UNIDADE II 1. INTRODUÇÃO
|
|
|
- Edison Penha Vilanova
- 7 Há anos
- Visualizações:
Transcrição
1 Instlções Elétrics Interns UNIDADE II RESISTÊNCIA E RESISTIVIDADE DO TERRENO 1. INTRODUÇÃO Pr grntir o bom funcionmento do terrmento é necessário ssegurr um corret união ds prtes metálics d instlção, um contto permnente do terreno com o eletrodo ou eletrodos e um bo resistividde do terreno. A resistividde do terreno é um crcterístic inerente, que depende d su nturez e, n miori dos csos, de ftores externos. É importnte conhecer o seu comportmento frente à presenç de sis, umidde, tempertur, etc., com finlidde de considerr su medição e mnutenção. Neste cpítulo nlism-se os ftores que influem diretmente no umento ou diminuição d resistividde do terreno. 2. COMPORTAMENTO ELÉTRICO DO TERRENO 2.1 A RESISTIVIDADE DOS SOLOS A resistividde dos solos se express em m, cm ou mm, que corresponde à resistênci que present um cubo de 1 metro cúbico de solo ou águs, entre s sus predes lteris oposts e é representd pel letr greg. Figur 2.1 Resistividde de um cubo de terreno de 1m de rest. 13
2 Instlções Elétrics de Interiores então Onde: L R ρ então S R = Resistênci ( ). L = Comprimento (m). S = Seção (m 2 ). = Resistividde (. m). R.S ρ L A resistividde do terreno depende d su nturez, estrtificção (cmds de diferente composição), conteúdo de umidde, slinidde e tempertur. A resistividde de um terreno tmbém se vê fetd pels vrições szonis. Por outro ldo, à medid que ument o tmnho ds prtículs, ument o vlor d resistividde. Por isso, o csclho tem mior resistênci em relção à rei e possui um resistividde superior à rgil. 2.2 INFLUÊNCIAS NO COMPORTAMENTO ELÉTRICO DO SOLO A terr represent gerlmente um mu condutor (grnde conteúdo de óxido de silício e óxido de lumínio que são ltmente resistivos); ms, grçs o mplo volume disponível, podem-se obter trvés del os níveis condutivos necessários pr su utilizção uxilir; e com presenç de sis e águ contid nos mesmos, melhor notvelmente condutividde dos mesmos. 2.3 FATORES QUE DETERMINAM A RESISTIVIDADE DOS SOLOS N resistividde do terreno influem os seguintes ftores é necessári su vlição: Nturez dos solos. A umidde. A tempertur do terreno. A concentrção de sis dissolvidos. A compctção do terreno. A estrtificção do terreno NATUREZA DOS SOLOS Os solos são bons, regulres ou mus condutores d eletricidde em função d su nturez. A nálise e conhecimento dest nturez é o primeiro psso pr instlção dequd do sistem de terrmento. 14
3 Instlções Elétrics Interns N tbel seguir mostrm-se os vlores crcterísticos d resistividde dos solos, onde é possível precir que entre resistividde d águ do mr e o gelo há um grnde diferenç e pode-se concluir que águ do mr é que present resistividde mis bix e, portnto, é um bom condutor de eletricidde. Tipo de solo ou águ Vlor típico de resistividde ( m) Águ de mr 2 Argil 40 Águs subterrânes 50 Arei Grnito Gelo 000 Tbel 2.1 Vlores típicos de resistividde A UMIDADE A resistividde que um terreno present é em relção invers à porcentgem de umidde contid no mesmo. Ao umentr umidde, diminui resistividde e vice-vers. Em qulquer cso, sempre que é crescentd águ um terreno, diminui su resistividde com relção à que teri em seco. ρ (Ωm) L A humedd umidde 15% % Humedd Umidde Figur 2.2 Vrição d resistividde em função d porcentgem de umidde. 15
4 Instlções Elétrics de Interiores A TEMPERATURA DO TERRENO A resistividde dos solos tmbém depende d tempertur; est crcterístic térmic do terreno depende d su composição, do seu gru de compctção e do gru de umidde. A resistividde do terreno ument o diminuir tempertur, ms qundo o terreno esfri bixo de zero gru celsius, águ que contém congel. O gelo é um isolnte do ponto de vist elétrico, o que implic que mobilidde dos íons do terreno trvés d águ se vê detid o congelr mesm. Um form de mortecer este efeito em áres com clim continentl (invernos frios e verões quentes) será introduzindo os eletrodos em mior profundidde. Figur 2.3 Vrição d resistividde do terreno em função d tempertur A CONCENTRAÇÃO DE SAIS DISSOLVIDOS Ao se presentr um mior concentrção de sis dissolvidos em um terreno, diminui resistividde e, portnto, melhor notvelmente condutividde. A águ fz com que os sis penetrem pr prte profund do terreno, pr cmd de depósito. Um risco grnde são s chuvs excessivs, que lvm o terreno e, portnto, rrstrm o sl que rodei os eletrodos, umentndo resistividde. Tmpouco é conselhável loclizr o eletrodo próximo do leito de um rio, pois são terrenos muito lvdos e, portnto, mis resistivos que o norml. ρ (Ωm) Concentrção de sis Concentrción de sles 2% % de sl Figur 2.4 Vrição d resistividde do terreno em função d porcentgem de sl. 16
5 Instlções Elétrics Interns A COMPACTAÇÃO DO TERRENO Qundo compctção do terreno é grnde, diminui resistividde; portnto, é recomendável A tempertur que exist um bom contto entre o eletrodo e o terreno. No gráfico seguir mostr-se qulittivmente influênci d compctção do solo n vrição d resistividde. ρ (Ωm) Compctción Compctção del do terreno Umidde % humedd W3 > W2 > W1 W1 W2 W3 2% Compctción Compctção Figur 2.5 Vrição d resistividde do terreno em função d compctção do terreno A ESTRATIFICAÇÃO DO TERRENO O solo é formdo por cmds (estrtos) que têm diferentes resistividdes e profundiddes devido à formção geológic, que são gerlmente horizontis e prlels à superfície. Existem estrtos que se presentm de form inclind ou verticl devido flhs geológics, ms pr estudos ssumem-se horizontis. O comportmento d resistividde do terreno não é uniforme e depende d crcterístic dos estrtos. 17
6 Instlções Elétrics de Interiores 3. RESISTIVIDADES TÍPICAS N tbel seguir detlhm-se clsses de resistividdes de diferentes terrenos. NATUREZA DO TERRENO RESISTIVIDADE -m Terreno pntnoso Hst 30 Limo Fungos Argil pstos 50 Mrgs e rgils compcts Mrgs de jurássico 30 Arei rgilos 50 Arei silíce 200 Solo pedregoso coberto de grm 300 Solo pedregoso nu 1 Clcário mole Clcário compcto Clcário fenddo Ardósi 50 Rochs de mic e qurtzo 800 Grnito e grés lterdo 1 Grnito e grés muito lterdos Tbel 2.2 Resistividdes típics Os vlores médios de resistividde de terrenos mostrm-se no qudro seguir: NATUREZA DO TERRENO Terrenos cultiváveis e férteis, terrplengens compcts e úmids. Terreno cultivável, pouco fértil, terrplengens, em gerl. Solos pedregosos nus, reis secs permeáveis. VALOR MÉDIO DA RESISTIVIDADE m Tbel 2.3 Resistividdes típics médis. 18
4 SISTEMAS DE ATERRAMENTO
4 SISTEMAS DE ATEAMENTO 4. esistênci de terr Bix frequênci considerr o solo resistivo CONEXÃO À TEA Alt frequênci considerr cpcitânci indutânci e resistênci Em lt frequênci inclui-se s áres de telecomunicções
P1 de CTM OBS: Esta prova contém 7 páginas e 6 questões. Verifique antes de começar.
P de CTM 0. Nome: Assintur: Mtrícul: Turm: OBS: Est prov contém 7 págins e 6 questões. Verifique ntes de começr. Tods s resposts devem ser justificds. Não é permitido usr clculdor. As questões podem ser
Capítulo II. Projeto de eletrodos de aterramento para subestações de energia elétrica Jobson Modena e Hélio Sueta * Aterramentos elétricos
42 Aterrmentos elétricos Cpítulo II Projeto de eletrodos de terrmento pr subestções de energi elétric Jobson Moden e Hélio Suet * O ssunto projeto de eletrodo de terrmento (mlhs) em subestções de energi
20W-60W. LED Solar iluminação externa autônoma. Manual do Usuário
20W-60W LED Solr iluminção extern utônom Mnul do Usuário Prezdo cliente, Obrigdo por escolher um modo limpo e renovável de iluminção extern LED Solr. Este mnul contém instruções e recomendções pr instlção,
2 Patamar de Carga de Energia
2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d
MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO
MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO SECRETARIA DE POLÍTICA AGRÍCOLA DEPARTAMENTO DE GESTÃO DE RISCO RURAL PORTARIA Nº 193, DE 8 DE JUNHO DE 2011 O DIRETOR DO DEPARTAMENTO DE GESTÃO DE RISCO
Psicrometria e balanços entálpicos
álculo d entlpi Psicrometri e blnços entálpicos m Psicrometri pr o cálculo d entlpi dum corrente de r recorre-se à entlpi específic. egundo crt que usmos em PQ entlpi específic vem express em J/g de r
Área entre curvas e a Integral definida
Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções
3 Teoria dos Conjuntos Fuzzy
0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy
ESTÁTICA DO SISTEMA DE SÓLIDOS.
Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem
ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição
ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo
Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3
Questão 6 Um torre de ço, usd pr trnsmissão de televisão, tem ltur de 50 m qundo tempertur mbiente é de 40 0 C. Considere que o ço dilt-se, linermente, em médi, n proporção de /00.000, pr cd vrição de
DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS
Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN-2005) Prova : Amarela MATEMÁTICA
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN005) Prov : Amrel MATEMÁTICA 1) Num triângulo ABC, AB = AC, o ponto D interno o ldo AC é determindo
Relações em triângulos retângulos semelhantes
Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()
2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).
unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis
fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:
Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo
QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2
PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que
EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.
EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =
EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS
EXERCÍCIOS RESOLVIDOS DE TEORIA DOS GRAFOS.) Considere tbel de trefs seguir pr construção de um cs de mdeir: TAREFAS PRÉ-REQUISITOS DIAS. Limpez do terreno Nenhum. Produção e colocção d fundção. Produção
1 Distribuições Contínuas de Probabilidade
Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem
AULA 8. Equilíbrio Ácido Base envolvendo soluções de ácidos polipróticos e bases poliácidas
Fundmentos de Químic nlític, Ione M F liveir, Mri José F ilv e imone F B Tófni, urso de Licencitur em Químic, Modlidde Distânci, UFMG 00 UL 8 Equilíbrio Ácido Bse Equilíbrio Ácido Bse envolvendo soluções
LISTA DE EXERCÍCIOS #6 - ELETROMAGNETISMO I
LIST DE EXERCÍCIOS #6 - ELETROMGNETISMO I 1. N figur temos um fio longo e retilíneo percorrido por um corrente i fio no sentido indicdo. Ess corrente é escrit pel epressão (SI) i fio = 2t 2 i fio Pr o
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0
E m Física chamam-se grandezas àquelas propriedades de um sistema físico
Bertolo Apêndice A 1 Vetores E m Físic chmm-se grndezs àquels proprieddes de um sistem físico que podem ser medids. Els vrim durnte um fenômeno que ocorre com o sistem, e se relcionm formndo s leis físics.
Phoenix do Brasil Ltda.
RESISTOR DE FIO AXIAL - AC CARACTERÍSTICAS Resistores de uso gerl Alt potênci em tmnho compcto Alto desempenho em plicções de pulso Váris opções de pré-form dos terminis Revestimento pr lt tempertur TECNOLOGIA
Avaliação Experimental da Variação Sazonal da Resistividade do Solo
Avaliação Experimental da Variação Sazonal da Resistividade do Solo 1 Bruno P. Jácome, Lêda S. C. Batista, Marco Aurélio O. Schroeder, Lane M. R. Baccarini, Gleison F. V. Amaral Universidade Federal de
Resoluções dos exercícios propostos
os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em
Técnicas de Análise de Circuitos
Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção
4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.
EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /
CTM Primeira Lista de Exercícios
CTM Primeir List de Exercícios. Cite crcterístics típics de cd um ds 5 clsses de mteriis presentds no curso. Metis: resistentes, dúcteis, bons condutores térmicos/elétricos Cerâmics: resistentes, frágeis,
Processo TIG. Eletrodo (negativo) Argônio. Arco elétrico Ar Ar + + e - Terra (positivo)
Processo TIG No processo de soldgem rco sob proteção gsos, região se unir é quecid té que se tinj o ponto de fusão, pr que isto ocorr, é fornecid um energi trvés do rco elétrico, que irá fundir tnto o
Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017
Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,
Aos pais e professores
MAT3_015_F01_5PCImg.indd 9 9/09/16 10:03 prcels ou termos som ou totl Pr dicionres mentlmente, podes decompor os números e dicioná-los por ordens. 136 + 5 = (100 + 30 + 6) + (00 + 50 + ) 300 + 80 + 8 MAT3_015_F0.indd
Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP
Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri
Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA
UNERSDADE DO ESTADO DE SANTA CATARNA UDESC FACULDADE DE ENGENHARA DE JONLLE FEJ DEPARTAMENTO DE ENGENHARA ELÉTRCA CRCUTOS ELÉTRCOS CEL PROF.: CELSO JOSÉ FARA DE ARAÚJO RoteiroReltório d Experiênci N o
(x, y) dy. (x, y) dy =
Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores
Manejo do nitrogênio em trigo para alta produtividade e qualidade de grãos
Mnejo do nitrogênio em trigo pr lt produtividde e qulidde de grãos Christin Bredemeier Dnielle Almeid Cecíli Giordno Neuri Feldmnn Jcqueline Flores Schmitz Júli Perin Introdução O conceito de qulidde industril
1 heae. 1 hiai 1 UA. Transferência de calor em superfícies aletadas. Tot. Por que usar aletas? Interior condução Na fronteira convecção
Trnsferênci de clor em superfícies letds Por ue usr lets? Interior condução N fronteir convecção = ha(ts - T Pr umentr : - umentr o h - diminuir T - umentr áre A Intensificção d trnsferênci de clor Exemplo:
FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I
FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I
Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: [email protected] PROPOSTA DE RESOLUÇÃO
ANEXO 1. NOTA TÉCNICA
ANEXO 1. NOTA TÉCNICA As plnts de clim temperdo, como pereir, necessitm de repouso invernl pr quebr de dormênci, florção bundnte e retomd d produção. A quebr de dormênci está relciond com o cúmulo de hors
características dinâmicas dos instrumentos de medida
crcterístics dinâmics dos instrumentos de medid Todos nós sbemos que os instrumentos de medid demorm um certo tempo pr tingirem o vlor d medid. sse tempo ocorre devido inércis, resitêncis e trsos necessários
NOTA DE AULA. Tópicos em Matemática
Universidde Tecnológic Federl do Prná Cmpus Curitib Prof. Lucine Deprtmento Acdêmico de Mtemátic NOTA DE AULA Tópicos em Mtemátic Fonte: http://eclculo.if.usp.br/ 1. CONJUNTOS NUMÉRICOS: 1.1 Números Nturis
Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo
Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,
Ângulo completo (360 ) Agora, tente responder: que ângulos são iguais quando os palitos estão na posição da figura abaixo?
N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um ângulo reto, ou sej, mede 90 (90 grus),
Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos
Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos
OBSERVATÓRIO DO TRABALHO DE VITÓRIA - ES
OBSERVATÓRIO DO TRABALHO DE VITÓRIA - ES Reltório Mensl: A Movimentção do Mercdo de Trblho Forml n Região Metropolitn de Vitóri DEZEMBRO DE 2008 Contrto de Prestção de Serviços Nº. 028/2008 DIEESE/SETADES
Quantidade de oxigênio no sistema
EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão
Manual de Operação e Instalação
Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999
Unidade 8 Geometria: circunferência
Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P
5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos
Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:[email protected] disponível em: http://pginpessol.utpr.edu.br/rphelbenedito
outras apostilas de Matemática, Acesse:
Acesse: http://fuvestibulr.com.br/ N Aul 30, você já viu que dus rets concorrentes formm qutro ângulos. Você tmbém viu que, qundo os qutro ângulos são iguis, s rets são perpendiculres e cd ângulo é um
Conversão de Energia I
Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais
POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES
Cálculo III-A Módulo 6
Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir
Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.
9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões
Diogo Pinheiro Fernandes Pedrosa
Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito
INFORMAÇÕES TÉCNICAS. Modelo 100/110/120/140. Veda Porta Automático. Utilização:
INFORMAÇÕES TÉCNICAS Ved Port Automático Modelo 100/110/120/140 1 Utilizção: Utilizção em port com ertur à direit ou à esquerd. Regulgem por meio do otão ciondor. Acionmento unilterl, ldo d dordiç ou pivot
Lista 5: Geometria Analítica
List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis
Eletrotécnica TEXTO Nº 7
Eletrotécnic TEXTO Nº 7 CIRCUITOS TRIFÁSICOS. CIRCUITOS TRIFÁSICOS EQUILIBRADOS E SIMÉTRICOS.. Introdução A quse totlidde d energi elétric no mundo é gerd e trnsmitid por meio de sistems elétricos trifásicos
EMPUXOS DE TERRA (resumo) MUROS DE ARRIMO (princípios)
Fundções PEF 3405 EMPUXOS DE TERRA (resumo) MUROS DE ARRIMO (princípios) Prof. Fernndo A. M. Mrinho Prof. Luiz Guilherme de Mello Prof. Wldemr Hchich Empuxo Pssivo: É tensão limite entre o solo e o ntepro,
GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é
GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)
Procedimento da AASHTO/
Procedimento d AASHTO/2001-2011 procedimento pr projeto geométrico de interseção (não nálise d operção) recomendções pr interseções sem sinlizção, com PARE, ê Preferênci, (t pr interseções PARE múltiplo)
Função Quadrática (Função do 2º grau) Profº José Leonardo Giovannini (Zé Leo)
Função Qudrátic (Função do º gru) Proº José Leonrdo Gionnini (Zé Leo) Zeros ou rízes e Equções do º Gru Chm-se zeros ou rízes d unção polinomil do º gru () = + b + c, reis tis que () =., os números DEFINIÇÃO:
Análise de Variância com Dois Factores
Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume
AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática
1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos
b para que a igualdade ( ) 2
DATA DE ENTREGA: 0 / 06 / 06 QiD 3 8º ANO PARTE MATEMÁTICA. (,0) Identifique o monômio que se deve multiplicr o monômio 9 5 8 b c. 5 b pr obter o resultdo. (,0) Simplifique s expressões bixo. ) x + x(3x
BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE E MTEMÁTI NO E QUESTÕES - GEOMETRI - 9º NO - ENSINO FUNMENTL ============================================================================ 0- figur o ldo indic três lotes de terreno com
ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO
Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um
RELATÓRIO TÉCNICO SONDOESTACA
RELATÓRIO TÉCNICO SONDOESTACA APRESENTAÇÃO DE PLANTA DE LOCAÇÃO E PERFÍS D FUR DE SONDAGENS EXECUTAD NO TERRENO SITO NA ESADA JERÔNIMO FERREIRA ALVES S/ SÍTIO TAQUARÍ - PEÓPOLIS RJ. SUBMETID AO Sr. ZITO
1 Assinale a alternativa verdadeira: a) < <
MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )
Aula de solução de problemas: cinemática em 1 e 2 dimensões
Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é
Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?
A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo
INTRODUÇÃO
INTRODUÇÃO INTRODUÇÃO INTRODUÇÃO INTRODUÇÃO CARACTERÍSTICAS DOS MATERIAIS CONDUTORES CARACTERÍSTICAS DOS MATERIAIS CONDUTORES Variação da resistividade com a temperatura e a frequência. o A segunda lei
