida sem prejuízo para a administração está corretamente expressa por Apareceram interessados na licitação anterior ou ela pode ser repetida sem prejuízo para a administração. Primeiro vamos escrever as proposições deste item de acordo com a nomenclatura definida anteriormente em linguagem simbólica: A proposição Não apareceram interessados na licitação anterior e ela não pode ser repetida sem prejuízo para a administração é dada por: a b. A proposição Apareceram interessados na licitação anterior ou ela pode ser repetida sem prejuízo para a administração é dada por: ( a) ( b). O item questiona se a negação de a bé equivalente a( a) ( b). A negação de a b é dada pela equivalência abaixo: ( a b) ( a) ( b), logo o item está Certo. 47 A proposição P é equivalente a Se não apareceram interessados em licitação anterior e esta não puder ser repetida sem prejuízo para a administração, então é dispensável a realização de nova licitação. A proposição Se não apareceram interessados em licitação anterior e esta não puder ser repetida sem prejuízo para a administração, então é dispensável a realização de nova licitação. Reescrevendo-a de acordo com a nomenclatura definida anteriormente em linguagem simbólica temos: ( a b) c O item questiona se a proposição acima é equivalente a P. Note que P ( a b) c, ou seja, P é equivalente a ( a b) c, logo o item está Certo. Texto : Em razão da limitação de recursos humanos, a direção de determinada unidade do MPU determinou ser prioridade analisar os processos em que se investiguem crimes contra a administração pública que envolvam autoridades influentes ou desvio de altos valores. A partir dessas informações, considerando P conjunto dos processos em análise na unidade, A processos de P que envolvem autoridades influentes, B processos de P que envolvem desvio de altos valores, CP( X ) processos de P que não estão no conjunto X, e supondo que, dos processos de P, de B, julgue os itens a seguir. são de A e 5 são Primeiramente vamos entender os conjuntos envolvidos no texto: P é o conjunto de todos processos em análise na unidade (prioritários ou não). A é o conjunto dos processos de P que envolvem autoridades influentes. B é o conjunto dos processos de P que envolvem desvio de altos valores. CP( X ) é o conjunto dos processos de P que não estão no conjunto X. Segundo o texto a direção de determinada unidade do MPU determinou ser prioridade analisar os processos em que se investiguem crimes contra a administração pública que envolvam autoridades influentes ou desvio de altos valores, portanto todos os processos de A ou B são prioritários para análise. Prof. Valdenilson Garcia 4
5 Notação: indicaremos por nx ( ) o número de elementos do conjunto X. Ainda do texto, temos: dos processos de P, são de B, logo: n( A) de n( P) n( B) de n( P) 5 são de A e 5 Observe que o texto só fala em proporção, com isso podemos criar um valor ideal para o número de elementos de P. Olhando os denominadores das frações que são ( e 5) é razoável escolher 15 (o M.M.C. entre eles). Vamos então supor np ( ) 15. Com isso temos: n( A) de 15 n( A) 10 n( A) de 15 n( B) 9 5 Note que os números de elementos de A e B somados é 19, ou seja, esse valor supera o número de elementos de P que é 15, logo P ( A B), ou seja, todos os processos de P são prioritários. Vamos calcular agora o número de elementos da intersecção de A e B. n( A B) n( A) n( B) n( A B) n( A B) n( A B) , portanto há 4 processos para análise na unidade que estão classificados como prioritários por dois motivos. Vamos indicar todas essas informações no diagrama de Euller-Venn para simplificar as análises dos itens, veja: Vamos agora aos itens referentes a este texto: 48 O conjunto CP( A) CP( B ) corresponde aos processos da unidade que não são prioritários para análise. Segundo o texto temos: CP( X ) é o conjunto dos processos de P que não estão no conjunto X., logo CP( A) P A cuja representação no diagrama é a região em branco delimitada pelos conjuntos A e B. De maneira análoga CP( B) P B e sua representação é a região em branco no diagrama delimitada pelos conjuntos A e B. Prof. Valdenilson Garcia 5
6 Assim, o conjunto CP( A) CP( B) é dado pela união das duas regiões anteriores, cuja representação no diagrama é dada pela região em branco delimitada pelos conjuntos A e B : O item questiona se o conjunto CP( A) CP( B) corresponde aos processos da unidade que não são prioritários para análise. Note que na região branca estão 6 processos de A que são prioritários e 5 processos de B que também são prioritários, logo o item está Errado. 49 Selecionando-se ao acaso um processo em trâmite na unidade em questão, a probabilidade de que ele não envolva autoridade influente será superior a 0%. Lembremos que a probabilidade em um conjunto finito e equiprovável é dada por: número de casos desejados Prob número de casos disponíveis O número de casos desejados é o número de modos de acontecer o que se deseja no conjunto estudado. No caso aqui, o evento é: processo que não envolva autoridade influente. Como A é o conjunto dos processos de P que envolvem autoridades influentes, então os que não envolvem autoridades influentes é exatamente CP( A) P A, cuja representação é a região em branco delimitada pelo conjunto A, veja: Sendo assim, o número de processos que não envolvem autoridades influentes é 5, ou seja, o número de casos desejados é 5. O número de casos disponíveis é 15, pois são todos os processos de P. Sendo assim, a probabilidade Prob de um processo de P não envolver autoridade influente é: Prob número de casos desejados número de casos disponíveis 5 1 Prob 15,% O item questiona se essa probabilidade é superior a 0%, logo o item está Certo. 50 A quantidade de processos com prioridade de análise por envolverem, simultaneamente, autoridades influentes e desvios de altos valores é inferior à de processos que não são prioritários para análise. Observando qualquer dos diagramas anteriores vemos que há exatamente 4 processos de que envolvem simultaneamente autoridades influentes e desvios de altos valores, ou seja, n( A B) 4. Além disso, o número de processos de P que não são prioritários é zero, ou seja, n ( A) ( B) 0. O item questiona se n( A B) 4 é n ( A) ( B) 0, logo o inferior a item está Errado. Prof. Valdenilson Garcia 6
Prova de Agente de Polícia Federal 2012 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson. Caderno de Questões Tipo I
Prova de Agente de Polícia Federal 01 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson Caderno de Questões Tipo I Texto 1. Um jovem, ao ser flagrado no aeroporto portando certa
Unidade: Proposições Logicamente Equivalentes. Unidade I:
Unidade: Proposições Logicamente Equivalentes Unidade I: 0 Unidade: Proposições Logicamente Equivalentes Nesta unidade, veremos a partir de nossos estudos em tabelas-verdade as proposições logicamente
Estatística Aplicada. Árvore de Decisão. Prof. Carlos Alberto Stechhahn PARTE II. Administração. p(a/b) = n(a B)/ n(b)
Estatística Aplicada Administração p(a/b) = n(a B)/ n(b) PARTE II Árvore de Decisão Prof. Carlos Alberto Stechhahn 2014 1. Probabilidade Condicional - Aplicações Considere que desejamos calcular a probabilidade
MINISSIMULADO RLM - AEPCON
MINISSIMULADO RLM - AEPCON Uma empresa que trabalha com enormes quantidades de documentos confidenciais adquiriu 11 máquinas fragmentadoras de papel, dividindo-as entre suas duas filiais. Todas as máquinas
Aula 00. Matemática e Raciocínio Lógico para IBAMA. Matemática e Raciocínio Lógico Professor: Guilherme Neves
Aula 00 Matemática e Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Matemática e Raciocínio Lógico para IBAMA Apresentação... 3 Negação de Proposições
Analista TRT 10 Região / CESPE 2013 /
Ao comentar sobre as razões da dor na região lombar que seu paciente sentia, o médico fez as seguintes afirmativas. P1: Além de ser suportado pela estrutura óssea da coluna, seu peso é suportado também
Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves
Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu
CONTABILOMETRIA. Revisão de Probabilidade e Teorema de Bayes
CONTAILOMETRIA Revisão de robabilidade e Teorema de ayes Os ostulados de robabilidade 1. As probabilidades são números reais positivos maiores que zero e menores que 1; simbolicamente, 0 A 1 para qualquer
Algoritmos e Programação I
Algoritmos e Programação I Operadores Relacionais, Lógicos e Aritméticos Prof. Fernando Maia da Mota mota.fernandomaia@gmail.com CPCX/UFMS Fernando Maia da Mota 1 Expressões Uma expressão relacional, ou
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
INSS 2016 Técnico CESPE
INSS 2016 Técnico CESPE Art. 21. A alíquota de contribuição dos segurados contribuinte individual e facultativo será de 20 por cento sobre o respectivo salário-de-contribuição. Considerando o art. 21 da
Resolução da Prova de Raciocínio Lógico da DPU (Nível Médio) de 2016, aplicada em 24/01/2016.
Resolução da Prova de Raciocínio Lógico da DPU (Nível Médio) de 2016, aplicada em 24/01/2016. Em uma festa com 15 convidados, foram servidos 30 bombons: 10 de morango, 10 de cereja e 10 de pistache. Ao
1 TEORIA DOS CONJUNTOS
1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,
Campos Sales (CE),
UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu.
Raciocínio Lógico Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico NEGAÇÃO DE UMA PROPOSIÇÃO COMPOSTA Agora vamos aprender
Alex Lira. Olá, pessoal!!!
Olá, pessoal!!! Seguem abaixo os meus comentários das questões de Lógica que foram cobradas na prova para o cargo de Agente da Polícia Federal, elaborada pelo Cespe, realizada no último final de semana.
FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1
FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 Dados de identificação do Aluno: Nome: Login: Cidade: CA: Data da Prova: / / ORIENTAÇÃO
Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ
Soluções de Questões de Matemática do Colégio Militar do Rio de Janeiro CMRJ. Questão Funções Sendo D e D, respectivamente, domínios das funções reais f e g, definidas por f ( x) = x e g ( x) de x no intervalo:,
CAPÍTULO 4 - OPERADORES E EXPRESSÕES
CAPÍTULO 4 - OPERADORES E EXPRESSÕES 4.1 - OPERADORES ARITMÉTICOS Os operadores aritméticos nos permitem fazer as operações matemáticas básicas, usadas no cálculo de expressões aritméticas. A notação usada
Resolução da Prova de Raciocínio Lógico da Agente Penitenciário/MA, aplicada em 24/04/2016.
de Raciocínio Lógico da gente Penitenciário/M, aplicada em 24/04/206. - sentença Se Maria é médica, então Silvio é engenheiro. é logicamente equivalente a () se Maria é médica, então Silvio é engenheiro.
Fração como Probabilidade - União e Interseção de Eventos. Sexto Ano do Ensino Fundamental
Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade - União e Interseção de Eventos Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio
RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro.
RACIOCÍNIO LÓGICO 01. Uma proposição é uma sentença fechada que possui sentido completo e à qual se pode atribuir um valor lógico verdadeiro ou falso. Qual das sentenças apresentadas abaixo se trata de
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados.
2 Limites e Derivadas Copyright Cengage Learning. Todos os direitos reservados. 2.2 O Limite de uma Função Copyright Cengage Learning. Todos os direitos reservados. O Limite de uma Função Para encontrar
MD Lógica de Proposições Quantificadas Cálculo de Predicados 1
Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados
O recurso solicita a mudança do gabarito da alternativa C para a alternativa A.
Nível: SUPERIOR Área: Raciocínio Lógico QUESTÃO 14. O recurso solicita a mudança do gabarito da alternativa C para a alternativa A. A alternativa correta é a letra C. O item em questão envolve Princípio
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um
FRAÇÕES Podemos concluir que o surgimento do número fracionário veio da necessidade de representar quantidades menores que inteiros, por exemplo, 1 bolo é um inteiro, mas se comermos um pedaço, qual seria
COMENTÁRIO DA PROVA DO BANCO DO BRASIL
COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil
Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. Aplicar as propriedades dos anéis na relação de problemas.
Aula 10 O CONCEITO DE ANEL META Apresentar o conceito de anel, suas primeiras definições, diversos exemplos e resultados. OBJETIVOS Definir, exemplificar e classificar anéis. Aplicar as propriedades dos
CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade.
PROBABILIDADE CAPÍTULO 4 PROBABILIDADE UFRGS A Teoria das s estuda os fenômenos aleatórios. Fenômeno Aleatório: são os fenômenos cujo resultado não pode ser previsto exatamente. Se o fenômeno se repetir,
Prova Resolvida Raciocínio Lógico (ANAC/2016) Prof. Guilherme Neves
Prova Resolvida Raciocínio Lógico (ANAC/2016) 71. (ANAC 2016/ESAF) Sabendo que os valores lógicos das proposições simples p e q são, respectivamente, a verdade e a falsidade, assinale o item que apresenta
Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22).
Resolução da Prova de Raciocínio Lógico do INPI de 2014, aplicada em 14/12/2014 (Cargo 22). Tendo como referência a proposição P: Em outros países, seres vivos como microrganismos e animais geneticamente
Aula 1 Aula 2. Ana Carolina Boero. Página:
Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática
Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos
Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS
EXPRESSÕES NUMÉRICAS FRACIONÁRIAS Introdução: REGRA DE SINAIS PARA ADIÇÃO E SUBTRAÇÃO: Sinais iguais: Adicionamos os algarismos e mantemos o sinal. Sinais diferentes: Subtraímos os algarismos e aplicamos
Raciocínio Lógico Matemático
Raciocínio Lógico Matemático Cap. 4 - Implicação Lógica Implicação Lógica Antes de iniciar a leitura deste capítulo, verifique se de fato os capítulos anteriores ficaram claros e retome os tópicos abordados
aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal
DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar
FCC TRF/3ª 2016) RESOLUÇÃO:
Para ajudar aos candidatos a estudar para o primeiro concurso da Artesp, FOLHA DIRIGIDA oferece mais um teste de matemática. As questões foram elaboradas pelo professor de Matemática e Raciocínio Lógico,
Lógica Elementar, Conjuntos e Relações
Lógica Elementar Conjuntos e Relações Lógica Elementar O estudo da lógica é o estudo dos princípios e métodos usados para distinguir argumentos válidos dos não válidos. Proposição Declaração que é verdadeira
6. Frações contínuas como as melhores aproximações de um número real
6. Frações contínuas como as melhores aproximações de um número real Com um pouco de técnica matemática iremos calcular frações contínuas, ou seja, os numeradores e denominadores de através de fórmulas
Cálculo com expressões que envolvem radicais
Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.
42) (TÉCNICO-TRE-GO/MARÇO DE 2015-CESPE) A
42) (TÉCNICO-TRE-GO/MARÇO DE 2015-CESPE) A proposição Quando um indivíduo consome álcool ou tabaco em excesso ao longo da vida, sua probabilidade de infarto do miocárdio aumenta em 40% pode ser corretamente
Lógica Computacional
Aula Teórica 2: Sintaxe da Lógica Proposicional António Ravara Simão Melo de Sousa Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Departamento de Informática,
CONCEITOS DE ALGORITMOS
CONCEITOS DE ALGORITMOS Fundamentos da Programação de Computadores - 3ª Ed. 2012 Editora Prentice Hall ISBN 9788564574168 Ana Fernanda Gomes Ascênsio Edilene Aparecida Veneruchi de Campos Algoritmos são
Trabalhando com dízimas periódicas. 1. Conhecendo a história dos números racionais. 2 Entendendo o que é uma dízima 2. 3 Fração geratriz 3
Programa de Iniciação a Docência em Matemática (UEM 20)- Outuro 9: 5. c PIBID-MAT www.dma.uem.r/piid Traalhando com dízimas periódicas Talita Fonseca da Silva e Suelen Aparecida da Silva Resumo: Neste
Expressões e enunciados
Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................
Matemática Régis Cortes. Lógica matemática
Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos
TEOREMA DE LEGENDRE GABRIEL BUJOKAS
TEOREMA DE LEGENDRE GABRIEL BUJOKAS A nossa meta hoje é responder a seguinte questão: Questão. Para a, b Z, determine se a equação ( ) tem uma solução com x, y, z Z, além da solução trivial x = y = z =
Para provar uma implicação se p, então q, é suficiente fazer o seguinte:
Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que
Matemática Discreta - 04
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 04 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
TEM ALTERNATIVA CORRETA!!!! CERTAMENTE A BANCA EXAMINADORA DARÁ COMO RESPOSTA CERTA LETRA (E). SERIA A MENOS ERRADA POR ELIMINAÇÃO.
Prezados concursandos!!! Muita paz e saúde para todos!!! Passemos aos comentários da prova de Raciocínio Lógico Quantitativo propostas pela CESGRANRIO no último concurso para o IBGE, no dia 10/01/010.
1. Princípio da não-contradição: Uma proposição não pode ser verdadeira e falsa
Raciocínio Lógico Lógica estuda as formas ou estruturas do pensamento, isto é, seu propósito é estudar e estabelecer propriedades das relações formais entre as proposições. DEFINIÇÃO: Proposição: conjunto
Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay. Potenciação. Sanja Gjenero. Fonte:
Potenciação 31 Sanja Gjenero Roberto Geraldo Tavares Arnaut Gustavo de Figueiredo Tarcsay Fonte: www.sxc.hu e-tec Brasil Estatística Aplicada META Apresentar as operações de potenciação. OBJETIVOS PRÉ-REQUISITOS
PROBABILIDADE. Prof. Patricia Caldana
PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,
Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...
Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1
LÓGICA - 2. ~ q. Argumentos Regras de inferência. Proposições: 1) Recíproca 2) Contrária 3) Contra positiva. 1) Proposição recíproca de p q :
LÓGICA - 2 Proposições: 1) Recíproca 2) Contrária 3) Contra positiva 1) Proposição recíproca de p q : q p 2) Proposição contrária de p q : ~ p 3) Proposição contra positiva de p q : ~ p ex. Determinar:
Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS
Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um
Programação de Computadores III
Programação de Computadores III Pseudocódigo e Estruturas Básicas de Controle Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2013.1/tcc-00.157
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS e CONJUNTOS NUMÉRICOS
INTRODUÇÃO... 2 RELAÇÃO DE PERTINÊNCIA... 3 SUBCONJUNTOS E RELAÇÃO DE INCLUSÃO... 6 CONECTIVOS E e OU... 15 OPERAÇÕES ENTRE CONJUNTOS... 17 QUANTIDADE DE ELEMENTOS... 24 CONJUNTO DOS NÚMEROS NATURAIS...
MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015
MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito Lista 4 - Probabilidade - CASA Exercício 1. (2 pontos) Para cada um dos experimentos abaixo, descreva o espaço amostral e apresente
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior
Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c
Alfabeto da Lógica Proposicional
Ciência da Computação Alfabeto da Lógica Sintaxe e Semântica da Lógica Parte I Prof. Sergio Ribeiro Definição 1.1 (alfabeto) - O alfabeto da é constituído por: símbolos de pontuação: (, ;, ) símbolos de
Se o número máximo de laranjas estragadas é 4, então temos, no mínimo, 140 laranjas não estragadas.
26. (IBGE 2016/FGV) Em uma caixa há doze dúzias de laranjas, sobre as quais sabe-se que: I - há pelo menos duas laranjas estragadas; II - dadas seis quaisquer dessas laranjas, há pelo menos duas não estragadas.
Introdução à Computação (IC) Algoritmos: Expressões lógicas
Introdução à Computação (IC) Algoritmos: Expressões lógicas Prof.ª Dr.ª Symone Gomes Soares Alcalá Universidade Federal de Goiás (UFG) Regional Goiânia (RG) Campus Aparecida de Goiânia (CAP) Faculdade
Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.
Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento
Técnico Agropecuário/TO AOCP 2012
Técnico Agropecuário/TO AOCP 2012 01. Entre um grupo de amigos existe o seguinte arranjo: Se João vai ao cinema, Maria vai para a lanchonete. Se Maria vai para a lanchonete, José vai ao cinema. Se José
Capítulo O objeto deste livro
Capítulo 1 Introdução 1.1 O objeto deste livro Podemos dizer que a Geometria, como ciência abstrata, surgiu na Antiguidade a partir das intuições acerca do espaço, principalmente do estudo da Astronomia.
Matemática. Versão 1 COTAÇÕES. Teste Intermédio de Matemática. Versão 1. Teste Intermédio. Duração do Teste: 90 minutos
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de janeiro COTAÇÕES 11. 1.1....
Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma:
Estudante: Turma: Sequências A natureza apresenta padrões e regularidades. Dessa forma, muitas teorias matemáticas são desenvolvidas a partir do estudo desses padrões e regularidades. Por exemplo, o estudo
Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade
Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 27.05.2009 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março COTAÇÕES GRUPO I...
Programação de Computadores III
Programação de Computadores III Pseudocódigo e Estruturas Básicas de Controle Professor Hugo de Oliveira Barbalho hbarbalho@ic.uff.br Material produzido pelo professor: Leandro Augusto Frata Fernandes
Programação de Computadores:
Instituto de C Programação de Computadores: Pseudocódigo e Estruturas Básicas de Controle Luis Martí Instituto de Computação Universidade Federal Fluminense lmarti@ic.uff.br - http://lmarti.com Roteiro
1 Conjuntos, Números e Demonstrações
1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para
COMPETÊNCIAS ESPECÍFICAS
EBIAH 8º ANO PLANIFICAÇÃO A MÉDIO PRAZO 1.º Período Integração dos alunos 1 tempo Set. 14 GEOMETRIA a aptidão para visualizar e descrever propriedades e relações geométricas, através da análise e comparação
Aproximação da Distribuição Binomial pela Distribuição Normal
Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
Lógica das Proposições
Lógica das Proposições Transcrição - Podcast 1 Professor Carlos Mainardes Olá eu sou Carlos Mainardes do blog Matemática em Concursos, e esse material que estou disponibilizando trata de um assunto muito
PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano
PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete
Proposições simples e compostas
Revisão Lógica Proposições simples e compostas Uma proposição é simples quando declara algo sem o uso de conectivos. Exemplos de proposições simples: p : O número 2 é primo. (V) q : 15 : 3 = 6 (F) r :
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
RESOLUÇÕES DA 2ª FASE
Res RESOLUÇÕES DA 2ª FASE MODALIDADE PROGRAMAÇÃO QUESTÃO 01. Primeiramente, transforma-se o número 156 em binário. Uma das formas para isso, seria fatorá-lo. Onde teriamos que 156 = 2 3 * 3 * 13 = 2 3
SUMÁRIO. Língua Portuguesa. Morfologia: estrutura e formação de palavras Flexões: gênero, número e grau do substantivo e adjetivo...
Língua Portuguesa Análise global do texto... 3 Ortografia... 16 Relações entre fonemas e grafias... 26 Acentuação gráfica... 28 Morfologia: estrutura e formação de palavras...31 Classes de palavras e seu
Teste Intermédio de Matemática A Matemática A Versão 1 10.º Ano de Escolaridade COTAÇÕES GRUPO I 50 pontos GRUPO II 150 pontos
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 28.05.2008 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março COTAÇÕES GRUPO
Resolução da Prova de Raciocínio Lógico da ANS (Técnico em Regulação) de 2016, aplicada em 21/02/2016.
esolução da rova de aciocínio Lógico da ANS (Técnico em egulação) de 2016, aplicada em 21/02/2016. 11 - Um médico atende três pacientes. Um deles está com dengue, outro com zika vírus e outro com febre
Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3
Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando
Aula 00 Aula Demonstrativa
Aula 00 Aula Demonstrativa Apresentação... 2 Resolução da prova de RLQ do concurso PECFAZ 2013/ESAF... 4 Relação das questões comentadas... 17 Gabaritos... 20 www.pontodosconcursos.com.br 1 Apresentação
CAPÍTULO I. Lógica Proposicional
Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação
Testes de Hipóteses Paramétricos
Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Fundamentos de Lógica No nosso dia a dia, usamos todo o tipo de frases: Cinco é menor
ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade
Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação
Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento
Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões
Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.
de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%
MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.
1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:
Aula 00 Aula Demonstrativa
Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabarito... 1 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa
RECEITA FEDERAL ANALISTA
SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural. Lista de exercícios 1
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS CCA/ UFES Departamento de Engenharia Rural Disciplina: Lógica Computacional I Professora: Juliana Pinheiro Campos Data: 25/08/2011 Lista
Definição: Todo objeto parte de um conjunto é denominado elemento.
1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção