Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até a 35 são expostos com as metodologas para precfcá-los Esta estrutura fo adotada depos da aálse das demas possbldades e mostrou-se a mas ddátca, á que em todas as metodologas são aplcáves a todos os tpos de resseguro, e, além dsso, carregam partculardades que merecem ateção coforme proposto aqu Ao fal, a seção 36 complemeta o capítulo com tópcos de suma mportâca que abragem o tratameto adequado dos dados, que através dos austes de íves possblta a modelagem sem ecessdade de aplcação de séres temporas; os dferetes prcípos de prêmo que se aplcam a cada metodologa exstete, sedo que eles são os mesmos prcípos ecotrados a tarfação geral de seguros, coforme Kass (200); e o auste de dstrbução com os testes de aderêca e partculardades dos cotratos de resseguro A precfcação de resseguro tem partculardades que a toram especal e específca A razão prcpal para tato é que exstem dversos tpos de resseguro, coforme abordado o capítulo ateror, com amplas possbldades de cotratação Exstem três métodos geras para a precfcação de resseguro: tarfação por experêca, tarfação por exposção e modelagem o etato, cada cotrato de resseguro a ser precfcado pode solctar tratameto dferecado, devdo ao ramo de seguro, à qualdade da base de dados, ao tempo de experêca, a poto de, em mutos casos, ecesstar de mplemetações coutas dessas téccas Algumas dessas metodologas são utlzadas para tpos específcos de resseguros e ão são aplcadas em outros A dvsão etre precfcação de resseguros proporcoas e precfcação de resseguros ãoproporcoas surge deste fato Uma vsão geral das metodologas é mportate para compreeder o processo de precfcação de resseguro Com este obetvo, as Tabelas 5 e 6 foram elaboradas A prmera destaca as metodologas de precfcação que
Precfcação de Resseguro 36 podem ser usadas para cada tpo de resseguro, e a seguda apreseta as hpóteses ecessáras para proeções Tabela 5 Relação das metodologas com os tpos de resseguro Excedete de Resposabldade (Surplus) Aálse de despesas x x Experêca Exposção Excesso de Daos (por Rsco e por Catástrofe) (Excess of loss) x x Excesso de Daos Aual (Stop loss) Modelagem x x Tabela 6 Base de cálculo de prêmo e sstro por tpo de resseguro Prêmo de Resseguro Sstro de Resseguro - S - Cota- Parte (Quotashare) Cota- Parte (Quotashare) % da proeção do prêmo total orgal % da proeção do sstro total Excedete de Resposabldade (Surplus) % por apólce (IS para comparar com reteção) para aplcar o premo aplcar o % por apólce acma o valor dvdual de cada sstro valor dvdual do sstro valor agregado Excesso de Daos (por Rsco e por Catástrofe) (Excess of loss) ão é fução do premo orgal cobrado Cálculo do prêmo será feto sobre experêca ou proeção de sstro acma do ível de reteção Todo ou qualquer sstro acma do ível de reteção Excesso de Daos Aual (Stop loss) ão é fução do premo orgal cobrado Cálculo do prêmo será feto sobre experêca ou proeção de sstro agregado o ao S acma do ível de reteção Todo ou qualquer sstro total aual S acma do ível de reteção a prátca atuaral são cosderados outros fatores além do cálculo de prêmo obtdo através destas metodologas Os sstros e o desevolvmeto dos cotratos e dos rscos são essecas a cotação de um plao de resseguro, o etato, fatores exteros à cartera específca precfcada também fluecam o fechameto de um cotrato de resseguro Detre os fatores exteros, destaca-se: carteras adcoas como prérequsto de acetação da cartera em questão; aqusção de prátca em ovo mercado; dferetes carregametos de despesas; e, prcpalmete, oportudade em egócos adcoas
Precfcação de Resseguro 37 3 Cota-parte O resseguro do tpo cota-parte é, por defção, proporcoal Propramete, ão há ecessdade de metodologas para precfcá-lo, pos ele todas as resposabldades são proporcoas, desde prêmos até sstros Com sso, sea ( ) = o prêmo cobrado pela seguradora, etão o prêmo de resseguro é defdo por: Pr êmo Re = ( a) = ( ) o etato, sso se tora aproprado a medda em que o prcípo de prêmo adotado pelo ressegurador for o mesmo da seguradora, como segue: Sea um rsco com fução de dstrbução F e a fução de reteção g a ( ) = a com a (0,), segue que, tem-se ada =,2,,, sedo o úmero total de apólces subscrtas O preço do resseguro para a cartera que cotém os rscos,,, 2 e reteção (0,) Pr êmo Re = = a será: ( a ) E ( Se o prêmo da seguradora é defdo por ( ) = E ) substtução, coclu-se que: Pr êmo Re = ( a) = ( ) ) (, por Cotudo, destaca-se que as despesas e a margem de lucro da seguradora e do ressegurador podem ser dferete, e exatamete por esse motvo que uma aálse das mesmas é ecessára, coforme assalado a Tabela 5 3 Partculardades dos cotratos proporcoas As dfereças dos custos operacoas etre a seguradora e o ressegurador podem exgr uma aálse especal Clark (996) afrma que ressegurar uma seguradora que obtém lucros, ão é garata de lucros para o ressegurador, e por sso exstem fatores austáves As partculardades destacadas por Clark (996) são explcadas a segur
Precfcação de Resseguro 38 3 Comssão os lucros A comssão os lucros é um percetual os lucros do ressegurador, o cotrato, que é retorado à seguradora como comssão adcoal Esse tpo de comssão também deve ser cluída o modelo, com dstrbução do ídce de sstraldade Porém, há ambgüdades quato às provsões compesatóras Exemplo: Supoha que o cotrato teha estabelecdo a Comssão de Lucros de 50% Para os resultados abaxo, a comssão de lucros equvale a: Tabela 7 Exemplo comssão os lucros Sstraldade 55% Comssão de Resseguro 25% Margem de Despesas 0% Lucro de Resseguro 0,00% % Comssão os Lucros 50% Comssão de Lucro Fal 5,00% 32 Faxas de sstraldade A aplcação de faxas de sstraldades, do glês, loss corrdors, prevê que a seguradora va reassumr uma parcela da resposabldade do ressegurador se o ídce de sstraldade exceder um determado valor Mas adequadamete modelado usado a dstrbução agregada de sstros Exemplo: Supoha que o cotrato teha estabelecdo 75% a faxa etre 80% e 90% de sstraldade Tem-se, etão: Tabela 8 Exemplo faxas de sstraldade Faxas de Faxas de Sstraldade 75% Sstraldade Sem Loss Corrdors Com Loss Corrdors 0% - 80% 80,00% 80,00% 80% - 90% 0,00% 2,50% >90% 0,00% 0,00% 00,00% 92,50% 33 Comssão escaloada A comssão escaloada é um percetual do prêmo pago pelo ressegurador à cedete, varável com o resultado observado, lmtado a valores
Precfcação de Resseguro 39 mímos e máxmos O ídce técco (sstraldade observada + corretagem efetva) vara meos se a comssão for assm cotratada E sso também pode ser abordado como um modelo agregado de dstrbução de sstros Exemplo: Supoha que o cotrato teha estabelecdo a Comssão de Provsão (Ical) de 30%, Comssão Míma de 25% com sstraldade de 65%, após varado de : até 35% com sstraldade de 55%, após varado de 0,5: até 45% com sstraldade de 35% Tem-se, etão, o segute: Tabela 9 Exemplo de comssão escaloada Ídce Técco com Sstraldade Comssão Ídce Técco com Comssão Fxa (30%) Observada Austada Comssão Escaloada < 65% < 35% 45,0% <80% 70% 40% 42,5% 82,5% 80% 50% 37,5% 87,5% 85% 55% 35,0% 90,0% 90% 60% 30,0% 90,0% 95% 65% 25,0% 90,0% Exemplo: Dada a fução de dstrbução de probabldades da Tabela 20 Tabela 20 Exemplo comssão escaloada Faxas de Méda Comssão Probabldade Sstraldade a Faxa Escaloada 0% - 35% 3,50% 0,025 45% 35% - 55% 46,90% 0,3 39% 55% - 65% 59,90% 0,222 30,% >65% 82,20% 0,442 25% Caso exsta cotratação de comssão escaloada, esta deve ser cluída os cálculos de precfcação O problema este método é que se gora o fato de que o cotrato pode ão ser reovado o próxmo ao, sedo que ecessta de tempo para covergr 32 Excedete de resposabldade O resseguro do tpo excedete de resposabldade também é, por defção, proporcoal Da mesma forma, ão há ecessdade de metodologas para precfcá-lo, as resposabldades são proporcoas, desde prêmos até
Precfcação de Resseguro 40 sstros Com sso, sea ( ) o prêmo cobrado pela seguradora para a ésma apólce, etão o prêmo de resseguro total é defdo por: Pr êmo Re = = ( ) ( a ) Se o prcípo de prêmo adotado pelo ressegurador for o mesmo da seguradora, sso se tora gualmete aproprado, como segue: Sea um rsco com fução de dstrbução F, =,2,,, sedo o úmero total de apólces subscrtas e ada sea v o valor segurado ou mportâca segurada da ésma apólce, v 0 > 0 é o valor de reteção O preço do resseguro para a cartera que cotém os rscos,,, 2 e reteção a (0,) será: Pr êmo Re = = ( a ) E( Logo, se o prêmo da seguradora é defdo por ( ) = E ) substtução, coclu-se que: Pr êmo Re = = ) ( ) ( a ) (, por A ressalva ateror referete à aálse de despesas e marges da seguradora e do ressegurador cotua válda para esse tpo de cotrato 33 Excesso de dao por rscos Este resseguro, coforme exposto a seção 25, é classfcado como ão proporcoal Daí advém a ecessdade de precfcação com metodologa específca Serão apresetadas as metodologas de precfcação por experêca, por exposção, por modelagem geral e por modelagem sob Pareto 33 Precfcação por experêca ou burg cost A tarfação por experêca, do glês experece ratg, cosdera a sstraldade dos últmos aos, ou sea, basea-se em sstros ocorrdos o passado Através de correções apropradas os sstros são adaptados de forma a lustrarem bem a carga de sstro que ocorrerá o futuro A prcpal
Precfcação de Resseguro 4 característca é que a cofaça a base de dados é altíssma Acredta-se, essa metodologa que o passado será replcado o futuro, ou sea, a déa prcpal é que o hstórco de sstro, austado corretamete, é a melhor maera de se prever as expectatvas futuras Coforme á fo apresetado, este tpo de resseguro prevê cobertura de sstro de um rsco a partr da reteção da seguradora Clark (996) deoma esta metodologa como burg cost, e pela ecessdade de adequação da base de dados, sugere que as segutes etapas devem ser segudas: O prmero passo é levatar o hstórco maor possível e fazer avalação etre credbldade e resposabldade da qualdade das formações Cudado especal deve ser tomado com sstros próxmos aos lmtes das faxas, pos ao terem seus valores atualzados pela flação podem mudar de faxa (layer) O passo segute compõe-se dos austes as bases de prêmo com fatores de taxa, preço e flação; assm como auste dos valores dos sstros hstórcos, coforme á mecoado A metodologa deve segur aplcado os fatores de evolução estudados para os sstros, sedo possível estmar uma sstraldade em cada faxa de valor de sstro, ode dscussões a respeto de deslocametos a méda são sempre fudametas Sea k o úmero de períodos de experêca austados por volume de prêmo, flação e íves de tarfa, sea em que ocorreram sstros Sea, respectvamete, =,2,, k um período de experêca u e h a prordade e o lmte de cobertura austados para o ao Sea x, o ésmo sstro ocorrdo o ao, com =,2,, Dessa forma, o preço de resseguro para um período, com a base de dados austada, pela metodologa de experêca ou burg cost será: = = ( x u h u ) k + Pr êmo Re = mí, ; k essa metodologa cada período de experêca recebe o mesmo peso, o que só é possível pelos austes de ível de prêmo e de ível de tarfa, o etato, o cohecmeto a pror, mesmo que subetvo, pode ser adcoado esta precfcação a medda em que exstam evdêcas de que os últmos períodos seam mas sgfcatvos para represetar o futuro
Precfcação de Resseguro 42 332 Precfcação por exposção A tarfação por exposção, do glês exposure ratg, aplca-se quado a base de dados (materal estatístco) ão é sufcete, teta-se ecotrar uma cartera de seguros comparável e com a qual se teha adqurdo sufcete experêca de sstro Deve-se poderar a dfereça etre a cartera a ser tarfada e a aáloga de tal forma que se possa determar a futura carga de sstros ão são mas decsvos os sstros realmete ocorrdos, mas sm aqueles esperados, segudo as característcas da cartera Essa metodologa cosdera, segudo Mata (2005), a carga de sstros esperada em fução do tpo e da composção dos rscos cobertos Para proetar os sstros pode-se utlzar clusve formações de outras fotes a precfcação com base a exposção, o perfl do rsco atual é modelado e ão o que fo descrto, aceto e ocorrdo os aos aterores Para sso surge a curva de exposção que pode ser obtda dos própros dados ou de uma cartera de rscos que possa represetar os rscos assumdos pela seguradora, para o próxmo período A curva de exposção represeta o motate do sstro lmtado a um determado percetual p do valor segurado IS em relação ao valor total do sstro Sedo assm, sea f ( x) é a dstrbução dos motates dos sstros dvduas, a curva de exposção é calculada por P pis [ F ( x) ] dx p) = E ( x) ( 0 Após o cálculo e defção da curva de exposção, a precfcação é composta por três etapas A prmera etapa determar faxas de valores das mportâcas seguradas, com os respectvos valores médos de mportâcas seguradas em cada faxa deotados por ISméda Calcula-se, etão o percetual que é utlzado para determar o valor do fator de exposção Sea u a prordade determada para o cotrato, etão: ISméda % faxa = u Em seguda calcula-se o fator de exposção em cada faxa, deotado por FatExp, que correspode ao valor da curva de exposção, para o percetual ecotrado o cálculo ateror, ou sea, FatExp P( % ) = faxa
Precfcação de Resseguro 43 Para a cartera que está sedo precfcada, sabe-se o valor total de prêmo cobrado pela seguradora para cada faxa, assm como se sabe o valor da sstraldade esperada pela seguradora em cada faxa Através da multplcação desses valores em cada faxa, chega-se ao valor das dezações de sstro esperadas em cada faxa de IS, deotadas por E ( S ) Sea o úmero total de faxas de IS, o prêmo de resseguro, segudo o método de exposção, será dado por: = ( ) Pr êmo Re = FatExp * E S 333 Modelagem geral A tarfação com modelagem utlza a teora do rsco assumdo dstrbuções estatístcas para o úmero de sstros e para o valor dos sstros, geralmete separado-os em faxas, do glês layers Ou ada, utlza aproxmações para a soma agregada dos sstros também através de dstrbuções estatístcas cohecdas, coforme Mata (2000) Sea um rsco com fução de dstrbução F e sea t o úmero de sstros ocorrdos o tervalo de tempo t com fução de dstrbução P O processo de modelagem ecessta, gualmete, de austes do ível de prêmo, ível de tarfa e flação a base de dados Icalmete, supõe-se que: () ~ Po( λ ), ou ada, t B(, p, q) Por exemplo, t t ~, sedo que os parâmetros das dstrbuções são determados a partr da base de dados k λ =, ode correspode ao úmero total de t k = sstros ocorrdo o período () l( µ, σ ) ~ k k, ou ada, assume outra dstrbução estatístca cohecda, tas como ormal, ormal Power, Gamma, Gamma Traslada, Pareto, etc, medate realzação de teste de adequação à dstrbução empírca () S ( ) = = é a varável aleatóra sstros agregados
Precfcação de Resseguro 44 O processo de auste de dstrbução estatístca aos dados que será descrto a seção 363 cabe este poto da precfcação O passo segute correspode à smulação através do método Mote Carlo (MC), para sso, a referêca com exemplos de aplcação em atuára é Scollk (2000) ecesstase da utlzação deste método para a obteção de toda a dstrbução de probabldade, para, etão fazer ferêcas sobre a cauda da dstrbução São duas etapas que compõe este passo Prmero, deve-se smular o úmero de sstros de cada período futuro e, após, deve-se gerar o valor de cada um dos sstros smulados para cada período futuro Aqu cabera uma dscussão sobre geração de úmeros aleatóros, ou sobre o gerador de úmeros aleatóros, o etato, cosdera-se que o modelador teha cohecmeto dos mesmos, á que esta é uma extesa área da matemátca e da cêca da computação Em geral, pacotes estatístcos cotêm geradores de úmeros aleatóros mplemetados e a bbloteca dos mesmos é sufcete para etedê-los e aalsá-los Além dsso, se o modelador ulgar ecessáro pode optar por fazer a geração de úmeros aleatóros em um pacote estatístco, e trasferr os resultados para o pacote que fará as smulações Uma smulação deverá forecer os segutes resultados: () ; k ;; k 2 k, ode k 2 correspode ao prmero mês se o período escolhdo para tarfação for de ao, e a base de dados estver orgazada mesalmete () s, k ; s 2, k ;; s, k, assm como, s, k ; s 2 2, k ;; s 2 2, k até 2 s, k ; s ;; s k 2 2, k2 2, 2 Com sso tora-se possível fazer o somatóro de recuperações de sstros que seram geradas esse ceáro, a qual correspode a: 2 k ( uk ) Re csm = k= = Esta smulação deve ser repetda um úmero de vezes sufcetemete grade para dar establdade e seguraça ao prêmo de resseguro Sugere-se 000 smulações cas, segudo Scollck (200) Exstem algus testes de covergêca, cotudo, de maera smplfcada verfca-se a covergêca da modelagem através de ovas 000 smulações e comparado-se os valores esperados obtdo através de ambas, ou sea, substtudo-se por valores esperados com referêca dos parâmetros +
Precfcação de Resseguro 45 Por fm, tem-se que: Pr êmo Re = m 000 m= RecSm m, observe que essa hpótese o úmero de smulações fetas correspode a um total de 000 Pode-se ecesstar de 00000 smulações para alcaçar a establdade, e cabe aplcação de cohecmetos de covergêca computacoal, coforme Scollck (2000) 334 Modelagem sob Pareto Esta metodologa apóa-se em evdêcas de que sstros grades devem ser modelados separadamete dos pequeos, sedo que os pequeos podem ser modelados mas adequadamete através da dstrbução agregada, ou sea, através da soma dos sstros em um período Para separar sstros grades e sstros pequeos esta metodologa usa um lmar, que será deotado por pos o valor do lmar deve ser austado por flação ao período k a bblografa também é deomado, do glês, threshold w k, Sea s, um sstro ocorrdo o período k Defe-se: k () se s, k > wk etão s, k deve ser usado para modelar sstros grades () se s, k wk etão s, k deve ser usado para modelar sstros pequeos Segudo Rytgaard (990), a dstrbução de Pareto é cosderada a mas adequada para smular os sstros grades, sso ocorre porque ela apreseta cauda mas pesada que as demas dstrbuções estatístcas A modelagem, segudo esta metodologa deve ser feta de forma parecda com a ateror o que se refere aos sstros grades Sea um rsco com fução de dstrbução F e sea t o processo de ocorrêca de sstros o tempo t com fução de dstrbução P O processo de modelagem ecessta, gualmete, de austes do ível de prêmo, ível de tarfa e flação a base de dados Icalmete, supõe-se que:
Precfcação de Resseguro 46 () t B(, p, q) ~, sedo que os parâmetros da dstrbução são determados a partr da base de dados, pelo método de máxma verossmlhaça () ~ Pareto( c,α ), sedo que os parâmetros desta dstrbução são determados também a partr da base de dados, pelo método de máxma verossmlhaça Os sstros pequeos são modelados pela dstrbução agregada, logo: () S ( ) ~ Gamma( α, β ) u, ode S u k ) represeta a soma total kt de recuperações de sstros para a seguradora, de um subperíodo t detro do período k de gual tamaho ao período que está sedo precfcado; os parâmetros desta dstrbução são determados também a partr da base de dados, pelo método de máxma verossmlhaça O processo de auste de dstrbução estatístca aos dados que será descrto a seção 363 cabe este poto da precfcação O passo segute correspode à smulação e assemelha-se a smulação descrta a seção 333 o que se refere aos sstros grades Os sstros pequeos ão ecesstam de duas etapas, de tal forma que uma smulação deverá forecer os segutes S resultados: S ; k S ;; k S k, ode 2 k correspode a recuperação agregada de sstros pequeos para o período, o exemplo, coloca-se o úmero de subperíodos sea gual a 2 meses Com sso tora-se possível fazer o somatóro de recuperações de sstros que seram geradas esse ceáro, a qual correspode a: 2 = ( t 2 k ( wk ) RecSm = S + k J k= = Esta smulação deve ser repetda um úmero de vezes sufcetemete grade para dar establdade e seguraça ao prêmo de resseguro Sugere-se 000 smulações cas, coforme Scollk (2000) Exstem algus testes de covergêca, cotudo, de maera smplfcada verfca-se a covergêca da modelagem através de ovas 000 smulações e comparado-se os valores esperados obtdo através de ambas, ou sea, substtudo-se por valores esperados com referêca dos parâmetros Por fm, tem-se que: +
Precfcação de Resseguro 47 Pr êmo Re = m 000 m= RecSm m, observe que essa hpótese o úmero de smulações fetas correspode a um total de 000 Pode-se ecesstar de 00000 smulações para alcaçar a establdade, e cabe aplcação de cohecmetos de covergêca computacoal 34 Excesso de dao por catástrofe Este resseguro, coforme exposto a seção 252 também é classfcado como ão proporcoal As metodologas de precfcação que são utlzadas este tpo são precfcação por experêca e por modelagem As dfereças a precfcação deste tpo de resseguro estão a forma de defr os sstros que devem ser somados, ou sea, agregam-se somete os que foram dezados para a seguradora, em forma de recuperação de resseguro, devdo a um eveto cosderado catástrofe 34 Precfcação por experêca Todos os austes de ível de prêmo, ível de tarfa e flação, mecoados aterormete, também se aplcam esta precfcação costtudo uma pré-etapa Chama-se ateção para a ecessdade de detfcação, a base de dados, dos sstros que se orgaram de um mesmo eveto Os evetos que poderão orgar catástrofe (vedaval, terremoto, etc) á são defdos o cotrato, tal como á são defdos os evetos excluídos Sea k o úmero de períodos de experêca austados por volume de prêmo, flação e íves de tarfa, sea =,2,, k um período de experêca Em um período ocorreram l evetos catastrófcos Sea, respectvamete, e h a prordade e o lmte de cobertura de catástrofe austados para o ao u Sea S, a soma da recuperação de resseguro do l ésmo eveto catastrófco l ocorrdo o ao, com l =,2,,l Dessa forma, o preço de resseguro para um período, com a base de dados austada, pela metodologa de experêca será: l = l= ( S u h u ) k + Pr êmo Re = mí l, ; k
Precfcação de Resseguro 48 Ode, = l S l s,, l,, e s, l, correspode ao ésmo sstro ocorrdo, = causado pelo eveto catastrófco l, o período A ressalva referete à poderação dos períodos também se aplca esta metodologa 342 Modelagem A tarfação com modelagem exposta a seção 333 aplca-se a este tpo de resseguro com a dfereça de composção da base de dados A mesma deve coter somete sstros referetes a evetos catastrófcos Sea um rsco com fução de dstrbução F e sea t o úmero de sstros ocorrdos o tervalo de tempo t do eveto catastrófco l com fução de dstrbução P O processo de modelagem ecessta, gualmete, de austes do ível de prêmo, ível de tarfa e flação a base de dados Icalmete, supõe-se que: () ~ Po( λ ), ou ada, l B(, p, q) l l ~, sedo que os parâmetros das dstrbuções são determados a partr da base de dados () l( µ, σ ) ~ l l, ou ada, assume outra dstrbução estatístca cohecda, tas como ormal, ormal Power, Gamma, Gamma Traslada, Pareto, etc, medate realzação de teste de adequação à dstrbução empírca O processo de auste de dstrbução estatístca aos dados abordado a seção 363 cabe este poto da precfcação O passo segute correspode à smulação, a qual é realzada exatamete coforme descrto a seção 333 Uma smulação deverá forecer os segutes resultados: () ;; l; 2 l, ode l correspode ao úmero de sstros ocorrdos o eveto catastrófco l
Precfcação de Resseguro 49 () s,; s2,;; s,, assm como, s,2 ; s 2, 2 ;; s, 2 até 2 s, l ; s2, l ;; s, l, ode s, l correspode ao l l l ésmo sstro ocorrdo do eveto catastrófco l Com sso tora-se possível fazer o somatóro de recuperações de sstros que seram geradas esse ceáro, a qual correspode a: l l Re csm = ul = = Esta smulação deve ser repetda um úmero de vezes sufcetemete grade para dar establdade e seguraça ao prêmo de resseguro Por fm, temse que: Pr êmo Re = m 000 m= RecSm m E aqu cabe aplcação de cohecmetos de covergêca computacoal + 35 Excesso de dao aual Este resseguro, coforme exposto a seção 26 é cosderado ãoproporcoal A metodologa de precfcação utlzada é a modelagem 35 Modelagem A tarfação com modelagem para este tpo de resseguro assemelha-se às modelages dos demas tpos de resseguro Dado o processo de smulação dos sstros futuros que costa a seção 333, pode-se obter o prêmo de resseguro para excesso de daos aual por: Pr êmo Re = E k + [ ] = S ( ) ( S ( )) = E ( S ( ) u) u k ( k uk ) Além dsso, algus autores sugerem a utlzação de aproxmações, prcpalmete pelo Teorema Cetral do Lmte, como possbldade de determação do prêmo de resseguro de excesso de daos aual = +
Precfcação de Resseguro 50 36 Cocetos adcoas Esses cocetos e cosderações adcoas devem ser observados ao car a precfcação Sem a devda ateção às partculardades que exstem em uma operação de seguro e de resseguro de ada adata a aplcação da melhor metodologa As operações de seguro e de resseguro pedem mas que boas modelages, exgem também cohecmeto atuaral 36 Tratameto de dados e sequêca geral A etapa cal abrage detalhes de auste e coleta de dados, bem como opções de comssões utlzadas a prátca do mercado, este processo é descrto por Clark (996), uma referêca mudal em precfcação O prmero passo cosste em complar os dados relatvos à experêca do cotrato Etre estes devem costar o hstórco de prêmos emtdos e gahos e o hstórco de sstros ocorrdos, se possível, com cco períodos ou mas Deve-se tomar cudado com rscos cados, ou sea, com as vgêcas, prêmos subscrtos e sstros cobertos Austa-se a experêca a um ível máxmo, ou sea, obtém-se a base mas recete possível, segudo Clark (996) É mportate ressaltar que a proeção de prêmos futuros deve cosderar alterações as taxas e o modelo do paralelogramo, amplamete cohecdo detro da cêca atuaral e ada austa-se a flação em todos os dados Quado há cotratos específcos para sstros de catástrofe, os mesmos devem ser devdamete detfcados O passo prcpal dz respeto à sstraldade 3 e à prevsão dos sstros futuros Exatamete este poto que as dversas metodologas se dferecam O passo segute cosste em estmar o ídce combado 4 com comssões e despesas Deve-se clur a comssão de resseguro, os custos fxos e despesas geras do ressegurador e a corretagem Por fm, a avalação deve levar em cosderação o retoro potecal do vestmeto e o ível de rsco das exposções, para determar se eles atedem ou ão ao obetvo de retoro do ressegurador 3 Sstraldade é a proporção de sstros pagos em relação ao prêmo emtdo 4 O Ídce Combado, segudo Clark (996) será gual a sstraldade resultate somada às comssões de resseguro e despesas
Precfcação de Resseguro 5 362 Prcípo de prêmos A maora dos prêmos calculados as metodologas de resseguro apresetadas aterormete assumu como base de cálculo o valor esperado, ou sea, o prmero prcípo de prêmo apresetado a segur o etato, exstem outros prcípos de prêmo ode o valor dos mesmos é austado após o cálculo do valor esperado em todos os prcípos a segur poderão ser aplcados em todas as metodologas, por exemplo, os casos em que se ecessta da varâca e a mesma ão pode ser calculada Sea um rsco com fução de dstrbução F, e sea ( ) o prêmo cobrado para segurar ou ressegurar o rsco Defe-se, segudo Kass (200) () Prêmo líqudo: ( ) = E[ ] () Prêmo adtvo da esperaça: ( ) = ( + θ ) E[ ], para θ > 0 () Prêmo adtvo da varâca: ( ) = E[ ] + θ * Var[ ] θ > 0 ϑ E (v) Prêmo expoecal: ( ) ( e ) =, para ( e ) < ϑ E ϑ, para (v) Prêmo de esperaça e valor em rsco: ( ) = ae[ ] + ( a) * VaR [ ], ode [ ] ξ VaR ξ correspode ao Value at Rsk cosderado uma medda de rsco que será apresetada a seção 46 desta dssertação (v) Prêmo de valor em rsco: ( ) = VaR [ ], ode [ ] ξ VaR ξ correspode ao Value at Rsk cosderado uma medda de rsco devdamete apresetada a seção 46 desta dssertação 0 (v) Prêmo de rsco austado: ( ) = F dx α, ode α >, ode F correspode a fução de dstrbução acumulada do rsco ceddo Chama-se ateção para o fato de que as metodologas em que ão é possível calcular a varâca também ão é possível aplcar os prcípos de prêmo que a requerem
Precfcação de Resseguro 52 363 Auste de dstrbução O auste da dstrbução aos dados é que tora possível os processos de modelages e é realzado através dos passos a segur O prmero passo, segudo Scallet (2005), cosste em determar a dstrbução empírca para a varável da segute forma: em que ( x) F Fˆ ( x) = ( k x) k= ˆ é a dstrbução acumulada da varável x e o úmero de resultados smulados para essa varável Para possbltar a aálse e a comparação com outros resultados calcula-se a méda µˆ e o desvo padrão σˆ empírcos das varáves, como segue: ˆµ k k = ( x) = 2 ˆ σ ( x) = ( k ˆ µ ) O passo segute é o auste dos dados a uma dstrbução teórca, por exemplo, as mecoadas aterormete, sedo que os parâmetros das dstrbuções propostas são estmados pelo método da máxma verossmlhaça As estatístcas de teste, que serão apresetadas adate, dcam se as dstrbuções austadas são adequadas para descrever os dados Cabe ressaltar que os métodos utlzados para austar as dstrbuções às séres de dados somete são váldos para séres de dados depedetes (o que ão ocorre para uma sére temporal), assm, caso se aplque, é precso fltrar os dados, elmado as depedêcas tertemporas; e detcamete dstrbuídos, e, portato, estacoáros, o que pode ser obtdo com austes de flação, ível de prêmo e ível de tarfa Esta aálse de estacoaredade pode ser vestgada a partr do gráfco da sére o tempo, da fução de auto-correlação (FAC) e dos testes de raz utára, amplamete cohecdos o estudo de séres temporas Para cada uma destas estatístcas, as dstrbuções são ordeadas de acordo com os valores ecotrados para as estatístcas e o meor valor dcará a melhor dstrbução Todas estas possuem as segutes hpóteses: k = H 0 : a dstrbução austada é a correta para os dados H a : caso cotráro
Precfcação de Resseguro 53 Estas estatístcas apresetam característcas e efoques dferetes A escolha de qual destas usar depede das peculardades dos dados utlzados para aálse, e que tpo de formação o modelador cosdera a mas mportate 363 Teste do Qu-quadrado A estatístca qu-quadrado tem o obetvo de testar se uma amostra de dados veo de uma população com uma dstrbução específca e pode ser usada para dados cotíuos ou dscretos É precso dvdr os dados em grupos que podem ser determados a partr de crtéros defdos pelo modelador, ou por auste de grupos equprováves O teste sob H 0 tem o segute formato: 2 = k = ( E ) em que k é o úmero de grupos, é o úmero de observações em cada grupo E 2 e E é a freqüêca esperada para o grupo, sob a hpótese de que a dstrbução sob H 0 é a correta Este teste ão é váldo para pequeas amostras e é muto vulerável à determação dos grupos pos se pode ecotrar dferetes resultados para os mesmos dados em fução desta escolha A estatístca qu-quadrado segue, aproxmadamete, uma dstrbução ququadrado, 2 χ, com ( c ) k graus de lberdade, em que c represeta o úmero de parâmetros estmados para a dstrbução Etão, a hpótese de que a amostra veo da população com uma dstrbução específca é reetada se, com o 2 2 ível de sgfcâca α, observa-se: χ ( α, k c ) 3632 Teste Kolmogorov-Smrov A estatístca, ou teste, Kolmogorov-Smrov (K-S) é usada para dados cotíuos e ão requer a dvsão dos dados em grupos, o que o tora meos arbtráro que o teste qu-quadrado O teste K-S, segudo Scallet (2005) é baseado a fução de dstrbução acumulada empírca, e tem a segute forma: D = sup [ F ( x) Fˆ ( x) ]
Precfcação de Resseguro 54 em que é o úmero total dos dados potuas, Fˆ ( x) é a fução de dstrbução acumulada austada, F ( x) x = e x é o úmero de x meores que x A vatagem deste procedmeto é que a dstrbução da estatístca ão precsa da fução de dstrbução acumulada que está sedo testada É um teste exato que depede de um tamaho de amostra adequado para que a aproxmação sea válda Porém, este teste somete se aplca em dados com dstrbução cotíua, e tede a ser mas sesível o cetro da dstrbução que as caudas, ou sea, ão detecta de forma adequada dscrepâcas a cauda A hpótese de que a amostra veo da população com uma dstrbução específca é reetada se, com o ível de sgfcâca α, a estatístca maor que o valor crítco obtdo de uma tabela D é 3633 Teste Aderso Darlg A estatístca, ou teste, Aderso Darlg (A-D) pode ser usada para dados cotíuos e também ão requer a dvsão dos dados em classes Trata-se de uma modfcação do teste K-S, que, ao cotráro do teste K-S, efatza as caudas da dstrbução Esta estatístca é uma medda da méda do quadrado dos erros etre a dstrbução empírca e da dstrbução austada, e tem a segute forma: A 2 + 2 [ F ( x) Fˆ ( x) ] ( x) fˆ ( x)dx = ψ em que é o total de dados potuas, [ ] ψ =, ( x) Fˆ ( x) Fˆ ( x) fˆ é a fução de desdade austada, Fˆ ( x) é a dstrbução de probabldade acumulada, x F ( x) = e x é o úmero de x meores que x Este teste é ulateral e a hpótese de que a amostra veo da população com uma dstrbução específca é reetada se, com o ível de sgfcâca α, a estatístca 2 A for maor que o valor crítco É possível ecotrar tabelas de valores crítcos para as dstrbuções: ormal, Log-ormal, Expoecal, Webull, valor extremo tpo e dstrbuções logístcas