Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Métodos Numéricos. Turma CI-202-X. Josiney de Souza."

Transcrição

1 Métodos Numéricos Turma CI-202-X Josiney de Souza

2 Agenda do Dia Aula 9 (30/09/15) Método de Ponto Fixo: Método de Newton- Raphson ou Método das Tangentes O que é Como é calculado Particularidades Exercícios

3 Seja f(x) uma função contínua no intervalo [a, b] e seja ξ uma raiz desta função, sendo ξ є (a, b), tal que f(ξ) = 0 e f'(x) 0

4 Fazendo x₀ = b tg α=f ' (x 0 ) f ' (x 0 )= f (x 0) x 0 x 1 x 1 =x 0 f (x 0) f ' (x 0 ) Se x 1 x 0 erro, então x₁ é a raiz desejada, senão deve-se calcular x₂, que é obtido com base no mesmo raciocínio anterior: x 2 =x 1 f (x 1) f '( x 1 ) Se x 2 x 1 erro, então x₂ é a raiz desejada, senão deve-se calcular x 3, x 4,..., x n até que x n x n 1 erro

5 Algoritmo: x n =x n 1 f (x n 1) f ' (x n 1 ), para n=1,2,3,... Critério de parada: x n x n 1 ε Restrição: é necessário conhecer um intervalo que contenha o valor desejado ξ

6 Melhor extremo: Para decidir qual o melhor extremo do intervalo (a, b) a iniciar o método, basta verificar qual dos extremos possui função e segunda derivada com mesmo sinal: f (x i ) f ' '( x i )>0 Parai={extremos do intervalo}

7 Exemplo 1: Calcular a raiz positiva da equação f(x) = 2x sen(x) 4 = 0, com erro 10-³, usando o método de NR Algoritmo: x n =x n 1 f (x n 1) f ' (x n 1 ) f(x) = 2x sen(x) 4 f'(x) = 2 cos(x) f''(x) = sen(x)

8 Exemplo 1: Calcular a raiz positiva da equação f(x) = 2x sen(x) 4 = 0, com erro 10-³, usando o método de NR Escolha do intervalo: f(0) = 2*0 sen(0) 4 = -4 f(1) = 2*1 sen(1) 4 = -2,8415 f(2) = 2*2 sen(2) 4 = -0,9093 f(3) = 2*3 sen(3) 4 = 1,8589 f(2) * f(3) < 0; ξ є [2, 3]

9 Exemplo 1: Calcular a raiz positiva da equação f(x) = 2x sen(x) 4 = 0, com erro 10-³, usando o método de NR Melhor extremo (valor inicial): f(2) = -0,9093 f(3) = 1,8589 f''(2) = 0,9093 f''(3) = 0,1411 x₀ = 3

10 Exemplo 1: Calcular a raiz positiva da equação f(x) = 2x sen(x) 4 = 0, com erro 10-³, usando o método de NR Valor de erro: Erro 10-³ 0,001

11 Iterações: x 0 =3 x 1 =3 f (3) f '(3) =3 1,8589 2,9900 =2,3783 x 1 x 0 = 2, =0,6217 >erro x 2 =2,3783 f (2,3783) 0,0653 =2,3783 f ' (2,3783) 2,7226 =2,3543 x 2 x 1 = 2,3543 2,3783 =0,0240 >erro x 3 =2,3543 f (2,3543) 0,0002 =2,3543 f '(2,3543) 2,7058 =2,3542 x 3 x 2 = 2,3542 2,3543 =0,0001 <erro

12 Iterações:

13 Condições de Newton-Raphson-Fourier Segundo Newton, para haver a convergência à uma raiz em seu método, bastaria que o intervalo (a, b) em análise fosse suficientemente pequeno Contudo, Raphson e Fourier concluíram que um intervalo pequeno é aquele que contém uma e somente uma raiz Com isso, algumas condições foram estabelecidas para que tal exigência fosse válida

14 Condições de Newton-Raphson-Fourier Situações possíveis 1. Se f(a)*f(b) > 0, então existe um número par de raízes reais no intervalo (a, b) ou não existem raízes reais (Teorema de Bolzano) 2. Se f(a)*f(b) < 0, então existe um número ímpar de raízes reais no intervalo (a, b) (Teorema de Bolzano)

15 Condições de Newton-Raphson-Fourier Situações possíveis 3. Se f'(a)*f'(b) > 0, então o comportamento da função neste intervalo poderá ser apenas crescente ou apenas decrescente e nunca os dois alternados 4. Se f'(a)*f'(b) < 0, então a função terá o comportamento de ora crescer, ora decrescer 5. Se f''(a)*f''(b) > 0, então a concavidade não muda no intervalo em análise 6. Se f''(a)*f''(b) < 0, então a concavidade muda no intervalo em análise

16 Condições de Newton-Raphson-Fourier Portanto, haverá convergência a uma raiz no intervalo (a, b) se f(a)*f(b) < 0 (número ímpar de raiz) f'(a)*f'(b) > 0 (apenas crescente ou decrescente) f''(a)*f''(b) > 0 (concavidade não muda no intervalo)

17 Exemplo 2: Seja a função f(x) = x² 9,5x + 8,5, obter a raiz contida no intervalo [8, 9]. Os cálculos devem ser realizados com 4 casas decimais com arredondamento e erro não superior a 0,001 Algoritmo: x n =x n 1 f (x n 1) f ' (x n 1 ) f(x) = x² 9,5x + 8,5 f'(x) = 2x 9,5 f''(x) = 2

18 Exemplo 2: Seja a função f(x) = x² 9,5x + 8,5, obter a raiz contida no intervalo [8, 9]. Os cálculos devem ser realizados com 4 casas decimais com arredondamento e erro não superior a 0,001 Escolha do intervalo: f(8) = 8² 9,5*8 + 8,5 = -3,5 f(9) = 9² 9,5*9 + 8,5 = 4 f(8) * f(9) < 0; ξ є [8, 9]

19 Exemplo 2: Seja a função f(x) = x² 9,5x + 8,5, obter a raiz contida no intervalo [8, 9]. Os cálculos devem ser realizados com 4 casas decimais com arredondamento e erro não superior a 0,001 Melhor extremo (valor inicial): f(8) = -3,5 f(9) = 4 f(8)*f(9) < 0 f'(8) = 6,5 f'(9) = 8,5 f'(8)*f'(9) > 0 f''(8) = 2 f''(9) = 2 f''(8)*f''(9) > 0 x₀ = 9

20 Exemplo 2: Seja a função f(x) = x² 9,5x + 8,5, obter a raiz contida no intervalo [8, 9]. Os cálculos devem ser realizados com 4 casas decimais com arredondamento e erro não superior a 0,001 Valor do erro: Erro 10-³ 0,001

21 Iterações: x 0 =9 x 1 =9 f (9) f '(9) =9 4 8,5 =8,5294 x 1 x 0 = 8, =0,4706 >erro x 2 =8,5294 f (8,5294) 0,2214 =8,5294 f ' (8,5294) 7,5588 =8,5001 x 2 x 1 = 8,5001 8,5294 =0,0293 >erro x 3 =8,5001 f (8,5001) 0,0008 =8,5001 f ' (8,5001) 7,5002 =8,5000 x 3 x 2 = 8,5000 8,5001 =0,0001 <erro

22 Iterações:

23 Exercícios: Calcular uma raiz negativa de f(x) = x³ 5x² + x + 3 com erro 10-⁴ Calcular a raiz da equação f(x) = x³ x + 1 = 0, contida no intervalo [-2; -1], com erro 10-³ Seja a função f(x) = sen(x) tg(x). Deseja-se saber uma das raízes dessa função, sabendo-se que está contida no intervalo (3; 4). Todos os cálculos devem ser realizados com 4 casas decimais com arredondamento e erro não superior a 0,001

24 Próxima Aula Métodos de múltiplos pontos: Método da Secante

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 5 (16/09/15) Zero de funções: Introdução Tipos de métodos Diretos Indiretos ou iterativos Fases de cálculos Isolamento

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1 Raízes de uma função Laura Goulart UESB 16 de Março de 2016 Laura Goulart (UESB) Raízes de uma função 16 de Março de 2016 1 / 1 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c R

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução

TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução TP062-Métodos Numéricos para Engenharia de Produção Zeros: Introdução Prof. Volmir Wilhelm Curitiba, 2015 Os zeros de uma função são os valores de x que anulam esta função. Este podem ser Reais ou Complexos.

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Equações não lineares

Equações não lineares Capítulo 2 Equações não lineares Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real e de uma variável, queremos encontrar uma solução x que satisfaça a

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

2.3- Método Iterativo Linear (MIL)

2.3- Método Iterativo Linear (MIL) .3- Método Iterativo Linear (MIL) A fim de introduzir o método de iteração linear no cálculo de uma raiz da equação (.) f(x) = 0 expressamos, inicialmente, a equação na forma: (.) x = Ψ(x) de forma que

Leia mais

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s.

Métodos iterativos dão-nos uma valor aproximado para s. Sequência de valores de x que convergem para s. Análise Numérica 1 Resolução de equações não lineares ou Cálculo de zeros de funções Problema: Dada a função f(x) determinar o valor s tal que f(s) = 0. Slide 1 Solução: Fórmulas exemplo: fórmula resolvente

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 20 (09/11/15) Interpolação: Introdução Características Interpolação Linear: Introdução Características Exercícios

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas. Resolução de Equações Não Lineares

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas. Resolução de Equações Não Lineares UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Departamento de Computação José Álvaro Tadeu Ferreira Cálculo Numérico Notas de aulas Resolução de Equações Não Lineares Ouro

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DO PARANÁ DISCIPLINA DE MÉTODOS NUMÉRICOS 2º SEMESTRE 2004 Professora Aurora T. R. Pozo 1ª LISTA DE EXERCÍCIOS Representação de Números Reais e Erros 1. Converta os seguintes números

Leia mais

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 6: Raízes de equaç~oes c 2009 FFCf 2 Capítulo 6: Raízes de equações 6.1 Isolamento de raízes 6.2 Método da bisseção 6.3 Métodos baseados em aproximação linear 6.4

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2

Resumo Matemática Ensino Médio - 1º ano/série -3º bimestre provão - frentes 1 e 2 Frente 1 Algumas coisas retiradas de: http://www.brasilescola.com/matematica/funcao-segundo-grau.htm Critério 01: Função Quadrática: Introdução: Toda função estabelecida pela lei de formação f(x) = ax²

Leia mais

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 4) Equações e Sistemas Não Lineares Biss ã P si ã F ls P nt Fi Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson,

Leia mais

6.4 Métodos baseados em aproximação quadrática. 6.6 Comparação dos met. para cálculo de raízes.

6.4 Métodos baseados em aproximação quadrática. 6.6 Comparação dos met. para cálculo de raízes. 6. Raízes de equações 6.1 Isolamento de raízes. 6.2 Método da bisseção. 6.3 Métodos baseados em aproximação linear. 6.4 Métodos baseados em aproximação quadrática. 6.5 Métodos baseados em tangente. 6.6

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia) Início: 7:00 Término: 8:35 Nome: Matrícula: Turma: Questão Valor Grau Revisão

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de

Leia mais

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel

Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Lista de Exercícios 1 Cálculo Numérico - Professor Daniel Observação: Esta lista abrange os três primeiros tópicos da ementa do curso, teoria dos erros, sistemas lineares, e zeros de funções. Ela abrange

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção.

Encontre um valor aproximado para 3 25 com precisão de 10 5 utilizando o método da bissecção. 1 a) Mostre que f (x) = x cos x possui uma raiz no intervalo [0, 1]. b) Prove que essa raiz é única. c) Sem executar o método, preveja o número de iterações que o algoritmo da bissecção utilizaria para

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ. Cálculo Numérico. S. C. Coutinho. Provas e gabaritos UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Ciência da ComputaçãoUFRJ Cálculo Numérico S. C. Coutinho Provas e gabaritos Lembre-se: Nas provas não são aceitas respostas sem justicativa. Você

Leia mais

Para mais exemplos veja o vídeo:

Para mais exemplos veja o vídeo: Resumo de matemática: Frente 1: Critério 01: Função: Função é uma relação do conjunto A para o conjunto B, em que os elementos do conjunto A sempre serão x e os elementos do conjunto B sempre serão y (ou

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Campus Francisco Beltrão Isolamento de Raízes Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Definição Um número real ξ é um zero da função f (x) ou uma raiz da equação f (x) = 0 se f (ξ) = 0. Etapas para

Leia mais

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis. Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

PAULO XAVIER PAMPLONA

PAULO XAVIER PAMPLONA Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental-UACTA Cálculo Numérico por PAULO XAVIER PAMPLONA

Leia mais

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23

Esboço de Gráfico - Exemplos e Regras de L Hospital Aula 23 Esboço de Gráfico - s e Regras de L Hospital Aula 23 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 06 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Interpretação Geométrica

Interpretação Geométrica .. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial

Leia mais

3. Equações Algébricas

3. Equações Algébricas 3. Equações Algébricas 3.1 Introdução Em muitos problemas de Ciência e Engenharia há necessidade de se determinar um número ξ para o qual um número ξ para o qual uma função f(x) seja zero, ou seja, f(ξ)

Leia mais

Semana 4 Zeros das Funções

Semana 4 Zeros das Funções 1 CÁLCULO NUMÉRICO Semana 4 Zeros das Funções Professor Luciano Nóbrega UNIDADE 1 Eixo das ordenadas www.professorlucianonobrega.wordpress.com 2 ZEROS DAS FUNÇÕES INTRODUÇÃO Nas diversas áreas científicas,

Leia mais

, cosh (x) = ex + e x. , tanh (x) = ex e x 2

, cosh (x) = ex + e x. , tanh (x) = ex e x 2 Exercícios Adicionais 1. Podemos definir as funções seno, cosseno e tangente hiperbólicos como: sinh (x) = ex e x, cosh (x) = ex + e x, tanh (x) = ex e x e x + e x Escreva três funções no Scilab que implementem

Leia mais

Semana 5 Zeros das Funções_2ª parte

Semana 5 Zeros das Funções_2ª parte 1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para

Leia mais

Pretende-se calcular uma aproximação para a menor raiz positiva da equação

Pretende-se calcular uma aproximação para a menor raiz positiva da equação 1 Prete-se calcular uma aproimação para a menor raiz positiva da equação, pelos métodos de Newton-Raphson e ponto fio. a) Localize um intervalo que contenha a menor raiz positiva da equação dada Determinar

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.

Leia mais

Continuidade de uma função

Continuidade de uma função Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

Revisão : máximo, minimo em dimensão 1

Revisão : máximo, minimo em dimensão 1 Revisão : máximo, minimo em dimensão 1 ( de Rolle) Seja f uma função que satisfaça as seguintes hipóteses: 1 f é contínua no intervalo fechado [a, b], 2 f é diferenciável no intervalo aberto (a, b), 3

Leia mais

A INTERPRETAÇÃO GEOMÉTRICA E PROGRAMAS DESENVOLVIDOS NO MATHCAD PARA REFINAR RAÍZES DE FUNÇÕES TRANSCENDENTES E POLINOMIAIS

A INTERPRETAÇÃO GEOMÉTRICA E PROGRAMAS DESENVOLVIDOS NO MATHCAD PARA REFINAR RAÍZES DE FUNÇÕES TRANSCENDENTES E POLINOMIAIS A INTERPRETAÇÃO GEOMÉTRICA E PROGRAMAS DESENVOLVIDOS NO MATHCAD PARA REFINAR RAÍZES DE FUNÇÕES TRANSCENDENTES E POLINOMIAIS Resumo RETZLAFF, Eliani URI elianir@urisan.tche.br CONTRI, Rozelaine de Fátima

Leia mais

Resolver equações: como e para quê? (reflexões e reminiscências)

Resolver equações: como e para quê? (reflexões e reminiscências) Resolver equações: como e para quê? (reflexões e reminiscências) Instituto Nacional de Matemática Pura e Aplicada Resolver equações para quê? No mundo real: Para resolver problemas concretos. Para descobrir

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Zeros de Funções 1: Mostre que a função f(x) = x 2 4x + cos x possui exatamente duas raízes: α 1 [0, 1.8] e α 2 [3, 5]. Considere as funções:

Leia mais

Resolução de sistemas de equações não-lineares: Método Iterativo Linear

Resolução de sistemas de equações não-lineares: Método Iterativo Linear Resolução de sistemas de equações não-lineares: Método Iterativo Linear Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires.

Leia mais

Exercícios - Propriedades Adicionais do Limite Aula 10

Exercícios - Propriedades Adicionais do Limite Aula 10 Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Aplicações de Derivadas

Aplicações de Derivadas Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA

EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES ALVARO A. F. SOUZA RAIZES Necessidade de determinar um número E tal que f( )=0 Equações Algébricas de 1º,2º,algumas de 3º,4º graus e algumas transcendentes podem ter

Leia mais

Computação Científica 65

Computação Científica 65 Capítulo 3. 1. Métodos numéricos Sempre que se pretende resolver um problema cuja solução é um valor numérico, é habitual ter de se considerar, para além de conceitos mais abstratos (que fornecem um modelo

Leia mais

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975?

Cap. 4- Interpolação Numérica Definições. Censos de BH. Qual o número de habitantes na cidade de Belo Horizonte em 1975? Cap. 4- Interpolação Numérica 4.1. Definições Censos de BH População em BH (Habitantes,5,,, 1,5, 1,, 5, 194 196 198 Ano Ano 195 196 197 198 1991 1996 1 No. habitantes 5.74 68.98 1.5. 1.78.855..161.91.71.8.56.75.444

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

Método de Newton para polinômios

Método de Newton para polinômios Método de Newton para polinômios Alan Costa de Souza 26 de Agosto de 2017 Alan Costa de Souza Método de Newton para polinômios 26 de Agosto de 2017 1 / 31 Seja f(x) uma função polinomial de grau n. A princípio.

Leia mais

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3 Forecasting e Otimização i de Carteiras com Matlab AULA 3 Guia de Estudo para Aula 03 Modelos Discretos Exercícios - Formulação de um modelo - Programação de modelos com for - A simulação de um modelo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Aula 33. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 33. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Aplicações da Integral - Continuação e Técnicas de Integração Aula 33 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 30 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Derivada. Capítulo Retas tangentes e normais Número derivado

Derivada. Capítulo Retas tangentes e normais Número derivado Capítulo 3 Derivada 3.1 Retas tangentes e normais Vamos considerar o problema que consiste em traçar a reta tangente e a reta normal a uma curvay= f(x) num determinado ponto (a,f(a)) da curva. Por isso

Leia mais

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA

AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA AULA 30/05/2017 MÁXIMOS E MÍNIMOS, ESTUDO COMPLETO DE FUNÇÕES, APLICAÇÃO DE DERIVADA As derivadas têm inúmeras aplicações. Com o estudo da primeira e da segunda derivada podemos esboçar o gráfico de uma

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Propriedades das Funções Contínuas

Propriedades das Funções Contínuas Propriedades das Funções Contínuas Juliana Pimentel juliana.pimentel@ufabc.edu.br Propriedades das Funções Contínuas Seguem das propriedades do limite, as seguintes propriedades das funções contínuas.

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

PROVA DE MATEMÁTICA II

PROVA DE MATEMÁTICA II PROVA DE MATEMÁTCA 0. Em uma determinada prova, um professor observou que 0% dos seus alunos obtiveram nota exatamente igual a, % obtiveram média 6,, e a média m do restante dos alunos foi suficiente,

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

Introdução à Programação Aula 7 Resolução numérica de equações

Introdução à Programação Aula 7 Resolução numérica de equações Introdução à Programação Aula 7 Resolução numérica de equações Pedro Vasconcelos DCC/FCUP 2017 Pedro Vasconcelos (DCC/FCUP) Introdução à Programação Aula 7 Resolução numérica de equações 2017 1 / 19 Nesta

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São

Leia mais

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto.

RESOLUÇÕES LISTA 02. b) FALSA, pois para termos a equação de uma reta em um certo ponto a função deve ser derivável naquele ponto. UNIVERSIDADE ESTADUAL VALE DO ACARAÚ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS DA CIDAO CURSO DE MATEMÁTICA CÁLCULO NUMÉRICO JOSÉ CLAUDIMAR DE SOUSA RESOLUÇÕES LISTA 02 QUESTÃO 1 a) Pela equação

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030152 Matemática Fundamental I DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 90 horas CARGA

Leia mais

CÁLCULOS DOS TEMPOS DE AVANÇO T L E DE INFILTRAÇÃO T R

CÁLCULOS DOS TEMPOS DE AVANÇO T L E DE INFILTRAÇÃO T R CÁLCULOS DOS TEMPOS DE AVANÇO T L E DE INFILTRAÇÃO T R TITICO DE SOUZA 08/0/007 RETROSPECTIVA 006 Etapas de um projeto por sulcos convencionais:. Vazão máxima não-erosiva. Número mínimo de sulcos por lote

Leia mais

Teorema Do Ponto Fixo Para Contrações 1

Teorema Do Ponto Fixo Para Contrações 1 Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 20 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Teorema Do Ponto Fixo

Leia mais

Limites e continuidade

Limites e continuidade Limites e continuidade Limite (finito) de uma função em a Salvo indicação em contrário, quando nos referimos a uma função estamos sempre a considerar funções reais de variável real (f.r.v.r.), ou seja,

Leia mais

Prof. MSc. David Roza José 1/37

Prof. MSc. David Roza José 1/37 1/37 Métodos Abertos Objetivos: Reconhecer as diferenças entre os métodos intervalados e abertos para a localização de raízes; Compreender o método da iteração de ponto-fixo e avaliar suas características

Leia mais

MINISTÉRlO DA EDUCACAO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

MINISTÉRlO DA EDUCACAO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO prof. Jorge Roberto Grobe /09/4 4:2 cálculo numérico equações algébricas e transcendentes CAPITULO 4 4.0 SOLUÇÕES DE EQUAÇÕES ALGÉBRICAS E TRANSCENDENTES 4. METODO DA BISSECÇÃO OU PESQUISA BINARIA Descrição:

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais