Pretende-se calcular uma aproximação para a menor raiz positiva da equação

Tamanho: px
Começar a partir da página:

Download "Pretende-se calcular uma aproximação para a menor raiz positiva da equação"

Transcrição

1 1 Prete-se calcular uma aproimação para a menor raiz positiva da equação, pelos métodos de Newton-Raphson e ponto fio. a) Localize um intervalo que contenha a menor raiz positiva da equação dada Determinar as raízes de é equivalente a determinar os pontos que intersectam as funções e. Graficamente podemos constatar que o intervalo I[0, 0.] contém a menor raiz positiva. Podemos determinar o zero de uma função ou raiz da equação 0 utilizando a função fzero do MatLab. Para programar a função f() podemos utilizar a função inline na linha de comandos ou criar e salvar a função num ficheiro eterno. >> f inline(.^-*+1'); ou no ficheiro f.m function yf() y.^-*+1; >> fzero('f', [0,0.]) ([0, 0.] é o intervalo onde vai ser determinado o zero) ans Como a função f() é um polinómio de grau podemos alternativamente utilizar a função roots para determinar as raízes de um polinómio. >> roots([1 0-1]) ([1 0-1] representam os 4 coeficientes do polinómio de grau, 1) ans , , Gladys Castillo Jordán, Universidade de Aveiro, 010 1

2 b) Considerando como ponto inicial 0 0.1, calcule uma aproimação do menor zero positivo da função f() em [0, 0.] pelo método de Newton-Raphson utilizando como critério de paragem que f( k ) < f() - +1 Requer: f C ([0, 0.]) 1) f(0) f(0.) < 0 f(0) 1, f(0.) -1.7 Teorema: (condições suficientes de convergência do método de Newton-Raphson): Seja f uma função C [a, b]. Se forem satisfeitas as condições: 1) f(a). f(b) < 0 ) f '() 0, [a, b] ) f () 0, [a, b] 4) f ( a) < ( b a) e f ( b) < ( b a) f ( a) f ( b) então 0 [a, b] o método de Newton-Raphson converge para o único zero α de f() em I [a, b]. ) f () 0, [0, 0.] ) f () 0, [0, 0.] f () < 0 [0, 0.] f () 6 > 0 (0, 0.] (não muda de sinal) f (0) 1 4) a) 0. < 0. f (0) f (0.) -1.7 e b) 0. < 0. f (0.) Como todas as condições são satisfeitas, podemos concluir que o método de Newton-Raphson converge para a única raiz em I [0, 0.] tomando como solução inicial qualquer ponto 0 I. Gladys Castillo Jordán, Universidade de Aveiro, 010

3 Método de Newton-Raphson Aproimação Inicial: f ( k 1 ) Fórmula Iteradora: k k 1, k 1,,... f ( ) k 1 (f() + 1, f () - ) Critério de Paragem: f( k ) < 10 - Iter. Abcissa do ponto de intersecção da tangente com o eio Valor da função em k f() + 1 Valor da 1ª derivada da função em k f () - f( k ) < 10 -? k k f( k ) f ( k ) f( k ) < PARAR!!! Foram necessárias iterações para aproimar a menor raiz positiva com a tolerância desejada α (valor calculado com a função fzero do Matlab) com erro absoluto: e α < Como < e < , a aproimação tem 6 casas decimais correctas Gladys Castillo Jordán, Universidade de Aveiro, 010

4 4 c) Diga, justificando qual a ordem de convergência da sequência de iterações obtida na alinha b) para aproimar a menor raiz positiva da equação dada IMPORTANTE: O método de Newton-Raphson tem ordem de convergência linear se α é um zero duplo, i.e., se f (α)0, f (α) 0 O método de Newton-Raphson tem ordem de convergência quadrática se α é um zero simples, i.e., se f (α) 0 Considerando para a menor raiz positiva α o valor aproimado pelo método de Newton-Raphson temos que f (α) f ( ) Como α é um zero simples de f() (f (α) 0), então a sucessão de aproimações { k } gerada pelo método de Newton-Raphson para qualquer aproimação inicial 0 em [0, 0.] converge para α (a menor raiz positiva da equação dada) com ordem de convergência quadrática e razão de convergência C 0.140: ek + 1 C lim k e k 1 f ''( α) f '( α) Isto quer dizer que quando k : e k ek Gladys Castillo Jordán, Universidade de Aveiro, 010 4

5 d) Encontre uma função iteradora g() que torne o método do ponto fio convergente na aproimação do menor zero positivo da função f() no intervalo [0, 0.] Definição: Um ponto fio de uma função g() é um número real α tal que αg (α). Podemos encontrar uma função g() tal que f() 0 g() (g() é chamada função iteradora ) Teorema: (condições de convergência do método de ponto fio) Seja α uma raiz da equação f() 0, isolada num intervalo I[a,b]. Seja g() C (I) uma função iteradora para a equação f() 0. se: i) g(i) I (g() I, I) ii) 0 < M ma g () < 1 (g é contractiva) I então 0 I a sucessão { } k gerada pelo processo iterativo k + 1 g( k ) converge para α Função iteradora para aproimar a única raiz no intervalo I[0, 0.] g( ) g( ) 1 1 g' ( ) ( 1 ) Gladys Castillo Jordán, Universidade de Aveiro, 010

6 6 Como g'() não é contínua em I (para 0. g'() está indefinida) não podemos usar esta função iteradora em I[0, 0.]. Temos que procurar uma outra função iteradora alternativa: g( ) + 1 g( ) g '( ) Graficamente verifica-se que g() e g'() são contínuas em I. Além disso: i) g() [0., 0.] I[0, 0.], I ii) 0 < M ma g () < 1 Como g () é monótona crescente então M g (0.) 0.1 < 1 Então, 0 I[0, 0.] a fórmula iteradora definida por: k k ; k 1,,, converge para a única raiz de f()0 eistente em I[0, 0.]. Gladys Castillo Jordán, Universidade de Aveiro, 010 6

7 7 e) Considerando como ponto inicial 0 0.1, calcule uma aproimação do menor zero positivo da função f() em [0, 0.] utilizando a iteradora g( k ) encontrada na alinha anterior e usando como critério de paragem f( k ) < Na alínea anterior foi provado que uma função iteradora g() convergente para aproimar a raiz em [0, 0.] é + 1 g( ) Método do Ponto-Fio Aproimação Inicial: k 1 Fórmula Iteradora:, k 1,,... Critério de Paragem: f( k ) < 10 - k k k g( k-1 ) f( k ) < PARAR!!! Foram necessárias iterações para aproimar a raiz com a tolerância desejada Tomando como valor eacto, o valor obtido com a função fzero do MatLab α (tomando o valor obtido em MatLab com fzero) com erro absoluto: e α A aproimação de α encontrada pelo método do ponto fio tem pelo menos casas decimais correctas. Gladys Castillo Jordán, Universidade de Aveiro, 010 7

8 8 f) Diga, justificando qual a ordem de convergência da sequência de iterações obtida pelo método do ponto fio IMPORTANTE: O método do ponto fio tem convergência linear se g (α) 0 O método do ponto fio tem convergência quadrática se g (α) 0, g (α) 0 Seja α o ponto fio de + 1 g( ) em I[0, 0.] com g '( ) Como: g () [0, 0.1] (g() monótona cresce em I[0, 0.], g (0)0 e g (0.)0.1) α (0, 0.) g (α) 0 Assim, para qualquer aproimação inicial 0 próima da raiz em [0, 0.], a sucessão k { k } gerada pela fórmula iteradora k, k 1,,... converge para α com ordem de convergência linear e razão de convergência C g (α). Considerando para a menor raiz positiva α o valor aproimado temos que g 1 ( α) C g ( ) ! Gladys Castillo Jordán, Universidade de Aveiro, 010 8

9 9 g) Compare as aproimações obtidas e eponha as conclusões a que chegou to em conta a ordem de convergência de cada método Método Newton Raphson Ordem de convergência lim e k+1 C e k p k se p1, linear se p, quadrática + 1 g( ) linear se zero duplo (f (α)0, f (α) 0) quadrática se zero simples (f (α) 0) Nº iter. Valor aproimado k α (valor obtido com a função fzero do Matlab) Erro absoluto e k associado à aproimação obtida e (6 casas decimais correctas) Como o zero que corresponde à menor raiz positiva é simples então a convergência é quadrática com razão de convergência 1 f ''( α) C f '( α) (tomando como α a aproimação obtida pelo método de N-R) Assim, para k1,, : e k ek Ponto Fio g() linear se g (α) 0 quadrática se g (α)0, g (α) 0 usando a função iteradora + 1 g( ) como g (α) 0, então a convergência é linear com razão de convergência C g 1 ( α) (tomando como α a aproimação obtida pelo método do ponto fio) Assim, para k1,, : e k+ 1 e k e ( casas decimais correctas) Como neste eemplo o método de N-R tem convergência quadrática e o do ponto fio (com a função iteradora aqui usada) tem convergência linear, a sucessão gerada pelo método de N-R converge mais rapidamente para a menor raiz positiva da equação dada. Gladys Castillo Jordán, Universidade de Aveiro, 010 9

10 10 Implementação em MatLab Considerando como ponto inicial 0 0.1, calcule uma aproimação do menor zero positivo da função f() em [0, 0.] pelo método de Newton-Raphson utilizando como critério de paragem que f( k ) < Em Matlab podemos implementar o método de Newton utilizando a rotina newton1 do pacote de MN: >> newton1('f', 0.1, 0, 10^-, 0) function [y, y1] f() y.^-*+1; y1 *.^-; A função f deve retornar os valores de y() e de y (). No caso de funções polinomiais é melhor utilizar a função polyval function [y, y1] f() y polyval([1,0,-,1], ); y1 polyval([,0,-], ); Podemos também implementar duas iterações do método de Newton a partir da aproimação inicial através deste simples programa (script) em Matlab: format long; 00.1; [y, dy]f(0); 10-y/dy [y, dy]f(1); 1-y/dy function [y, y1] f() y polyval([1,0,-,1], ); y1 polyval([,0,-], ); A função f deve retornar os valores de y() e de y (). Ao eecutar o programa anterior obtemos Gladys Castillo Jordán, Universidade de Aveiro,

11 11 e) Considerando como ponto inicial 0 0.1, calcule uma aproimação do menor zero positivo da função f() em [0, 0.] de tal forma que f( k ) < 10 - utilizando a iteradora convergente k + 1, k 1 Implementação na Linha de Comandos k 1,,... >> ginline('(.^+1)/'); >> 00.1; >> 1g(0) >> g(1) >> g() Implementação construindo um programa (script) em Matlab Podemos também construir um script em MatLab que nos permita determinar todas as aproimações utilizando o critério de paragem f( k ) < 10 - % dados de entrada finline('.^-*+1'); ginline('(.^+1)/'); 0.1; tol1e- % processo iterativo for k1:1000 g(); if (abs(f())< tol) break; % foi satisfeito o critério de paragem display('a aproimação encontrada é'); Gladys Castillo Jordán, Universidade de Aveiro,

12 1 Para visualizar todas as aproimações, basta apenas enviar uma mensagem com o comando display após de ser calculada cada aproimação. % dados de entrada finline('.^-*+1'); ginline('(.^+1)/'); 0.1; tol1e- % processo iterativo for k1:1000 g(); display(['(', numstr(k),') ', numstr(,8)]); if (abs(f())< tol) break; % foi satisfeito o critério de paragem display('a aproimação encontrada é'); Implementação construindo a nossa própria função Para que este algoritmo possa ser utilizado com outras funções f e g e outros dados, podemos construir uma função em MatLab com os seguintes parâmetros de entrada: a função f() a função iteradora g() a solução inicial 0 a tolerância desejada (segundo o o critério f( k ) < 10 - o número máimo de iterações kma e que como saída retorne o valor da aproimação encontrada. function pfio(f, g, 0, tol, kma) 0; for k1:kma g(); display(['(', numstr(k),') ', numstr(,8)]); if (abs(f())< tol) break; % foi satisfeito o critério de paragem if (kkma & f()>tol) disp('o ponto fio não foi encontrado com a tolerância desejada.') else display('a aproimação encontrada é'); Gladys Castillo Jordán, Universidade de Aveiro, 010 1

13 1 Uma vez construída a função, esta deve ser guardada num ficheiro com o mesmo nome, pfio.m. Depois, pode ser chamada para eecução na janela do comando do MatLab: >> finline('.^-*+1'); >> ginline('(.^+1)/'); >> pfio(f,g,0.1,1e-,1000) Como resultado obtém-se: (1) 0.00 () () A aproimação encontrada é Implementação utilizando a função pontofio do pacote de rotinas de MN A função pontofio pode ser chamada para eecução na janela do comando do MatLab: >> finline('.^-*+1'); >> ginline('(.^+1)/'); >> pontofio(f,g,0.1,1e-,1000) Gladys Castillo Jordán, Universidade de Aveiro, 010 1

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 Voltando ao eemplo da aula anterior, vemos que o ponto médio da primeira iteração 1 = 2,5

Leia mais

Capítulo 06. Raízes: Métodos Abertos

Capítulo 06. Raízes: Métodos Abertos Capítulo 06 Raízes: Métodos Abertos Objetivos do capítulo Reconhecer a diferença entre os métodos intervalares e os métodos abertos para localização de raízes. Compreender o método de iteração de ponto

Leia mais

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros Newton-Raphson e Secante. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros Newton-Raphson e Secante Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método Newton Raphson 2 Método Newton-Raphson Dada uma função f( contínua num intervalo fechado

Leia mais

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante

CCI-22 CCI-22. 4) Equações e Sistemas Não Lineares. Matemática Computacional. Bissecção, Posição Falsa, Ponto Fixo, Newton-Raphson, Secante Matemática Computacional 4) Equações e Sistemas Não Lineares Carlos Alberto Alonso Sanches Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson, Secante Introdução Ponto Fio Introdução Ponto Fio Raízes

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 5 Zeros reais de funções Parte 2 EXEMPLO 6 Aula anterior Aplicação do método da bissecção para: f ( ) = log 1, em[ 2,3] com

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAIS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 09/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

Interpretação Geométrica

Interpretação Geométrica .. Método da Iteração Linear MIL Seja uma unção contínua em [a, com α [ a, tal que α. O Método de Iterações Lineares consiste em: a transormar a equação numa unção de iteração ϕ ; b adotar um valor inicial

Leia mais

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227

Equações Não Lineares. 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Equações Não Lineares 35T12 Sala 3G4 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 Introdução Um tipo de problema bastante comum é o de achar raízes de equações da forma f() = 0, onde f() pode ser um

Leia mais

Aula 4. Zeros reais de funções Parte 1

Aula 4. Zeros reais de funções Parte 1 CÁLCULO NUMÉRICO Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f 0 sendo f uma função real dada. Cálculo Numérico 3/60 APLICAÇÃO

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano.

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano. CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérico SME0104 ICMC-USP Lista 5: Zero de Funções Lembrete (informação que vai estar disponível na prova) Método de Newton Método da Secante x k+1 = x k f(x k) f (x k ), x k+1 = x k J 1 F (x k

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Zeros de equações transcendentes e Tipos de Métodos polinomiais São dois os tipos de métodos para se achar a(s) raízes de uma equação:

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 04/2014 Zeros reais de funções Parte 2 Voltando ao exemplo da aula anterior, vemos que o ponto médio da primeira iteração

Leia mais

Programação I Aula 7 Resolução numérica de equações

Programação I Aula 7 Resolução numérica de equações Programação I Aula 7 Resolução numérica de equações Pedro Vasconcelos DCC/FCUP 2018 Pedro Vasconcelos (DCC/FCUP) Programação I Aula 7 Resolução numérica de equações 2018 1 / 20 Nesta aula 1 Resolução numérica

Leia mais

Métodos Numéricos Zeros Posição Falsa e Ponto Fixo. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros Posição Falsa e Ponto Fixo. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros Posição Falsa e Ponto Fixo Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método da Posição Falsa 2 Método da Posição Falsa O processo consiste em dividir/particionar

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

SME0300 Cálculo Numérico Aula 6

SME0300 Cálculo Numérico Aula 6 SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais)

Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) Cálculo Numérico IPRJ/UERJ Sílvia Mara da Costa Campos Victer ÍNDICE Aula 2- Soluções de Equações a uma Variável (zeros reais de funções reais) FASE I: Isolamento das raízes. FASE 2: Refinamento: 2.1-

Leia mais

Cálculo Numérico Ponto Fixo

Cálculo Numérico Ponto Fixo Cálculo Numérico Ponto Fixo Método do Ponto Fixo (MPF) Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x) = 0, é possível transformar tal equação em uma equação equivalente

Leia mais

SME0300 Cálculo Numérico Aula 4

SME0300 Cálculo Numérico Aula 4 SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a

Leia mais

Resolução Numérica de Equações (Parte II)

Resolução Numérica de Equações (Parte II) Cálculo Numérico Módulo III Resolução Numérica de Equações (Parte II) Prof: Reinaldo Haas Cálculo Numérico Bissecção Métodos Iterativos para a Obtenção de Zeros Reais de Funções Bissecção Newton-Raphson

Leia mais

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes

Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Cálculo Numérico BCC760 Raízes de equações algébricas e transcendentes Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ Introdução Dada uma função y = f(x), o objetivo deste

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

Aula 6. Zeros reais de funções Parte 3

Aula 6. Zeros reais de funções Parte 3 CÁLCULO NUMÉRICO Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/48 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO: Uma das condições de convergência é que onde I é um intervalo

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 6 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/47 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO FIXO:

Leia mais

Semana 5 Zeros das Funções_2ª parte

Semana 5 Zeros das Funções_2ª parte 1 CÁLCULO NUMÉRICO Semana 5 Zeros das Funções_2ª parte Professor Luciano Nóbrega UNIDADE 1 2 LOCALIZAÇÃO DAS RAÍZES PELO MÉTODO GRÁFICO Vejamos dois procedimentos gráficos que podem ser utilizados para

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli Raízes de Equações Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brasil 2-27 Raízes

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1

Artur M. C. Brito da Cruz. Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 Equações Não Lineares Análise Numérica Artur M. C. Brito da Cruz Escola Superior de Tecnologia Instituto Politécnico de Setúbal 2015/2016 1 1 versão 20 de Setembro de 2017 Conteúdo 1 Introdução...................................

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

2.3- Método Iterativo Linear (MIL)

2.3- Método Iterativo Linear (MIL) .3- Método Iterativo Linear (MIL) A fim de introduzir o método de iteração linear no cálculo de uma raiz da equação (.) f(x) = 0 expressamos, inicialmente, a equação na forma: (.) x = Ψ(x) de forma que

Leia mais

Introdução à Programação Aula 7 Resolução numérica de equações

Introdução à Programação Aula 7 Resolução numérica de equações Introdução à Programação Aula 7 Resolução numérica de equações Pedro Vasconcelos DCC/FCUP 2017 Pedro Vasconcelos (DCC/FCUP) Introdução à Programação Aula 7 Resolução numérica de equações 2017 1 / 19 Nesta

Leia mais

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos

- Métodos numéricos. - Métodos analíticos versus métodos numéricos. - Necessidade de se usar métodos numéricos. - Métodos iterativos Tópicos Tópicos - Métodos numéricos - Métodos analíticos versus métodos numéricos - Necessidade de se usar métodos numéricos - Métodos iterativos - Resolução de problemas - Problemas com equações não lineares

Leia mais

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra

CCI-22. Matemática Computacional. Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 Matemática Computacional Carlos Alberto Alonso Sanches Juliana de Melo Bezerra CCI-22 4) Equações e Sistemas Não Lineares Biss ã P si ã F ls P nt Fi Bissecção, Posição Falsa, Ponto Fio, Newton-Raphson,

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

Equações não lineares Universidade de Coimbra Professor João Soares 2008/2009

Equações não lineares Universidade de Coimbra Professor João Soares 2008/2009 Matemática Computacional Equações não lineares Universidade de Coimbra 13 pages Professor João Soares 2008/2009 1. Localize graficamente (à mão ou em matlab) as soluções das seguintes equações e demonstre,

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 9 04/2014 Zeros reais de funções Parte 3 MÉTODO DE NEWTON RAPHSON Cálculo Numérico 3/42 CONSIDERAÇÕES INICIAS MÉTODO DO PONTO

Leia mais

C alculo Num erico Ra ızes de Equa c oes Ana Paula Ana Paula C alculo Num erico

C alculo Num erico Ra ızes de Equa c oes Ana Paula Ana Paula C alculo Num erico Raízes de Equações Sumário 1 Introdução 2 3 Revisão Introdução Introdução Introdução Introdução Serão estudados aqui métodos numéricos para a resolução do problema de determinar as raízes de uma equação

Leia mais

Cálculo Numérico. Aula 5 Método Iterativo Linear e Newton-Raphson /04/2014

Cálculo Numérico. Aula 5 Método Iterativo Linear e Newton-Raphson /04/2014 Cálculo Numérico Aula 5 Método Iterativo Linear e Newton-Raphson 2014.1-15/04/2014 Prof. Rafael mesquita rgm@cin.ufpe.br Adpt. por Prof. Guilherme Amorim gbca@cin.ufpe.br O que vimos até agora? Zeros de

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.

Leia mais

Equações não lineares

Equações não lineares DMPA IM UFRGS Cálculo Numérico Índice 1 Método da bissecção 2 Método Newton-Raphson 3 Método da secante Vamos estudar métodos numéricos para resolver o seguinte problema. Dada uma função f contínua, real

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm uma e uma só solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais

Cálculo Numérico. Aula 6 Método das Secantes e Critérios de Parada /04/2014

Cálculo Numérico. Aula 6 Método das Secantes e Critérios de Parada /04/2014 Cálculo Numérico Aula 6 Método das Secantes e Critérios de Parada 2014.1-22/04/2014 Prof. Rafael mesquita rgm@cin.ufpe.br Adpt. por Prof. Guilherme Amorim gbca@cin.ufpe.br Aula passada? Método Iterativo

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a,

1, tal que x k+ 1 x para k +. x k + 1 : raiz aproximada da f; Uma forma de determinarmos um intervalo I = [ a, - SOLUÇÃO DE EQUAÇÕES NÃO LINEARES INTRODUÇÃO Um dos problemas que ocorrem mais reqüentemente em trabalhos cientíicos é calcular as raízes de equações da orma: () 0. A unção () pode ser um polinômio em

Leia mais

Matemática Computacional. Exercícios. Teoria dos erros

Matemática Computacional. Exercícios. Teoria dos erros Matemática Computacional Exercícios 1 o Semestre 2014/15 Teoria dos erros Nos exercícios deste capítulo os números são representados em base decimal. 1. Represente x em ponto flutuante com 4 dígitos e

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Métodos Numéricos. Turma CI-202-X. Josiney de Souza.

Métodos Numéricos. Turma CI-202-X. Josiney de Souza. Métodos Numéricos Turma CI-202-X Josiney de Souza josineys@inf.ufpr.br Agenda do Dia Aula 9 (30/09/15) Método de Ponto Fixo: Método de Newton- Raphson ou Método das Tangentes O que é Como é calculado Particularidades

Leia mais

Método da Secante Para Resolução de equações do tipo f(x)=0

Método da Secante Para Resolução de equações do tipo f(x)=0 Método da Secante Para Resolução de equações do tipo 0 Narã Vieira Vetter Guilherme Paiva Silva Santos Raael Pereira Marques naranvetter@walla.com guilherme.pss@terra.com.br rp_marques5@yahoo.com.br Associação

Leia mais

Resolução Numérica de Equações Métodos Parte II

Resolução Numérica de Equações Métodos Parte II Cálculo Numérico Resolução Numérica de Equações Métodos Parte II Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais

Exercícios sobre zeros de funções Aula 7

Exercícios sobre zeros de funções Aula 7 Exercícios sobre zeros de funções Aula 7 André L. R. Didier 1 6 de Maio de 2015 7/47 Introdução Todas as questões foram obtidas da 3 a edição do livro Métodos Numéricos de José Dias dos Santos e Zanoni

Leia mais

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0.

Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi. 2 a Lista de Exercícios - Gabarito. 1) Seja a equação não linear x e x = 0. Cálculo Numérico A - 2 semestre de 2006 Prof. Leonardo F. Guidi 2 a Lista de Exercícios - Gabarito 1) Seja a equação não linear x e x = 0. A solução é dada em termos da função W de Lambert, x = W 1) 0,

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

Capítulo 6 - Equações Não-Lineares

Capítulo 6 - Equações Não-Lineares Sistemas de Capítulo 6 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/

Leia mais

Computação Numérica Ano letivo 2011/12 Orientações de resposta ao exame/p-folio de 1ª época

Computação Numérica Ano letivo 2011/12 Orientações de resposta ao exame/p-folio de 1ª época Computação Numérica 101 Ano letivo 011/1 Orientações de resposta ao exame/p-folio de 1ª época 1. Considere a função y( x) = ln x x + 4. a. (1,5 val) Construa o polinómio de Taylor de y(x) de grau, com

Leia mais

Prof. MSc. David Roza José 1/37

Prof. MSc. David Roza José 1/37 1/37 Métodos Abertos Objetivos: Reconhecer as diferenças entre os métodos intervalados e abertos para a localização de raízes; Compreender o método da iteração de ponto-fixo e avaliar suas características

Leia mais

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1

Raízes de uma função. Laura Goulart. 16 de Março de 2016 UESB. Laura Goulart (UESB) Raízes de uma função 16 de Março de / 1 Raízes de uma função Laura Goulart UESB 16 de Março de 2016 Laura Goulart (UESB) Raízes de uma função 16 de Março de 2016 1 / 1 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c R

Leia mais

Solução aproximada de equações de uma variável

Solução aproximada de equações de uma variável Cálculo Numérico de uma variável Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Parte I Localização de zeros e Método da bissecção Motivação: Queda de um

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 5 de Fevereiro de - Parte I (h3m). Considere

Leia mais

Computação Científica 65

Computação Científica 65 Capítulo 3. 1. Métodos numéricos Sempre que se pretende resolver um problema cuja solução é um valor numérico, é habitual ter de se considerar, para além de conceitos mais abstratos (que fornecem um modelo

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

Resolução do exame de matemática computacional

Resolução do exame de matemática computacional Resolução do exame de matemática computacional 0 de Janeiro de 00 GRUPO I f x_ : x^ x 1 g1 x_ : x^ 1 x^ g x_ : x 1 g x_ x^ 1 1 1 x Plot f x, x,, - -1 1 - -4 Graphics 1 Método de Newton Quando se procura

Leia mais

Raízes de uma função. Laura Goulart. 14 de Março de 2019 UESB. Laura Goulart (UESB) Raízes de uma função 14 de Março de / 17

Raízes de uma função. Laura Goulart. 14 de Março de 2019 UESB. Laura Goulart (UESB) Raízes de uma função 14 de Março de / 17 Raízes de uma função Laura Goulart UESB 14 de Março de 2019 Laura Goulart (UESB) Raízes de uma função 14 de Março de 2019 1 / 17 Aproximação de uma raíz Dado uma precisão ɛ > 0, diremos que um ponto c

Leia mais

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ] SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade 1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de

Leia mais

Neste capítulo estamos interessados em resolver numericamente a equação

Neste capítulo estamos interessados em resolver numericamente a equação CAPÍTULO1 EQUAÇÕES NÃO-LINEARES 1.1 Introdução Neste capítulo estamos interessados em resolver numericamente a equação f(x) = 0, onde f é uma função arbitrária. Quando escrevemos resolver numericamente,

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos ZEROS DE FUNÇÕES DE UMA OU MAIS VARIÁVEIS Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Mais funções polinomiais 10.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2002/03 Mais funções polinomiais 10.º Ano Escola Secundária/ da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 00/0 Mais funções polinomiais 0º Ano Nome: Nº: Turma: Tem-se uma folha rectangular de cartolina com as dimensões de 0 cm por

Leia mais

Resolução Numérica de Equações Parte I

Resolução Numérica de Equações Parte I Cálculo Numérico Resolução Numérica de Equações Parte I Prof Reinaldo Haas Cálculo Numérico Objetivos 2 Estudar métodos numéricos para a resolução de equações não lineares (determinar a(s) raiz(es) de

Leia mais

Solução numérica de equações não-lineares

Solução numérica de equações não-lineares Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de uma equação. Mas, o que é uma equação? Uma equação é uma igualdade

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Optimização Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química e Industrial Carlos Balsa Matemática Aplicada

Leia mais