FIS 26. Mecânica II. Aula 3: Corpo rígido. Momento angular.

Tamanho: px
Começar a partir da página:

Download "FIS 26. Mecânica II. Aula 3: Corpo rígido. Momento angular."

Transcrição

1 FIS 26 Mecânica II Aula 3:. Momento angular.

2 - Roteiro Resumo das últimas aulas Momento de Inércia - Momento angular no movimento planar - Momento de inércia em relação a um eixo - Raio de giração - Teorema dos eixos paralelos - Teorema dos eixos perpendiculares Tensor de Inércia - Momentos e eixos principais de inércia

3 Resumo das últimas aulas Definição: Um corpo é rígido quando a distância entre duas partículas quaisquer do corpo é invariável. ¹ Translação: trajetória de translação retilínea/cuvilínea¹ Rotação: em torno de um eixo/ponto fixo¹ Movimento geral: translação + rotações (em torno de 3 eixos): 1 Nussenzveig, H. M., Curso de Física Básica, Vol. 1, 2ª.ed., Edgard Blücher, Hibbeler, R.C., Mecânica para Engenheiros, Vols 1 e 2, Pearson Education, 12ª.ed.

4 Resumo das últimas aulas Movimento planar/tridimensional: Movimento geral: 1 Hibbeler, R.C., Mecânica para Engenheiros, Vols 1 e 2, Pearson Education, 12ª.ed.

5 Momento de inércia (de massa) Momento angular no movimento planar: Para uma rotação em torno de um eixo Δ com velocidade angular ω, o momento angular de uma partícula de massa m em relação a um ponto O (sobre o eixo) é dado por

6 Momento de inércia (de massa) Momento angular no movimento planar: O momento angular não possui necessariamente a mesma direção de ω.

7 Momento de inércia (de massa) Momento angular no movimento planar: O momento angular não possui necessariamente a mesma direção de ω. Projeção na direção do eixo Δ

8 Momento de inércia (de massa) Momento de inércia em relação a um eixo O termo de proporcionalidade entre a projeção do momento angular na direção de Δ e o módulo da velocidade angular é chamado de momento de inércia em relação ao eixo Δ:

9 Momento de inércia (de massa) Momento de inércia em relação a um eixo O termo de proporcionalidade entre a projeção do momento angular na direção de Δ e o módulo da velocidade angular é chamado de momento de inércia em relação ao eixo Δ: Momento de inércia em relação ao eixo Δ Mede a resistência do sistema à aceleração angular; medida da inércia rotacional.

10 Momento de inércia (de massa) Momento de inércia em relação a um eixo Para um sistema de partículas, o momento de inércia total (em relação a Δ) é dado pela soma dos momentos de inércia de cada partícula: Momento de inércia em relação ao eixo Δ 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

11 Momento de inércia (de massa) Momento de inércia em relação a um eixo Para uma distribuição contínua de massa o momento de inércia total (em relação a Δ) é dado pela integral: Momento de inércia em relação ao eixo Δ 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

12 Momento de inércia (de massa) Momento de inércia em relação a um eixo Para uma distribuição contínua de massa o momento de inércia total (em relação a Δ) é dado pela integral: Momento de inércia em relação ao eixo Δ Distribuição linear Distribuição superficial Distribuição superficial 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

13 Momento de inércia (de massa) Momento de inércia em relação a um eixo O raio de giração representa a distância ao eixo em que toda a massa poderia ser concentrada sem alterar o momento de inércia: Momento de inércia em relação ao eixo Δ Raio de giração Massa total 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

14 Momento de inércia (de massa) Momento de inércia em relação a um eixo Exemplo: O cone circular é formado pela revolução da área sombreada ao redor do eixo x. Determine o raio de giração do cone ( kx ), sabendo que o cone possui densidade constante e massa total M. 1 Hibbeler, R.C., Mecânica para Engenheiros, Vols 1 e 2, Pearson Education, 12ª.ed.

15 kx=?, densidade constante e massa M. Momento de inércia (de massa) Momento de inércia em relação a um eixo

16 kx=?, densidade constante e massa M. Momento de inércia (de massa) Momento de inércia em relação a um eixo 1 Hibbeler, R.C., Mecânica para Engenheiros, Vols 1 e 2, Pearson Education, 12ª.ed.

17 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos paralelos (Teorema de Steiner): Considere conhecido o momento de inércia em relação a um eixo (e.g. z ) que passa pelo centro de massa (CM ou G, localizado em X CM=Y CM=Z CM=0). Usando: Mostre que 1 Hibbeler, R.C., Mecânica para Engenheiros, Vols 1 e 2, Pearson Education, 12ª.ed.

18 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos paralelos: X CM=Y CM=Z CM=0. 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

19 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos paralelos: X CM=Y CM=Z CM=0. O momento de inércia (Iz) de um corpo em relação a qualquer eixo (z) é igual à soma do momento de inércia (Iz ) em relação a um eixo paralelo (z ) que passe pelo centro de massa (CM) e o momento de inércia da massa total do corpo (MD²) localizada no centro de massa em relação ao eixo considerado. ¹ 1 Arya, A.P. - Introduction to Classical Mechanics, Allyn and Bacon (1990).

20 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos perpendiculares: A soma dos momentos de inércia de uma lâmina plana em relação a dois eixos perpendiculares no plano é igual ao momento de inércia em relação a um eixo que passa pelo ponto de intersecção e é perpendicular ao plano da lâmina Válido somente para lâminas planas!!! 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

21 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos perpendiculares: A soma dos momentos de inércia de uma lâmina plana em relação a dois eixos perpendiculares no plano é igual ao momento de inércia em relação a um eixo que passa pelo ponto de intersecção e é perpendicular ao plano da lâmina 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

22 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos perpendiculares: A soma dos momentos de inércia de uma lâmina plana em relação a dois eixos perpendiculares no plano é igual ao momento de inércia em relação a um eixo que passa pelo ponto de intersecção e é perpendicular ao plano da lâmina 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

23 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos perpendiculares: A soma dos momentos de inércia de uma lâmina plana em relação a dois eixos perpendiculares no plano é igual ao momento de inércia em relação a um eixo que passa pelo ponto de intersecção e é perpendicular ao plano da lâmina 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

24 Momento de inércia (de massa) Momento de inércia em relação a um eixo Teorema dos eixos perpendiculares: A soma dos momentos de inércia de uma lâmina plana em relação a dois eixos perpendiculares no plano é igual ao momento de inércia em relação a um eixo que passa pelo ponto de intersecção e é perpendicular ao plano da lâmina 1 Beer et al- Vector Mechanics Engineers Statics Dynamics 9ª Ed. McGraw Hill.

25 Momento de inércia (de massa) Momento de inércia em relação a um eixo Exercício: Sabendo que o momento de inércia do aro de massa M e raio a em relação ao eixo z (perpendicular ao plano do aro, passando pelo centro de massa) é Ma², calcule o momento de inércia do aro em relação ao eixo x. 1 Arya, A.P. - Introduction to Classical Mechanics, Allyn and Bacon (1990).

26 Momento de inércia (de massa) Momento de inércia em relação a um eixo Exercício: massa M, raio a, kx =? Pelo teorema dos eixos perpendiculares e pela simetria do aro: Pelo teorema dos eixos paralelos: Raio de giração 1 Arya, A.P. - Introduction to Classical Mechanics, Allyn and Bacon (1990).

27 Para uma partícula: Momento e velocidade angulares Para um sistema de partículas compondo um corpo rígido

28 Para uma partícula: Momento e velocidade angulares Para um sistema de partículas compondo um corpo rígido Índice (a) identifica cada uma das partículas: partícula 1 de massa m ¹, posição r(1) ; partícula 2 de massa m ², posição r(2), etc..

29 Momento e velocidade angulares Para um sistema de partículas compondo um corpo rígido Como relacionar momento angular com a velocidade angular de forma análoga à relação entre momento linear e velocidade?

30 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular:

31 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular:

32 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular:

33 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular:

34 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular:

35 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular:

36 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular: Momentos de inércia em relação ao eixo do sistema x.

37 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular: Diagonal principal: Momentos de inércia em relação aos eixos do sistema de coordenadas com origem em O.

38 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular:

39 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular: Produto de inércia em relação aos eixos x e y.

40 Momento e velocidade angulares Relacionando momento angular de corpo rígido com velocidade angular: Fora da diagonal principal: Produtos de inércia em relação aos eixos do sistema de coordenadas com origem em O.

41 Tensor de inércia Relacionando momento angular de corpo rígido com velocidade angular: Tensor de inércia (Tensor de momento de inércia)

42 Tensor de inércia Relacionando momento angular de corpo rígido com velocidade angular: Tensor de inércia (Tensor de momento de inércia)

43 Tensor de inércia Exercício calcule o tensor de inércia do conjunto de massas cujos valores e posições são dados abaixo:

44 Tensor de inércia Exercício calcule o tensor de inércia do conjunto de massas cujos valores e posições são dados abaixo:

45 Tensor de inércia Relacionando momento angular de corpo rígido com velocidade angular: Para distribuição contínua de massa de massa

46 Tensor de inércia Relacionando momento angular de corpo rígido com velocidade angular: Para distribuição contínua de massa de massa

47 Momentos e eixos principais de inércia É possível encontrar um sistema de coordenadas com origem em O, tal que o tensor de inércia é diagonal?

48 Momentos e eixos principais de inércia É possível encontrar um sistema de coordenadas com origem em O, tal que o tensor de inércia é diagonal? Sim!!! Teorema: Uma matriz simétrica é sempre diagonalizável. Além disso, ela sempre pode ser diagonalizada através de uma matriz ortogonal (colunas formam uma base ortonormal de vetores) ¹

49 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Autovalor Autovetor

50 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Para soluções não triviais (a trivial seria v=0)

51 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Para soluções não triviais (a trivial seria v=0) Equação característica (ou secular)

52 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Equação de 3º grau para λ, possui 3 raízes, que são os autovalores do tensor de inércia:

53 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Equação de 3º grau para λ, possui 3 raízes, que são os autovalores do tensor de inércia: 3 autovetores associados a λ1, λ2, λ3. (normalmente, escolhe-se vetores normalizados)

54 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Fazendo a mudança de base: Componentes dos autovetores na base ux,y,z

55 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Fazendo a mudança de base:

56 Momentos e eixos principais de inércia A diagonalização da matriz está ligada ao problema de autovalores e autovetores: Momentos principais de inércia Eixos principais de inércia

57 Momentos e eixos principais de inércia Balanceamento: Quando o centro de gravidade do corpo rígido encontrase sobre o eixo de rotação, diz-se que ele está estaticamente balanceado. Quando eixo de rotação é um dos eixos principais, diz-se que ele está dinamicamente balanceado. Quando esta última condição não é observada, o momento angular varia a direção, o que indica a existência de um torque. O corpo começa a vibrar e diz-se que o corpo está desbalanceado. 1 Arya, A.P. - Introduction to Classical Mechanics, Allyn and Bacon (1990).

58 Momentos e eixos principais de inércia Balanceamento: 1 Arya, A.P. - Introduction to Classical Mechanics, Allyn and Bacon (1990).

59 Momentos e eixos principais de inércia Balanceamento: 1 Arya, A.P. - Introduction to Classical Mechanics, Allyn and Bacon (1990).

60 Momentos e eixos principais de inércia Balanceamento: 1 Arya, A.P. - Introduction to Classical Mechanics, Allyn and Bacon (1990).

61 Momentos e eixos principais de inércia Exercício: Obtenha os eixos principais de inércia em relação ao ponto O (origem do sistema de coordenadas) do conjunto de 4 massas (2 com massa M e 2 com massa m) ligadas por hastes de massas desprezíveis, distribuídas conforme a figura. O que acontece quando M=m?

62 Momentos e eixos principais de inércia Exercício: Obtenha os eixos principais de inércia em relação ao ponto O (origem do sistema de coordenadas) do conjunto de 4 massas (2 com massa M e 2 com massa m) ligadas por hastes de massas desprezíveis, distribuídas conforme a figura. O que acontece quando M=m?

63 Momentos e eixos principais de inércia Exercício: Obtenha os eixos principais de inércia em relação ao ponto O (origem do sistema de coordenadas) do conjunto de 4 massas (2 com massa M e 2 com massa m) ligadas por hastes de massas desprezíveis, distribuídas conforme a figura. O que acontece quando M=m?

FIS 26. Mecânica II. Aula 2: Corpo rígido - cinemática. Exercícios.

FIS 26. Mecânica II. Aula 2: Corpo rígido - cinemática. Exercícios. FIS 26 Mecânica II Aula 2: - cinemática. Exercícios. Movimentos do corpo rígido Translação: Rotação: trajetória de translação retilínea¹ rotação em torno de um eixo¹ trajetória de translação curvilínea¹.

Leia mais

FIS 26. Mecânica II *****

FIS 26. Mecânica II ***** * ** FIS 26 Mecânica II *** * https://def.fe.up.pt/dinamica/movimento_curvilineo.html ** http://www.met.reading.ac.uk/pplato2/h-flap/phys5_3.html *** http://www.esquerda.net/artigo/como-explicar-ondas-gravitacionais-tua-avo/41226

Leia mais

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá MOMENTO ANGULAR Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 Roteiro 1 Quando todas as partículas de um corpo rígido se movem ao longo de trajetórias que

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 DINÂMICA Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 1 de março de 013 Roteiro 1 Roteiro 1 : caso geral Componente do momento angular ao longo do eixo de rotação é L = I ω Mas o momento

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

10- Momentos de Inércia

10- Momentos de Inércia 1 10- Momentos de Inércia Momento de inércia de área: medida da resistência à flexão de uma viga. Momento de inércia de massa: medida da inércia (resistência) ao movimento de rotação de um corpo sólido.

Leia mais

Características Geométricas

Características Geométricas Prof. Daniel Dias A: área da seção transversal do perfil (cm²) x g, y g : coordenadas do centro de gravidade I x : momento de inércia em relação ao eixo x (cm²) I y ; momento de inércia em relação ao eixo

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável

Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =

Leia mais

2º Teste (Repescagem) de Mecânica Aplicada II

2º Teste (Repescagem) de Mecânica Aplicada II 2º Teste (Repescagem) de Mecânica Aplicada II Este teste é constituído por 3 problemas e tem a duração de uma hora e meia. Justifique convenientemente todas as respostas apresentando cálculos intermédios.

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

Aula do cap. 10 Rotação

Aula do cap. 10 Rotação Aula do cap. 10 Rotação Conteúdo da 1ª Parte: Corpos rígidos em rotação; Variáveis angulares; Equações Cinemáticas para aceleração Angular constante; Relação entre Variáveis Lineares e Angulares; Referência:

Leia mais

PROGRAMA DE DISCIPLINA CRÉDITOS CARGA HORÁRIA PRÉ REQUISITO T P O 90 MAT01 1-EMENTA

PROGRAMA DE DISCIPLINA CRÉDITOS CARGA HORÁRIA PRÉ REQUISITO T P O 90 MAT01 1-EMENTA UNIVERSIDADE FEDERAL DE RORAIMA PRÓ-REITORIA DE GRADUAÇÃO FEDERAL CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE FÍSICA PROGRAMA DE DISCIPLINA CÓDIGO FIS01 DISCIPLINA FÍSICA CRÉDITOS CARGA HORÁRIA PRÉ

Leia mais

Experimento 3: Momento de Inércia

Experimento 3: Momento de Inércia Experimento 3: Momento de Inércia Objetivo: Determinar o momento de inércia de: a) Uma partícula b) Um disco c) Um disco em relação a um eixo paralelo ao eixo que passa pelo centro de massas. Momento de

Leia mais

Anaximandro Dalri Merizio Modalidade: Graduação

Anaximandro Dalri Merizio Modalidade: Graduação MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CÂMPUS ITAJAÍ PLANO DE ENSINO IDENTIFICAÇÃO Unidade Curricular:

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a.

Exemplo. T 1 2g = -2a T 2 g = a. τ = I.α. T 1 T 2 g = - 3a a g = - 3a 4a = g a = g/4. τ = (T 1 T 2 )R. T 1 T 2 = Ma/2 T 1 T 2 = a. Exercícios Petrobras 2008 eng. de petróleo Dois corpos de massa m 1 = 2 kg e m 2 = 1 kg estão fixados às pontas de uma corda com massa e elasticidade desprezíveis, a qual passa por uma polia presa ao

Leia mais

Física I. Lista de Exercícios LIVE: Exercícios P3

Física I. Lista de Exercícios LIVE: Exercícios P3 Física I Lista de Exercícios LIVE: Exercícios P3 Lista de Exercícios 1. Centro de Massa P2 2016.1 Diurno Exercício 9 Uma chapa metálica de densidade superficial uniforme (I) pode ser cortada das formas

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Parte 2 - P2 de Física I NOME: DRE Teste 1

Parte 2 - P2 de Física I NOME: DRE Teste 1 Parte 2 - P2 de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [3,7 ponto] Um carretel é composto por um cilindro interno de raio r = R/2 e massa M, enrolado por um fio ideal, com 2 discos idênticos,

Leia mais

Dinâmica das Máquinas

Dinâmica das Máquinas Dinâmica das Máquinas Apresentação do curso Revisão dos fundamentos da dinâmica Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano

Leia mais

Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado

Dinâmica. Prof.ª Betty Carvalho Rocha Gonçalves do Prado Dinâmica Prof.ª Betty Carvalho Rocha Gonçalves do Prado betty.prado@kroton.com.br bettycarvalho@ig.com.br CORPO RÍGIDO São corpos cuja dimensões não são desprezáveis Corpo rígido É um conceito limite ideal,

Leia mais

LOM3100 Dinâmica Parte 1. Introdução à disciplina. Prof. Dr. Viktor Pastoukhov EEL-USP

LOM3100 Dinâmica Parte 1. Introdução à disciplina. Prof. Dr. Viktor Pastoukhov EEL-USP LOM3100 Dinâmica - 2017 Parte 1. Introdução à disciplina. Prof. Dr. Viktor Pastoukhov EEL-USP Apresentação da disciplina Objetivos e função na estrutura do Curso Ementa atual Calendário provisório: P1-20/9/17;

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA. Integradora II T.01 SOBRE A INÉRCIA MIEM. Integradora II. Elaborado por Paulo Flores

MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA. Integradora II T.01 SOBRE A INÉRCIA MIEM. Integradora II. Elaborado por Paulo Flores MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA Elaborado por Paulo Flores - 015 Departamento de Engenharia Mecânica Campus de Azurém 4804-533 Guimarães - PT Tel: +351 53 510 0 Fax: +351 53 516 007 E-mail: pflores@dem.uminho.pt

Leia mais

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR

CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR O que vamos estudar? CAPÍTULO 11 ROTAÇÕES E MOMENTO ANGULAR Seção 11.1 Cinemática do corpo rígido Seção 11.2 Representação vetorial das rotações Seção 11.3 Torque Seção 11.4 Momento angular Seção 11.5

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP195 - Física Geral e Experimental para Engenharia I Prova P3 - Gabarito 1. Três partículas de massa m estão presas em uma haste fina e rígida de massa desprezível e comprimento l. O conjunto assim formado

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller

ÁLGEBRA LINEAR. Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller ÁLGEBRA LINEAR Valores Próprios (Autovalores) e Vetores Próprios (Autovetores) Prof. Susie C. Keller Autovalores e Autovetores de um Operador Linear Seja T:V V um operador linear. Um vetor v V, v 0, é

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular

MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO. No instante em que a válvula borboleta é aberta, qual é a aceleração angular INTRODUÇÃO ESTUDO DE CASO MOVIMENTO 3D: EQUAÇÕES DE MOVIMENTO Um motor de dois cilindros roda em vazio, a 1000 rpm, quando a válvula borboleta (que regula o fluxo de ar e altera a carga de trabalho) é

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,

Leia mais

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo

Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Mini_Lista11: Rotação de Corpos Rígidos: Eixo Fixo Lembrete 11.1 Em equações rotacionais, deve usar ângulos expressos em radianos. Lembrete 11.2 Na resolução de problemas de rotação, deve especificar um

Leia mais

Corpos Rígidos CORPOS RÍGIDOS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos CORPOS RÍGIDOS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá CORPOS RÍGIDOS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 2 Roteiro 1 2 Algarismos significativos 0,333 3 alg. sign. 3,155 4 alg. sign. 3 1 alg. sign. 3,0

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre Letivo 2017 1º 1. Identificação Código 1.1 Disciplina: Mecânica geral 1640097 1.2 Unidade:

Leia mais

MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan

MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido. Professor Renan MECÂNICA GERAL Apostila 3 : Rotação do Corpo Rígido Professor Renan 1 Centro de massa Um corpo extenso pode ser considerado um sistema de partículas, cada uma com sua massa. A resultante total das massas

Leia mais

Múltipla escolha [0,5 cada]:

Múltipla escolha [0,5 cada]: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO - INSTITUTO DE FÍSICA P de Física I - EQN - 015- Prof.: Gabriel Bié Alves Versão: A Nas questões em que for necessário, considere que: todos os fios e molas são ideais;

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Disciplina: Mecânica Geral - Estática

Disciplina: Mecânica Geral - Estática Disciplina: Mecânica Geral - Estática IV. Propriedades Mecânicas de Figuras Planas Parte 1: Momento de Primeira Ordem ou Estático Prof. Dr. Eng. Fernando Porto Momentos de Primeira Ordem O momento de primeira

Leia mais

Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais

Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais Terceira Lista de Exercício de Dinâmica e Controle de Veículos Espaciais Questão 1 Considerando os momentos de inércia de um corpo no sistema de eixos principais de inércia com origem no centro de massa

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

O pião e a corrida espacial

O pião e a corrida espacial O pião e a corrida espacial Reinaldo de Melo e Souza IF- UFRJ Em colaboração com: C. Farina, M.V. Cougo- Pinto e C.A.D. Zarro Introdução Um corpo é dito rígido quando a distância entre quaisquer dois pontos

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I EQUILÍBRIO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: As condições que

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

Introdução à Robótica Industrial p. 1/20

Introdução à Robótica Industrial p. 1/20 Introdução à Robótica Industrial Adriano A. G. Siqueira Aula 6 Introdução à Robótica Industrial p. 1/20 Dinâmica de Manipuladores Relação entre as forças e torques aplicados nas juntas e o movimento do

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2016 I 1. Identificação Código 1.1 Disciplina: FÍSICA BÁSICA I 090113 1.2 Unidade: Instituto

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 20122 Gabarito 7 de Dezembro de 2012 1 Considere a transformação linear T : R 3 R 3 definida por: T ( v = ( v (1, 1, 2 (0, 1, 1 a Determine a matriz [T ] ε da transformação linear

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

31/05/2017. Corpo rígido. 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA. Coordenadas do corpo rígido. Coordenadas do corpo rígido

31/05/2017. Corpo rígido. 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA. Coordenadas do corpo rígido. Coordenadas do corpo rígido Corpo rígido Sistema de partículas sujeitas aos vínculos holonômicos 4 - A Dinâmica do corpo rígido TÓPICOS FUNDAMENTAIS DE FÍSICA Embora um corpo com Npartículas possa ter 3Ngraus de liberdade, os vínculos

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 013.1 8 de junho de 013. Gabarito (1) Considere o seguinte sistema de equações lineares x y + z = a, x z = 0, a, b R. x + ay + z = b, (a) Mostre que o sistema é possível e determinado

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2016 Primeiro 1. Identificação Código 1.1 Disciplina: Física Básica I 090113 1.2 Unidade:

Leia mais

Rotações de corpos rígidos

Rotações de corpos rígidos Rotações de corpos rígidos Alexandre Furlan Fundamentos de Mecânica - FIS065 Turmas E1 E2 E3 29 de outubro de 2018 Alexandre Furlan (Aula 18) Fundamentos de Mecânica 29 de outubro de 2018 1 / 10 Objetivos

Leia mais

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor

5. Seja R : R 3 R 3 uma rotação em torno do eixo gerado por (0, 0, 1). Suponha que R mande o vetor Universidade Federal do Rio de Janeiro Instituto de Matemática Disciplina: Álgebra Linear II Professor: Bruno Costa, Cesar Niche, Francesco Noseda, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez,

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

FIS-26 Prova 01 Março/2011

FIS-26 Prova 01 Março/2011 FIS-26 Prova 01 Março/2011 Nome: Turma: Duração máxima: 120 min. Cada questão (de 1 a 7) vale 15 pontos, mas a nota máxima da prova é 100. 1. Responda às seguintes questões: (a) Uma roda bidimensional

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte - PF de Física I - 017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [,7 ponto] Dois corpos de massas m 1 = m e m = m se deslocam em uma mesa horizontal sem atrito. Inicialmente possuem velocidades de

Leia mais

Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed.

Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed. Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed. Prof. Ettore Baldini-Neto baldini@uninove.br Nas aulas anteriores

Leia mais

Física Fundamental I

Física Fundamental I Física Fundamental I Código: Carga Horária: 60h Ementa Movimento de uma dimensão, movimento em um plano, dinâmica da partícula, dinâmica da partícula II, trabalho e energia, conservação de energia, momento

Leia mais

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Capítulo 10. Rotação. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Capítulo 10 Rotação Copyright 10-1 Variáveis Rotacionais Agora estudaremos o movimento de rotação Aplicam-se as mesmas leis Mas precisamos de novas variáveis para expressá-las o o Torque Inércia rotacional

Leia mais

FEP Física Geral e Experimental para Engenharia I

FEP Física Geral e Experimental para Engenharia I FEP2195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Dois blocos de massas 4, 00 kg e 8, 00 kg estão ligados por um fio e deslizam para baixo de um plano inclinado de

Leia mais

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA

Mecânica Clássica Curso - Licenciatura em Física EAD. Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Mecânica Clássica Curso - Licenciatura em Física EAD Profº. M.Sc. Marcelo O Donnell Krause ILHÉUS - BA Aula 1 : Cinemática da partícula Aula 1 : Cinemática da partícula Exemplos Um tubo metálico, retilíneo

Leia mais

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO

ESPAÇO PARA RESPOSTA COM DESENVOLVIMENTO Parte 2 - P2 de Física I - 2016-2 NOME: DRE Teste 1 Nota Q1 Assinatura: Questão 1 - [2,4 ponto] Dois blocos se deslocam em linha reta sobre uma mesa horizontal sem atrito. O bloco A, de massa m, tem velocidade

Leia mais

Mecânica 1. Resumo e Exercícios P3

Mecânica 1. Resumo e Exercícios P3 Mecânica 1 Resumo e Exercícios P3 Conceitos 1. Dinâmica do Ponto 2. Dinâmica do Corpo Rígido 1. Dinâmica do Ponto a. Quantidade de Movimento Linear Vetorial Instantânea Q = m v b. Quantidade de Movimento

Leia mais

2º Teste de Mecânica Aplicada II

2º Teste de Mecânica Aplicada II MEAer / MEMEc / LEAN Ano Lectivo de 2012/2013 Instituto Superior Técnico 23 de Abril de 2013 2º Teste de Mecânica Aplicada II Este teste é constituído por 3 problemas e tem a duração de uma hora e meia.

Leia mais

O pêndulo composto. k 2 0 = I z. Logo,

O pêndulo composto. k 2 0 = I z. Logo, O pêndulo composto Um pêndulo composto consiste de um corpo rígido, de massa M, que pode girar livremente em torno de um eixo sob a ação da gravidade. Escolhamos o eixo z como sendo o eixo de rotação.

Leia mais

Prova P1 Física para Engenharia II, turma set. 2014

Prova P1 Física para Engenharia II, turma set. 2014 Exercício 1 Um ventilador, cujo momento de inércia é 0,4 kg m 2, opera em 600 rpm (rotações por minuto). Ao ser desligado, sua velocidade angular diminui uniformemente até 300 rpm em 2 s, e continua assim

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular

Física I 2010/2011. Aula 16. Momento de uma Força e Momento Angular Física I 2010/2011 Aula 16 Momento de uma Força e Momento Angular Sumário O Momento angular A 2.ª Lei de Newton na forma angular O Momento Angular de um Sistema de Partículas O Momento Angular de um Corpo

Leia mais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais

Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que

Leia mais

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade

Leia mais

Capítulo 9 - Rotação de Corpos Rígidos

Capítulo 9 - Rotação de Corpos Rígidos Aquino Lauri Espíndola 1 1 Departmento de Física Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense Volta Redonda, RJ 27.213-250 1 de dezembro de 2010 Conteúdo 1 e Aceleração Angular

Leia mais

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. Lista 12: Rotação de corpos rígidos NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

MECÂNICA DOS FLUIDOS Capítulo 02 REVISÃO - INÉRCIA

MECÂNICA DOS FLUIDOS Capítulo 02 REVISÃO - INÉRCIA 30/03/011 UNIVERSIDADE FEDERAL DE GOIÁS ENGENHARIA CIVIL E DE MINAS MECÂNICA DOS FLUIDOS Capítulo 0 REVISÃO - INÉRCIA Profa. Eliane Justino INÉRCIA É uma propriedade física da matéria, e segundo a relatividade

Leia mais

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Cada questão objetiva vale 0,7 ponto

Cada questão objetiva vale 0,7 ponto Instituto de Física Segunda Prova de Física I 2017/1 Nas questões em que for necessário, considere que: todos os fios e molas são ideais; os fios permanecem esticados durante todo o tempo; a resistência

Leia mais

CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO

CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA ANO LETIVO - 2017 PLANO DE CURSO (Res. CEPE nº 34/2005) CÓDIGO NOME TURMAS 6FIS043 FISICA APLICADA À ENGENHARIA I 1000 e 2000 CURSO SÉRIE Engenharia Civil

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: Física I CÓDIGO: 2DB.019 VALIDADE: Início: 01/2013 Término: Eixo: Física e Química Carga Horária: Total: 50 horas/ 60 horas-aula Semanal: 4 aulas Créditos: 4 Modalidade: Teórica Integralização:

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA

RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2012-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Professor(es) MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS PRÓ-REITORIA DE GRADUAÇÃO PLANO DE ENSINO Ano Semestre letivo 2018 II 1. Identificação Código 1.1 Disciplina: Física Básica I 090113

Leia mais

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev. 30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido

Leia mais

MAE125 Álgebra Linear /1 Turmas EQN/QIN

MAE125 Álgebra Linear /1 Turmas EQN/QIN MAE25 Álgebra Linear 2 205/ Turmas EQN/QIN Planejamento (última revisão: 0 de junho de 205) Os exercícios correspondentes a cada aula serão cobrados oralmente na semana seguinte à aula e valem nota Todas

Leia mais

Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1

Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 1. Dois corpos A e B, de massa 16M e M, respectivamente, encontram-se no vácuo e estão separados

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais