Álgebra Linear e Geometria Analítica. 7ª aula
|
|
|
- Lívia Assunção Madeira
- 8 Há anos
- Visualizações:
Transcrição
1 Álgebra Linear e Geometria Analítica 7ª aula
2 ESPAÇOS VECTORIAIS
3 O que é preciso para ter um espaço pç vectorial? Um conjunto não vazio V Uma operação de adição definida nesse conjunto Um produto de um número real por um elemento desse conjunto As boas propriedades idd destas operações
4 O que são as boas propriedades? idd Fechado para a soma u, v V, u v V Fechado para o produto por um escalar α R, u V, V αu V
5 O que são as boas propriedades? p Propriedades da soma Comutativa: u, v V, u v = v u Associativa: u, v, w V, (u v) w = u (v w) Elemento Neutro: u V, u = u Simétricos: u V, u ( u) =
6 O que são as boas propriedades? Propriedades d da soma e do produto por um escalar: Distributiva: u, v V, α R,α(u v )= αu αv Distributiva: ib i u V,, α,, β R,(α β β) u = αu βuβ Associativa u V, V α, β R,(α ( β) u = α (βu) ) Elemento neutro u V, u = u
7 Exemplos Vectores no plano com as operações soma e produto por um número real
8 Exemplos Conjunto das matrizes m n com as operações soma e produto por um número real. Conjunto das matrizes linha com as operações soma e produto por um número real Conjunto das matrizes coluna com as operações soma e produto por um número real
9 Exemplos n { ( L ) } R = x, x, x : x, j =, L n, R =, n j ( x,, ) (,,, ) x, L x y y L y = n n ( x y, x y,, ) α L x n y n ( x x, L, ) = ( α, α,, α ), L x x x x n n
10 Casos particulares importantes: R = { ( x, y ) : x, y R } ( x, y ) ( t, w ) = ( x t, y w ) α ( x, y) = ( αx, αy)
11 Casos particulares importantes: R = { ( x, y, z ) : x, y, z R } ( x, y, z ) ( t, w, v ) = ( x t, y w, z v ) ( x, y z) = ( αx αy αz) α,,,
12 Propriedades dos espaços vectoriais O vector nulo é único O simétrico de cada vector de V é único Qualquer número real multiplicado pelo vector nulo dá o vector nulo Zero multiplicado l por qualquer vector dá o vector nulo Se o produto de um número real por um vector dá o vector nulo então ou o número real é nulo ou o vector é nulo.
13 Combinações Lineares: α, α, L, α k R u, u, L, u α u k V α u L α u k k = u u diz se combinação linear de u, u,, u k
14 Exemplo: (,, ) (,, ) ( 5 )(,, ) (,, 5 ) = (,, 5) é combinação linear de {(,,), (,,),(,,)} com coeficientes, e 5 respectivamente
15 Exemplo: (,, 5) será combinação linear de {(,,), (,,),(,,)}?
16 Exemplo: (,, 5) será combinação linear de {(,,), (,,),(,,)}? (,, 5) = α(,,) β(,,) γ(,,)
17 Exemplo: (,, 5) será combinação linear de {(,,), (,,),(,,)}? (,, 5) = α(,,) β(,,) γ(,,) α β γ = α β = α γ = 5
18 Exemplo: (,, 5) será combinação linear de {(,,), (,,),(,,)}? (,, 5) = α(,,) β(,,) γ(,,) α β γ = α β = α γ = 5 5
19
20 7 7 = α 7 = 7 β α = γ
21 α = β = 7 γ = (,, 5) = α(,,) β(,,) γ(,,) (,, 5) = () (,,) 7() 7(,,) () (,,)
22 Exemplo: (,, 5) será combinação linear de {(,,), (,,),(,,)}? (,, 5) = α(,,) β(,,) γ(,,)
23 Exemplo: (,, 5) será combinação linear de {(,,), (,,),(,,)}? (,, 5) = α(,,) β(,,) γ(,,) α β = α β = α β γ = 5
24 Exemplo: (,, 5) será combinação linear de {(,,), (,,),(,,)}? (,, 5) = α(,,) β(,,) γ(,,) α β = α β = α β γ = 5 Sistema impossível
25 Exemplo: Então (,, 5) não pode ser combinação linear de {(,,), (,,),(,,)}
26 Exemplo: Quais serão os vectores es (x, y, z) ) que podem ser combinação linear de {() {(,,), (,,),(,,)}? ()()}?
27 Exemplo: (x, y, z) ) = α(,,) β(,,) γ(,,)
28 Exemplo: (x, y, z) ) = α(,,) β(,,) γ(,,) α β = x α β = y α = β γ z
29 = x β α = x β β α = y β α = z γ β α x x y z
30 = x β α = z y γ β α β α = z γ β α y x y x x z y x z x y x z x x z x z x y x y
31 Quais serão os vectores es (x, y, z) ) que podem ser combinação linear de {() {(,,), (,,), () (,,)}? ()}? Resposta: vectores da forma (x, x, z)
32 Questão: (,, ) pode ser combinação linear de {(,,), (,,),(,,)}? SIM (,, ) = (,,) (,,) (,,)
33 Propriedade: O vector nulo uode qualquer que espaço vectorial pode ser escrito como combinação linear de qualquer conjunto de vectores. (O sistema homogéneo tem sempre solução)
34 Questão: (,, ) pode ser combinação linear de {(,,), (,,),(,,)} sem que os coeficientes sejam todos nulos? SIM (,, ) = (,,) (,,) (,,)
35 Vectores linearmente independentes Definição: Um conjunto de vectores de V {v, v,, v k } diz se linearmente independente se a única combinação linear nula destes vectores é a trivial.
36 Vectores linearmente independentes Um conjunto de vectores de V {v, v,, v k } é linearmente independente se α v α v L α kv = k α = α = L = α = k
37 Vectores linearmente dependentes Definição: Um conjunto de vectores de V {v, v,, v k } diz se linearmente dependente se não é independente, isto é, se é possível obter o vector nulo com uma combinação linear que não tem os coeficientes todos nulos.
38 Vectores linearmente dependentes Um conjunto de vectores de V {v, v,, v k } diz se linearmente dependente se α v α v L α v = j : α k k j
39 Vectores linearmente independentes Para que o conjunto de vectores de V {v, v,, v k } seja linearmente independente é necessário que o sistema α v = α v L α k v k seja determinado, d isto é, que a característica da matriz do sistema seja k.
40 Um conjunto de vectores não pode ser independente se: Contiver o vector nulo; Tiver dois vectores iguais; Tiver um vector múltiplo de outro; Se um dos vectores for combinação linear de outros.
41 EXEMPLO: Será {(,,,), (,,,5), (,7,, 7), (, 8,, )} linearmente independente? a b d = a(,,,) b(,,,5) c c(,7,, 7) d(, 8,, ) = (,,,)
42 EXEMPLO: EXEMPLO: Será {(,,,), (,,,5), (,7,, 7), (, 8,, )} linearmente independente? linearmente independente? a(,,,) b(,,,5) c(,7,, 7) d(, 8,, ) () = (,,,) d b = = 8 7 d c b a d c b a = 7 5 d b d c b a = 7 5 d c b a
43 = d c b a = 8 7 d b d c b a = 8 7 A = = 7 5 d c b a d c b a 7 5 car(a) = sistema indeterminado car(a) = sistema indeterminado j t d d t conjunto dependente
44 Subespaço Vectorial Seja V um espaço vectorial. Um subconjunto não vazio F de V é um subespaço pç vectorial de V se e só se u, v F, u v F α R, u F, α u F ou seja: F é fechado para a soma e para o produto por um escalar.
45 Exemplo de subespaço vectorial { ( x z) R } y x y e x z F =,, : = =
46 Exemplo de subespaço vectorial { ( x z) R } y x y e x z F =,, : = = F é o conjunto das soluções do sistema x y = x z =
47 Exemplo de subespaço vectorial { ( x z) R } y x y e x z F =,, : = = F é o conjunto das soluções do sistema F é o núcleo da matriz x y = x z =
48 Expansão linear e geradores Considere se W o conjunto de todas as combinações lineares de {v, v,, v k } vectores de um espaço vectorial V. W é um subespaço vectorial il. W é o menor subespaço vectorial de V que contém {v, v,, v k }
49 Expansão linear e geradores W { } α v α v α, α R = L j kv k W é a expansão linear de {v, v,, v k } ou subespaço vectorial gerado pelos vectores {v, v,, v k } W = <v, v,, v k >,,, k {v, v,,v k } é um conjunto de geradores de W
50 Exemplos (,, ), (,, ), (,, ) R =
51 Exemplos (,, ), (,, ), (,, ) R = (,,, ), (,,, ) = { α (,,, ) α (,,, ) : α, α R } { (,,, α, α ): α, α R } = ( x, x, x, x ) { R : x = x = }, =
52 Bases e dimensão A um conjunto de geradores de um espaço que seja linearmente independente chama se base desse espaço. Umespaço tem várias bases Todas as bases têm o mesmo número de elementos A esse número de elementos chama se dimensão do espaço
53 Bases e dimensão Se um espaço vectorial tem dimensão n não pode haver conjuntos de vectores independentes com mais do que n elementos Se um espaço vectorial tem dimensão n não pode haver conjuntos de vectores geradores do espaço pç com menos do que n elementos
54 Exemplo: {( ) } x y z R x y e x z F =,, : = = { (,, ) } F = x x x : x R F = (,, )
55 Exemplo: {( ) } x y z R x y e x z F =,, : = = { (,, ) } F = x x x : x R F = (,, ) ou F = ( 5,5, ) ou L dimf =
56 Como saber se um vector pertence a um subespaço?. Encontra se uma base para o subespaço. Verifica se se o vector pode ser combinação linear dos elementos da base.
57 Exemplo: F = (,,, ), ( 5,6,7,8 ) Será que (,, 7, ) é um elemento de F? Será que (,, 7, 7 ) é uma combinação linear de (,,,) e (5,6,7,8)? (,, 7, )= a(,,,) a() b(5,6,7,8) b(5678)
58 (,, 7, 7 )= a() a(,,,) b(5,6,7,8) b(5678)
59 (,, 7, 7 )= a() a(,,,) b(5,6,7,8) b(5678)
60 (,, 7, 7 )= a() a(,,,) b(5,6,7,8) b(5678) a 5b = a b 6 = a b 7 = 7 a 8b =
61 (,, 7, 7 )= a(,,,) a() b(5,6,7,8) b(5678) a 5b = a b 6 = a b 7 = 7 a 8b =
62
63 = 7 b a = b
64 O mesmo exemplo, outra abordagem: F = (,,, ), ( 5,6,7,8 ) Será que (,, 7, ) é um elemento de F? Isto é, será que (,, 7, ) é uma combinação linear de (,,,) ()e (5,6,7,8)? (5678)?
65 O mesmo exemplo, outra abordagem: F = (,,, ), ( 5,6,7,8 ) Será que (,, 7, ) é um elemento de F? Isto é, será que (,, 7, ) é uma combinação linear de (,,,) ()e (5,6,7,8)? (5678)? Se tal se verificar a característica da matriz que tem estes vectores nas suas linhas terá que ser.
66 O mesmo exemplo outra abordagem: O mesmo exemplo, outra abordagem:
67 O mesmo exemplo outra abordagem: O mesmo exemplo, outra abordagem: ) ( 8 = A car
68 Como saber qual o espaço gerado por um conjunto de vectores? F = (,,, ), ( 5,6,7,8 )
69 Como saber qual o espaço gerado por um conjunto de vectores? w z y x Agora determinar condições sobre x, y, z e w últi li h d ti d para que a última linha da matriz em escada seja nula j
70 Como saber qual o espaço gerado por um conjunto de vectores? w z y x w z y x 8 w y x z y x 8 w y x z y x
71 Como saber qual o espaço gerado por um conjunto de vectores? w z y x w y x z y x 8 = z y x = y x z = w y x = y x w
72 Como a última linha ficou nula pode se concluir que é combinação linear das anteriores. (Só não se sabe quais são os coeficientes da combinação linear, para o saber é preciso resolver o sistema como se fez antes)
73 Os coeficientes da combinação linear de um vector em relação a uma base chamam se coordenadas do vector
74 Como saber qual o espaço gerado por um conjunto de vectores? F = (,,,,, ), ( 5,6,7,8,, ) (x, y, z, w) = a(,,, ) b(5, 6, 7, 8) x = a 5 b y = a 6 b z = a 7 b w = a 8 b
75 Encontrar condições para o sistema ser possível: = = b a y b a x 6 5 y x 6 5 x 5 = = b a z b a y 7 6 z y 7 6 y x z x y = b a w 8 w 8 y x w = y x z = = y x w y x z y
Esp. Vet. I. Espaços Vetoriais. Espaço Vetorial. Combinações Lineares. Espaços Vetoriais. Espaço Vetorial Combinações Lineares. Esp. Vet.
Definição (R n 1 a Parte R n é o conjunto das n-uplas ordenadas de números reais. (1,, R Paulo Goldfeld Marco Cabral (1, (, 1 R Departamento de Matemática Aplicada Universidade Federal do Rio de Janeiro
Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto
Álgebra Linear e Geometria Analítica. Espaços Vectoriais
Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento
Espaços Vetoriais. () Espaços Vetoriais 1 / 17
Espaços Vetoriais () Espaços Vetoriais 1 / 17 Espaços Vetoriais Definição Seja um conjunto V, não vazio. i. Uma adição em V é uma operação que a cada par de elementos (u, v) V V associa um elemento u +
Aula 25 - Espaços Vetoriais
Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado
Tópicos de Matemática Elementar
Revisão Básica de Prof. Dr. José Carlos de Souza Junior Universidade Federal de Alfenas 26 de novembro de 2014 Revisão de Definição 1 (Espaço Vetorial) Um conjunto V é um espaço vetorial sobre R, se em
(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas
Álgebra Linear e Geometria Analítica
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
MA71B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto. LISTA 5 - Espaços Vetoriais
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA7B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto LISTA 5 - Espaços Vetoriais Desenvolvidas
Questão 1: Seja V o conjunto de todos os pares ordenados de números reais. Denamos a adição e a multiplicação por escalar em V por
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA7B - Geometria Analítica e Álgebra Linear Profa. Dra. Diane Rizzotto Rossetto LISTA 4 - Espaços Vetoriais Desenvolvidas
Aulas práticas de Álgebra Linear
Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,
5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:
MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:
Espaços vectoriais reais
Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o
2 Espaços Vetoriais. 2.1 Espaços Vetoriais Euclidianos
2 Espaços Vetoriais 2.1 Espaços Vetoriais Euclidianos Definição: Dado n N, considere-se o conjunto de todos os n-uplos ordenados de elementos reais, isto é o conjunto de elementos da forma x = (x 1,, x
Parte 2 - Espaços Vetoriais
Espaço Vetorial: Parte 2 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado
Espaços Vectoriais. Espaços Vectoriais
Espaços Vectoriais Espaço vectorial sobre um corpo V - conjunto não vazio de objectos, chamados vectores F - conjunto de escalares, com estrutura de corpo Em V definimos duas operações: - adição de elementos
Universidade Federal Fluminense - GAN
Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia
Espaços vectoriais reais
ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência
Álgebra Linear I. Resumo e Exercícios P3
Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v
MAT Resumo Teórico e Lista de
MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
ÁLGEBRA LINEAR. Exame Final
UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0
MAT Álgebra Linear para Engenharia II - Poli 2 ō semestre de ā Lista de Exercícios
MAT 2458 - Álgebra Linear para Engenharia II - Poli 2 ō semestre de 2014 1 ā Lista de Exercícios 1. Verifique se V = {(x, y) x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação
Universidade Federal Fluminense - GAN
Solimá Gomes Pimentel Universidade Federal Fluminense IM - GAN Solimá Gomes Pimentel, ****- Matemática para Economia III/Solimá Gomes Pimentel 2pt, ; 31cm Inclui Bibliografia. 1. Matemática para Economia
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
Álgebra Linear. Prof. Ronaldo Carlotto Batista. 20 de março de 2019
Álgebra Linear ECT2202 Prof. Ronaldo Carlotto Batista 20 de março de 2019 AVISO O propósito fundamental destes slides é servir como um guia para as aulas. Portanto eles não devem ser entendidos como referência
Resolução do 1 o Teste - A (6 de Novembro de 2004)
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto
de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:
Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s
Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais
Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 1: Espaços Vetoriais Exercício 1. Determine se os seguintes conjuntos são
ESPAÇO VETORIAL REAL. b) Em relação à multiplicação: (ab) v = a(bv) (a + b) v = av + bv a (u + v ) = au + av 1u = u, para u, v V e a, b R
ESPAÇO VETORIAL REAL Seja um conjunto V, não vazio, sobre o qual estão definidas as operações de adição e multiplicação por escalar, isto é: u, v V, u + v V a R, u V, au V O conjunto V com estas duas operações
Seja f um endomorfismo de um espaço vectorial E de dimensão finita.
6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio
1 Espaços Vectoriais
Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
(Todos os cursos da Alameda) Paulo Pinto
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas
Ficha Prática nº 5: Espaços Vectoriais. a11 a 12 a : a 11, a 12, a 21 R
Álgebra Linear e Geometria Analítica Eng. Electrotécnica e Eng. Mecânica Ano lectivo: 2006/07 Ficha Prática nº 5: Espaços Vectoriais 1. Considere o espaço vectorial real V = {x, y, z : 2x + 3y + 5z = 0.
Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2017/II 1. Sejam u = ( 4 3) v = (2 5) e w = (a b).
3 - Subespaços Vetoriais
3 - Subespaços Vetoriais Laura Goulart UESB 16 de Agosto de 2018 Laura Goulart (UESB) 3 - Subespaços Vetoriais 16 de Agosto de 2018 1 / 10 Denição Um subespaço vetorial é um subconjunto de um e.v.r. que
Espaços Vetoriais e Produto Interno
Universidade Federal do Vale do São Francisco Engenharia Civil Álgebra Linear Prof o. Edson 1 o Semestre 1 a Lista de Exercícios 2009 Data: Sexta-feira 27 de Fevereiro Prof o. Edson Espaços Vetoriais e
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram
2 a. Lista de Exercícios
Última atualização 16/09/007 FACULDADE Engenharia: Disciplina: Álgebra Linear Professor(a): Data / / Aluno(a): Turma a Lista de Exercícios A álgebra de vetores e a álgebra de matrizes são similares em
Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:
Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números
Geometria Analítica e Álgebra Linear
UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra
exercícios de álgebra linear 2016
exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores
6. Verifique detalhadamente que os seguintes conjuntos são espaços vetoriais(com a soma e produto por escalar usuais):
a Lista. Sejam u = ( 4 ) v = ( 5) e w = (a b). Encontre a e b tais que (a)w = u + v (b)w = 5v (c)u + w = u v. Represente os vetores acima no plano cartesiano.. Sejam u = (4 ) v = ( 4) e w = (a b c). Encontre
Capítulo 1 - Cálculo Matricial
Capítulo 1 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo
II Lista de Álgebra Linear /02 Espaços Vetoriais Prof. Iva Zuchi Siple
. Verique se R com as operações denidas por: II Lista de Álgebra Linear - / Espaços Vetoriais Prof. Iva Zuchi Siple i. (x y) + (s t) (s y + t) onde u (x y) e v (s t) pertencem a R ii. α(x y) (αx y) onde
ÁLGEBRA LINEAR I - MAT Determinar se os seguintes conjuntos são linearmente dependente ou linearmente independente (R).
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 3 a Lista de
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente
Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n
Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,
4 APLICAÇÕES LINEARES Núcleo e Imagem. Classificação de um Morfismo... 52
Tópicos de Álgebra Linear Isabel Maria Teixeira de Matos Secção de Matemática Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores (DEETC-ISEL) 1 de Dezembro de 2007 Conteúdo
Exercícios sobre Espaços Vetoriais II
Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam
Capítulo 1 - Cálculo Matricial
Capítulo 1 - Carlos Balsa [email protected] Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo
Álgebra Linear. Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais,Engenharia Biológica, Engenharia do Ambiente ō ano/ ō Semestre 2006/07 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES
Primeira Lista de Exercícios
1 Espaços vetoriais Primeira Lista de Exercícios {( ) } a b Exercício 1.1. Considere M 2 := : a, b, c, d R, : M c d 2 M 2 M 2 dada por e : R M 2 M 2 dada por ( ) ( ) ( ) a1 b 1 a2 b 2 a1 + a := 2 b 1 +
Álgebra Linear. Alan Anderson
Álgebra Linear Alan Anderson 9 de abril de 2016 1 Espaço Euclidiano Denimos o espaço euclidiano n dimensional R n como sendo o conjunto das listas de n números reais. R n = {(x 1,..., x n ) : x 1,...,
Notações e revisão de álgebra linear
Notações e revisão de álgebra linear Marina Andretta ICMC-USP 17 de agosto de 2016 Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis. Marina Andretta (ICMC-USP) sme0211
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço
ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta.
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 2 a Lista de
Álgebra Linear 1 o Teste
Instituto Superior Técnico Departamento de Matemática 1 o Semestre 2008-2009 6/Janeiro/2008 Prova de Recuperação Álgebra Linear 1 o Teste MEMec, MEAer Nome: Número: Curso: Sala: A prova que vai realizar
Lista 1: sistemas de equações lineares; matrizes.
Lista : sistemas de equações lineares; matrizes. Obs. As observações que surgem no fim desta lista de exercícios devem ser lidas antes de resolvê-los. ) Identifique as equações que são lineares nas respectivas
1 Subespaços Associados a uma Matriz
1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.
Unidade 1 - O que é Álgebra linear? A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 9 de agosto de 2013
MA33 - Introdução à Álgebra Linear Unidade 1 - O que é Álgebra linear? A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 9 de agosto de 2013 O que é Álgebra linear? Atualmente,
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
(d) Cada vetor de R 2 pode ser escrito de forma única como combinação linear dos vetores
UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty
Os Quatro Subespaços Fundamentais
Álgebra Linear e Geometria Analítica Texto de apoio Professor João Soares 7 páginas Universidade de Coimbra 26 de Novembro de 29 Os Quatro Subespaços Fundamentais Seja A uma matriz m n de elementos reais.
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2.
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de 2018 Questão 1. Seja U = [(2, 1, 1), (1, 0, 2)], subespaço vetorial de R 3 e ax + by + z = 0 uma equação de U, isto é U = { (x, y, z)
Notas de Aula Álgebra Linear. Elton José Figueiredo de Carvalho Escola de Ciências e Tecnologia Universidade Federal do Rio Grande do Norte
Notas de Aula Álgebra Linear Elton José Figueiredo de Carvalho Escola de Ciências e Tecnologia Universidade Federal do Rio Grande do Norte Versão 201608221232c de 22 de agosto de 2016 Parte I Espaços vetoriais
Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química
Código do Teste: 105 Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química 1. Para as matrizes A = ( 1 0 3 1 ) B = ( 5 4 1 0 2 1 3 1 ) C = 1 1 1 0 5 1
P2 de Álgebra Linear I Data: 10 de outubro de Gabarito
P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática
UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 2 a Lista - MAT 137 - Introdução à Álgebra Linear II/2005 1 Resolva os seguintes sistemas lineares utilizando o Método
Primeira Lista de Álgebra Linear
Serviço Público Federal Ministério da Educação Universidade Federal Rural do Semi-Árido UFERSA Departamento de Ciências Ambientais DCA Prof. D. Sc. Antonio Ronaldo Gomes Garcia a a Mossoró-RN 18 de agosto
ESPAÇOS VETORIAIS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
ESPAÇOS VETORIAIS Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Sabe-se que o conjunto 2 ( x, y) / x, y é interpretado geometricamente como o plano cartesiano. O par ordenado (x,y)
ESPAÇOS LINEARES (ou vetoriais)
Álgebra Linear- 1 o Semestre 2018/19 Cursos: LEIC A Lista 3 (Espaços Lineares) ESPAÇOS LINEARES (ou vetoriais) Notações: Seja A uma matriz e S um conjunto de vetores Núcleo de A: N(A) Espaço das colunas
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL REGIME NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA º FREQUÊNCIA de Janeiro de 8 Duração:
Indicação de uma possível resolução do exame
Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere
Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;
META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar
Soluções dos trabalhos de 1 a 7
Universidade Federal Rural do Semiárido-UFERSA Departamento de Ciências Exatas e Naturais Curso: Bacharelado em Ciência e Tecnologia e Computação Disciplina: Álgebra Linear Aluno(a): Soluções dos trabalhos
Espaços vectoriais com produto interno. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19
Capítulo 6 Espaços vectoriais com produto interno ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19 Definição e propriedades ALGA 2008/2009 Mest.
Ficha de Exercícios nº 1
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.
APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES
Universidade Federal de Goiás Câmpus de Catalão Departamento de Matemática Seminário Semanal de Álgebra APLICAÇÃO DE AUTOVALORES E AUTOVETORES NAS POTÊNCIAS DE MATRIZES Aluno: Ana Nívia Pantoja Daniela
1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny
1 a Lista de Exercícios MAT 3211 Álgebra Linear - 213 - Prof. Vyacheslav Futorny 1 a parte: Resolução de sistemas de equações lineares, matrizes inversíveis 1. Para cada um dos seguintes sistemas de equações
3. Matrizes e Sistemas de Equações Lineares 3.1. Conceito Elementar de Matriz. Definição 1 Sejam m e n dois números naturais.
3. Matrizes e Sistemas de Equações Lineares 3.1. Conceito Elementar de Matriz Definição 1 Sejam m e n dois números naturais. Uma matriz real m n é um conjunto de mn números reais distribuídos por m linhas
Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.
Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum
Lista de exercícios para entregar
Lista de exercícios para entregar Nos problemas abaixo apresenta-se um conjunto com as operações de adição e multiplicação por escalar nele definidas. Verificar quais deles são espaços vetoriais. Para
ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller
ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de
Álgebra linear A Primeira lista de exercícios
Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b
Notas de ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
Departamento de Matemática Escola Superior de Tecnologia Instituto Politécnico de Viseu Notas de ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Lurdes Sousa i Índice Prefácio iii I Matrizes e sistemas de equações
Matemática I. Licenciatura em Economia. 1 Álgebra Linear. 1 o semestre 2012/13. Vectores e Matrizes Sejam 3 A = Determinar as matrizes:
Matemática I 1 o semestre 1/1 Licenciatura em Economia Exercícios com soluções 1 Álgebra Linear Vectores e Matrizes 1.1. Sejam 1 A = 5, B = 1 1 1 Determinar as matrizes: 1 4 5, C = a) A + B; b) A B; c)
1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0
Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x
Matrizes. Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Abril de 2014
es Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais Abril de 2014 Matrizes Matrizes Uma matriz A, m n (m por n), é uma tabela de mn números dispostos em m linhas e n colunas.
Aulas práticas de Álgebra Linear
Ficha 2 Determinantes Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto
