0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis."

Transcrição

1 Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f : A C uma função injetiva. Seja B = {f(x) x A} o conjunto imagem da função f. Sendo f injetiva, temos que para cada y B existe um único x A tal que f(x) = y. Assim, está bem definida a função g : B A dada pela condição g(y) = x f(x) = y. A função g assim definida é denominada função inversa de f : A B = Im(f) e é denotada por g = f. Dizemos, nesse caso, que f é uma função inversível. Observe que: f inversível f inversível e (f ) = f. Exercício. Seja f : A B uma função inversível. Prove que. f(f (y)) = y para todo y B.. f (f(x)) = x para todo x A. Observação. Seja f : I R uma função definida em um intervalo I de R. Suponha f contínua em I. Então f é injetiva se, e somente se, f é estritamente crescente ou estritamente decrescente. Exemplo. Considere a função exponencial f(x) = e x. Temos que Dom(f) = R e Im(f) = (0, + ). Além disso, f é estritamente crescente. Assim, f é injetiva. Sua inversa, a função ln, é definida por ln : (0, + ) R ln(y) = x e x = y. Exemplo. A função f(x) = x é estritamente crescente em [0, + ). Ainda, f([0, + )) = [0, + ). Assim, f restrita a esse intervalo admite inversa g : [0, + ) [0, + ) definida por g(y) = x x = y, x 0. A função g é a nossa conhecida função raiz quadrada. Observação. Nas figuras.pdf e.pdf evidenciamos a simetria dos gráficos da função f e de sua inversa com respeito a reta x = y. Mais geralmente, já demonstramos em sala de aula que se f é inversível com função inversa g, então os gráficos de f e de g são simétricos com respeito a reta x = y uma vez que (x, y) Graf(f) y = f(x) g(y) = x (y, x) Graf(g).

2 .pdf Figura : Exemplo

3 .pdf Figura : Exemplo 0. Inversas Trigonométricas 0.. Função arco-seno A função seno restrita ao intervalo [ π/, π/] é estritamente crescente. Ainda, a imagem do intervalo [ π/, π/] pela função seno é o intervalo [, ]. Assim, fica bem definida a função arco-seno, arc sen : [, ] [ π/, π/] dada por arc sen(x) = y sen(y) = x, π/ y π/ Exemplo 3. arc sen() = π/ pois π/ [ π/, π/] e sen(π/) =. ( ) 3 arc sen = π 3 pois π ( π ) 3 3 [ π/, π/] e sen = 3. ( arc sen ) = π 6 π pois ( 6 [ π/, π/] e sen π ) = 6. 3

4 Figura 3: Gráficos das funções seno e arco-seno 0.. Função arco-tangente Sobre a função tangente, temos o seguinte: é estritamente crescente no intervalo aberto ( π/, π/). Ainda, a função tangente é contínua nesse intervalo e, um vez que lim tg(x) = e lim x π tg(x) = + x π + segue que a imagem do intervalo ( π/, π/) pela função tangente é a reta real R. A função arco-tangente é então definida do seguinte modo: arc tg : R ( π/, π/) dada por arc tg(x) = y tg(y) = x, y ( π/, π/) Exercício. Calcule arc tg( 3). Solução: arc tg( 3) = y ( π/, π/) se, e somente se, tg(y) = sen(y) cos(y) = 3. Portanto, sen(y) = 3cos(y). Substituindo essa última identidade em cos (y) + sen (y) = obtemos cos (y) + 3cos (y) = cos (y) = /4. 4

5 Como y ( π/, π/), temos cos(y) 0 e, portanto, cos(y) = /. Segue que sen(y) = 3/. Portanto, y = π/3. Assim, arc tg( 3) = π/3. Exercício 3. Determine arc tg() e arc tg( 3/3). Figura 4: Gráficos das funções tangente e arco-tangente 0..3 Derivada de função inversa Suponha f uma função inversível e seja f a sua função inversa. Então, para todo x Dom(f ) tem-se f(f (x)) = x. () Suponha agora que f e f são diferenciáveis. Derivando ambos os membros de (), obtemos f (f (x)) (f ) (x) = seguindo que (f ) (x) = f (f (x)) () Finalizo essa discussão com o seguinte resultado: 5

6 Teorema. Seja f uma função inversível, com função inversa g. Se f for derivável em q = g(p), com f (q) 0, e se g for contínua em p, então g será derivável em p. Demonstração. g (p) = lim y p g(y) g(p) y p Para calcular o limite acima, considere a substituição: x = g(y). Quando y p, desde que g é contínua em p, temos que x g(p) = q. Ainda, desde que g é a função inversa de f, temos que x = g(y) se, e somente se, f(x) = y. Assim, essa substituição nos dá: (3) g (p) = lim y p g(y) g(p) y p x q = lim x q f(x) f(q) = lim x q f(x) f(q) x q = f (q) (4) 0.3 As derivadas de arco-seno e arco-tangente Proposição. arc sen (x) =, para todo < x <. x Demonstração. Derivando os membros da igualdade sen(arc sen(x)) = x obtem-se Temos sen (arc sen (x)) arc sen (x) = sen (arc sen(x)) = cos(arc sen(x)) Assim, para x (, ) tem-se arc sen (x) = Vamos agora determinar cos(arc sen(x)): cos(arc sen(x)) cos (arc sen(x)) + sen (arc sen(x)) = (5) cos (arc sen(x)) + x = (6) cos (arc sen(x)) = x (7) Como arc sen(x) ( π/, π/), temos cos(arc sen(x)) > 0. Logo, Portanto, cos(arc sen(x)) = x (8) arc sen (x) = x (9) 6

7 Proposição. arc tg (x) = para todo x R. + x Demonstração. Derivando os membros da igualdade obtem-se Temos Assim, para todo x R tem-se tg(arc tg(x)) = x tg (arc tg (x)) arc tg (x) = tg (arc tg(x)) = Vamos agora determinar cos (arc tg(x)): Logo, cos (arc tg(x)) arc tg (x) = cos (arc tg(x)) cos (arc tg(x)) + sen (arc tg(x)) = (0) cos (arc tg(x)) cos (arc tg(x)) + sen (arc tg(x)) cos (arc tg(x)) = cos (arc tg(x)) () + x = cos (arc tg(x)) () arc tg (x) = + x (3) Exercício 4. Determine a derivada de y = arc sen(x ) e de f(x) = x arc tg(3x). Exercício 5. Mostre que a função f(x) = 3 x não é derivável em x = 0. 7

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente

Unidade 2 Funções Trigonométricas Inversas. Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Unidade 2 Funções Trigonométricas Inversas Introdução Função Arco Seno Função Arco Cosseno Função Arco Tangente Introdução Imagine que dois barcos saiam de um mesmo porto, simultaneamente e em linha reta,

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Exercícios - Propriedades Adicionais do Limite Aula 10

Exercícios - Propriedades Adicionais do Limite Aula 10 Exercícios - Propriedades Adicionais do Limite Aula 10 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 05 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Continuidade de uma função

Continuidade de uma função Continuidade de uma função Consideremos f : D f uma função real de variável real (f.r.v.r.) e a um ponto de acumulação de D f que pertence a D f. Diz-se que a função f é contínua em a se lim f x f a. x

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica

Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica CÁLCULO I Aula n o 29:Técnicas de Integração: Integrais Trigonométricas - Substituição Trigonométrica Prof. Edilson Neri Júnior Prof. André Almeida 1 Integrais Trigonométricas Iniciaremos com o seguinte

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Jaime Carvalho e Silva. Princípios de Análise Matemática Aplicada. Suplemento

Jaime Carvalho e Silva. Princípios de Análise Matemática Aplicada. Suplemento Jaime Carvalho e Silva Princípios de Análise Matemática Aplicada Suplemento 2002/2003 2 Departamento de Matemática Universidade de Coimbra Contacto com o autor: jaimecs@mat.uc.pt Página de apoio: http://www.mat.uc.pt/~jaimecs/index_aulas.html

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Derivadas. Incremento e taxa média de variação

Derivadas. Incremento e taxa média de variação Derivadas Incremento e taxa média de variação Consideremos uma função f, dada por y f (x). Quando x varia de um valor inicial de x para um valor x, temos o incremento em x. O símbolo matemático para a

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

Redução ao Primeiro Quadrante

Redução ao Primeiro Quadrante Redução ao Primeiro Quadrante Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação. RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS

6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS 6. EXTENSÕES DAS FUNÇÕES TRIGONOMÉTRICAS Vamos agora estender a noção de seno, cosseno e tangente, já conhecidas no triângulo retângulo, e portanto, para ângulos agudos, para ângulos e arcos quaisquer.

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016. Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.

Leia mais

PROFMAT AV2 MA

PROFMAT AV2 MA PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Escola Naval Gabarito Comentado PSAEN PROVA ROSA Elaborado por alunos do ITA: Caio Guimarães, Ishai Elarrat, Felipe Moraes

Escola Naval Gabarito Comentado PSAEN PROVA ROSA Elaborado por alunos do ITA: Caio Guimarães, Ishai Elarrat, Felipe Moraes Escola Naval Gabarito Comentado PSAEN 006 - PROVA ROSA Elaborado por alunos do ITA: Caio Guimarães, Ishai Elarrat, Felipe Moraes. Seja x = base d d. Da figura: x h.ctg d d h.(ctg ctg ) h x d h.ctg (ctg

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA DÉCIMA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a Regra de L Hôpital, que será utilizada para solucionar indeterminações de ites de qualquer

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I RESUMO DA AULA TEÓRICA 4 Livro do Stewart: Apêndice D e Seção 16 FUNÇÕES TRIGONOMÉTRICAS O círculo trigonométrico e arcos orientados Num plano cartesiano, considere

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

A. Funções trigonométricas directas

A. Funções trigonométricas directas A. Funções trigonométricas directas As funções seno, cosseno, tangente e cotangente são contínuas e periódicas nos respectivos domínios. Todas elas são funções não injectivas e, portanto, não possuem inversa.

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

de Potências e Produtos de Funções Trigonométricas

de Potências e Produtos de Funções Trigonométricas MÓDULO - AULA 1 Aula 1 Técnicas de Integração Integração de Potências e Produtos de Funções Trigonométricas Objetivo Aprender a integrar potências e produtos de funções trigonométricas. Na aula anterior,

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

PARTE 10 REGRA DA CADEIA

PARTE 10 REGRA DA CADEIA PARTE 10 REGRA DA CADEIA 10.1 Introdução Em Cálculo 1A, quando queríamos derivar a função h(x = (x 2 3x + 2 37, fazíamos uso da regra da cadeia, que é uma das mais importantes regras de derivação e nos

Leia mais

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO

CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO CURSO: Licenciatura em Matemática TURMA: LM 2011/01_1ºSEM PROFESSOR: NÍCOLAS MORO MÜLLER PLANO DE ENSINO DISCIPLINA: 030152 Matemática Fundamental I DURAÇÃO: Semestral CARGA HORÁRIA TOTAL: 90 horas CARGA

Leia mais

Caderno de Prova. Matemática. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 001/2011.

Caderno de Prova. Matemática. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 001/2011. Universidade Federal da Fronteira Sul Processo Seletivo Edital n o 00/20 http://uffs.sel.fepese.org.br Caderno de Prova agosto 7 7 de agosto das 4 às 7 h 3 h de duração* 40 questões S06 Matemática Confira

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X Disciplina: Cálculo 1 Identificação da Prova: Simulado Ex. Final Nota: Professor e Visto: Visto da Coordenação: Período: Data: Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa

Leia mais

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Prof. Doherty Andrade. 25 de outubro de 2005

Prof. Doherty Andrade. 25 de outubro de 2005 Funções Hiperbólicas - Resumo Prof. Doherty Andrade 5 de outubro de 005 Sumário Funções Transcendentes. Função Logaritmo Natural............................ Funções Trigonométricas Hiperbólicas.....................

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Trigonometria Circular - 2a. parte Roteiro no. 7 - Atividades didáticas de 2007 Versão compilada no dia 28 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré

Leia mais

PARTE 11 VETOR GRADIENTE:

PARTE 11 VETOR GRADIENTE: PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 9 (30/09/15) Método de Ponto Fixo: Método de Newton- Raphson ou Método das Tangentes O que é Como é calculado Particularidades

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

FUNÇÕES. 1.Definição e Conceitos Básicos

FUNÇÕES. 1.Definição e Conceitos Básicos FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1- Resolva a inequação 4 3 Resp: 1,4 - Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [. 6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter

Leia mais

II-2. Integração de Funções Trigonométricas Integração de Funções Trigonométricas

II-2. Integração de Funções Trigonométricas Integração de Funções Trigonométricas II-2. Integração de Funções Trigonométricas Integração de Funções Trigonométricas Nesta aula são apresentadas as integrais de funções trigonométricas que se resolve através das relações trigonométricas

Leia mais

Capítulo I Geometria no Plano e no Espaço

Capítulo I Geometria no Plano e no Espaço Resumo Té CaPítulo ICddf º ANO MATEMÁTICA RESUMO TEÓRICO Capítulo I Geometria no Plano e no Espaço (A) REVISÕES TEOREMA DE PITÁGORAS a e b são atetos é a hipotenusa Num triângulo retângulo verifia-se sempre

Leia mais

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São

Leia mais

1) Função tangente (definição) 2)Gráfico da função tangente. 3) Equações e inequações. 4) Resolução de exercícios

1) Função tangente (definição) 2)Gráfico da função tangente. 3) Equações e inequações. 4) Resolução de exercícios Aula 25-Funções trigonométricas no ciclo trigonométrico 1) Função tangente (definição) 2)Gráfico da função tangente 3) Equações e inequações 4) Resolução de exercícios 1) Função tangente definição: Lembre

Leia mais

Funções Inversas e suas Derivadas

Funções Inversas e suas Derivadas Capítulo 9 Funções Inversas e suas Derivadas 9. Motivação Muitas obras de arte epostas em museus precisam ser protegidas por medidas de segurança especiais para impedir atos de vandalismo. Suponha que

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

Gabarito - Matemática - Grupos I e J

Gabarito - Matemática - Grupos I e J 1 a QUESTÃO: (,0 pontos) Avaliador Revisor x O gráfico da função exponencial f, definida por f( x) = k a, foi construído utilizando-se o programa de geometria dinâmica gratuito GeoGebra (http://www.geogebra.org),

Leia mais

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA. Função Composta e Função Inversa NOVA ANDRADINA MS

UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA. Função Composta e Função Inversa NOVA ANDRADINA MS UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA EM INFORMÁTICA Função Composta e Função Inversa NOVA ANDRADINA MS UNIVERSIDADE ESTADUAL DE MATO GROSSO DO SUL UEMS SEGUNDA LICENCIATURA

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2?

TRABALHO 1 CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: =, no ponto x = 2? TRABALHO CURSO DE VERÃO CÁLCULO I NOME DO ACADÊMICO: Questão 0 Ache a derivada das seguintes funções: 0 y 0 y 5 5 y e) y y Questão 0 Qual é a derivada da função, no ponto? Questão 0 Se, calcule () f Questão

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5

A Regra da Cadeia. 14 de novembro de u(x) = sen x. v(x) = cos x. w(x) = x 5 A Regra a Caeia 4 e novembro e 0. As operações algébricas entre funções (soma, prouto, etc) fornecem uma grane iversiae e novas funções para os iferentes casos que vimos até agora. Porém, existe uma outra

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima. 01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22

Leia mais

MATEMÁTICA PROVA: 02/09/12. Questão 1. Questão 2. O valor do. lim (A) 2. (B) 1. (C) O. (D) 1. (E) 2. Gabarito: Letra D. Veja que

MATEMÁTICA PROVA: 02/09/12. Questão 1. Questão 2. O valor do. lim (A) 2. (B) 1. (C) O. (D) 1. (E) 2. Gabarito: Letra D. Veja que PROVA: 0/09/ MATEMÁTICA Questão O valor do (A). (B). (C) O. (D). (E). lim x 0 x x x Gabarito: Letra D. x Veja que x x x x x(x ) x (x ) x. Logo, o limite é igual a lim x 0 x Questão O número de bactérias

Leia mais

Substituição Trigonométrica

Substituição Trigonométrica UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Substituição Trigonométrica

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia) Início: 7:00 Término: 8:35 Nome: Matrícula: Turma: Questão Valor Grau Revisão

Leia mais

Unidade Curricular: Matemática - EIG0003 MIEIG 2013/ ª aula. Prof. Catarina Castro Gabinete: M304

Unidade Curricular: Matemática - EIG0003 MIEIG 2013/ ª aula. Prof. Catarina Castro Gabinete: M304 Unidade Curricular: Matemática - EIG0003 MIEIG 2013/2014 1ª aula Prof. Catarina Castro Gabinete: M304 1 OBJETIVOS ESPECÍFICOS: Adquirir conhecimentos teóricos e práticos, essenciais, sobre o cálculo diferencial

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig ELEMENTOS DE EQUAÇÕES DIFERENCIAIS AULA 01: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS TÓPICO 02: REVENDO TÉCNICAS DE INTEGRAÇÃO VERSÃO TEXTUAL Este tópico objetiva reapresentar as principais técnicas de integração.

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação

Planificação Anual. 0,5 Geometria no plano e no espaço II. 32 Avaliações escritas e respetivas correcções. 5 Auto-avaliação 3º Período 2º Período 1º Período AGRUPAMENTO DE ESCOLAS DE CASTRO DAIRE Escola Secundária de Castro Daire Grupo de Recrutamento 500 MATEMÁTICA Ano lectivo 2012/2013 Planificação Anual Disciplina: Matemática

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais