Os Quatro Subespaços Fundamentais
|
|
|
- Estela de Mendonça Araújo
- 9 Há anos
- Visualizações:
Transcrição
1 Álgebra Linear e Geometria Analítica Texto de apoio Professor João Soares 7 páginas Universidade de Coimbra 26 de Novembro de 29 Os Quatro Subespaços Fundamentais Seja A uma matriz m n de elementos reais. Os quatro subespaços (vectoriais) fundamentais associados a esta matriz são: espaço nulo de A: o conjunto das soluções do sistema de equações lineares homogéneo Ax =. Em linguagem matemática, N(A) {x: Ax = R n. espaço das colunas de A: o conjunto de todas as combinações lineares de colunas da matriz A. Em linguagem matemática, C(A) {Ax: x R n R m. espaço das linhas de A: o conjunto de todas as combinações lineares de linhas da matriz A. Em linguagem matemática, L(A) {ya: x R n R n. espaço nulo à esquerda de A: o conjunto das soluções do sistema de equações lineares homogéneo ya =. Em linguagem matemática, N left (A) = {y : ya = R m. No texto de apoio de João Queiró e Ana Paula Santana, que temos vindo a acompanhar nas aulas teóricas, o espaço das linhas de A é denotado por C(A T ). Portanto, esses autores, e outros, optaram por definir espaço das linhas como sendo o espaço das colunas da matriz transposta. Ainda que ambos os conjuntos, C(A T ) e L(A), sejam essencialmente o mesmo conjunto, a distinção reside no facto de que os elementos de C(A T ) são vectores-coluna enquanto que os elementos de L(A) são vectores-linha. Essa distinção não é importante para o desenvolvimento que se segue.
2 2 Álgebra Linear e Geometria Analítica A explicação do parágrafo anterior aplica-se também, e quase sem mudar uma vírgula, ao espaço nulo à esquerda de A, que alguns autores optaram por denotar N(A T ) - o espaço nulo da matriz transposta. Vejamos uma justificação breve para o facto dos quatro conjuntos apresentados serem subespaços vectoriais, de R n ou R m consoante o espaço (vectorial) onde estão inseridos. Os conjuntos N(A) e N left (A) são núcleos de alguma matriz nomeadamente, A e A T, respectivamente. Provámos na aula teórica que o núcleo de uma matriz é (sempre) um subespaço vectorial. Também, os conjuntos C(A) e L(A) são espaço das colunas de alguma matriz nomeadamente, A e A T, respectivamente. Provámos na aula teórica que o espaço das colunas de uma matriz é (sempre) um subespaço vectorial. Como proceder para obter uma base e, portanto identificar a dimensão, de cada um destes subespaços vectoriais? A resposta decorre de uma cuidada interpretação do procedimento de eliminação de Gauss que explicámos durante a primeira parte do curso, momento em que se falava exclusivamente de matrizes e operações com matrizes. Começamos com o espaço das linhas de A. Não confundir espaço das linhas de A com as linhas de A propriamente ditas. Por exemplo, para a matriz A 2 3 () as linhas são os vectores-linha [ ], [ 2 3 ], [ ]. Estes três vectores de R 3 são, simplesmente, um conjunto gerador de L(A). O conjunto L(A) é muito maior pois contém todas as combinações lineares que é possível efectuar com eles. Por exemplo, [ ], [ ] L(A). Na verdade, o espaço das linhas de A é um conjunto com uma infinidade de elementos porque, como vimos antes, é um subespaço vectorial distinto do vector nulo. Portanto, conhecemos um conjunto gerador para L(A) e como sabemos, pois foi explicado nas aulas teóricas, todo o conjunto gerador contém uma base. Base essa que pode
3 Texto de apoio 3 ser obtida excluindo sequencialmente, um a um, os vectores do conjunto gerador que são combinação linear dos restantes. O que pode dar algum trabalho mas nós vamos fazê-lo através da eliminação de Gauss sobre a matriz A. Usaremos o seguinte resultado que será demonstrado nas aulas práticas: Dado um conjunto de vectores, se a um dos seus elementos adicionarmos um múltiplo escalar de um outro elemento então o subespaço gerado pelo conjunto de vectores permanece o mesmo, bem como a dependência ou independência linear dum e doutro. Deste resultado decorre imediatamente que as linhas da matriz U, obtida no final da eliminação de Gauss, geram o mesmo subespaço que as linhas da matriz A pois as linhas de U são obtidas por operações elementares desse tipo. Por outras palavras, L(U) = L(A). Mais, as linhas de U que forem não nulas definem uma base de L(U) e, portanto, de L(A). Isto é verdade porque a matriz U é uma matriz em escada de modo que se ignorarmos as linhas nulas o sistema de equações lineares homogéneo yu = tem solução única. Portanto, as linhas não nulas de U (em número igual à característica de A, denotada car(a)) não só constituem um conjunto gerador de L(U) como formam um conjunto linearmente independente. Formam uma base. Mas não é a única base de L(A) que ficamos a conhecer. Se conseguirmos identificar a submatriz da matriz A que após eliminação de Gauss origina apenas as linhas não nulas da U então essas linhas da matriz A também constituem uma base de L(A). (Porquê?) Vamos agora ilustrar com a matriz A definida em (). A matriz U que se obtém no final de aplicar a eliminação de Gauss à matriz A é a matriz 2 3 U 2 (2) Portanto, dim L(A) = 2 e B = {[ 2 3 ], [ 2 ]
4 4 Álgebra Linear e Geometria Analítica é uma base de L(A). E conseguimos identificar outra base, nomeadamente, B = {[ 2 3 ], [ ] porque se aplicarmos eliminação de Gauss à submatriz da matriz A constituída pelas duas últimas linhas, a matriz U que obterímos seria precisamente definida pelas linhas não nulas da matriz em (2). Agora, consideramos o espaço das colunas C(A). Em geral, C(A) C(U) pois basta ver no exemplo anterior que a última componente de qualquer elemento de C(U) é zero enquanto que o mesmo não é verdade com alguns elementos de C(A). O que se verifica em geral é uma igualdade entre as dimensões de C(A) e de C(U), conforme o Teorema 4.2 na página 87 do texto de apoio de Ana Paula Santana e João Queiró. Nomeadamente, Teorema 4.2 (...) dim C(A) = dim C(U) = car(a) e, uma base de C(A) é constituída pelas colunas de A correspondentes às colunas de U que contêm os pivots. Vamos agora ilustrar com a matriz A definida em () cuja matriz U está definida em (2). Portanto, dim C(A) = 2 e B =, 2 é uma base de C(A) uma vez que os pivots estão na primeira e segunda colunas de U. Portanto, acabámos de ver como identificar uma base para cada um dos subespaços L(A) e C(A). Em particular, vimos que dim L(A) = dim C(A) = car(a). Como L(A) é essencialmente C(A T ) assim como C(A) é essencialmente L(A T ) então concluímos que car(a) = car(a T ), um resultado sobre matrizes que ainda não tinha sido demonstrado antes.
5 Texto de apoio 5 Agora, explicamos como obter uma base para o espaço nulo N(A). Claramente, o espaço nulo de A coincide com o espaço nulo de U pois os sistemas de equações lineares Ax = e Ux = são equivalentes. Portanto, N(A) = N(U). Como U é uma matriz em escada, o conjunto solução do sistema de equações lineares U x = pode ser completamente caracterizado por substituição ascendente, eventualmente em função das varíáveis não básicas (ou livres) se as houver. Dessa caracterização (ou solução geral) imediatamente se destaca um conjunto gerador, conjunto esse que tem que ser linearmente independente uma vez que cada um dos seus elementos tem unicamente uma componente distinta não nula (em que posição?). Como há n car(a) variáveis não básicas então concluímos que dim N(A) = n car(a). Vamos agora ilustrar com a matriz A definida em () cuja matriz U está definida em (2). Claramente, N(U) = = x x 2 x 3 : x + x 2 = 3x 3, x 2 = 2x 3, x 3 R = x 3 2x 3 x 3 : x 3 R = L 2 de onde se conclui que dim N(A) = e é uma base de N(A). B = 2 Agora, explicamos como obter uma base do espaço nulo à esquerda N left (A). Após a eliminação de Gauss fica conhecida a decomposição P A = LU,
6 6 Álgebra Linear e Geometria Analítica Então, N left (A) = {y : ya = = { y : yp T (P A) = Vejamos qual é a solução geral do sistema = { y : y ( P T L ) U = = { y : vu =, y ( P T L ) = v vu =. Como U é uma matriz em escada, as primeiras linhas definem um conjunto de linhas linearmente independente (em número igual a car(a)) e as restantes são linhas de tudozeros. Por isso, para os seguintes conjuntos de índices B = {, 2,..., car(a), N = {car(a) +, car(a) + 2,... m, temos vu = [ ] UB [v B v N ] = v B U B =, v N q.q. v B = B, v N q.q. Quer isto dizer que a solução geral do sistema vu = é simplesmente v = [ B v N ] [... v car(a)+... v m ], vcar(a)+,..., v m R. Portanto, N left (A) = { y : y ( P T L ) = [ B v N ], v N R m car(a), ou, melhor ainda, N left (A) = { wp : wl = [ B v N ], v N R m car(a), cuja base pode ser encontrada de modo análogo ao que se fez para o subespaço N(A).
7 Texto de apoio 7 Vamos agora ilustrar com a matriz A definida em (). Para esta matriz a decomposição P A = LU é igual a {{ P 2 3 {{ A = {{ L {{ U Para caracterizar N left (A), precisamos, primeiro, resolver o seguinte sistema de equações lineares nas variáveis w, onde v 3 denota um número real qualquer, [w w 2 w 3 ] = [ v 3 ] [w w 2 w 3 ] = [ v 3 ], {{ L Finalmente, N left (A) = [ v 3] = {v 3 [ ] : v 3 R : v 3 R = L ([ ]). de onde se conclui que dim N left (A) = e B = {[ ] é uma base de N left (A).
Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares
Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares
Espaços vectoriais reais
ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das
Aulas práticas de Álgebra Linear
Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear Pedro A. Santos
Sistemas de Equações Lineares e Equações Vectoriais Aula 2 Álgebra Linear MEG Operações Elementares Trocar a posição de duas equações Multiplicar uma equação por uma constante diferente de zero Não alteram
Resolução do 1 o Teste - A (6 de Novembro de 2004)
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de (a) 3; (b) 2; (c) 0; (d) 1; (e) 2.
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 3 a Prova - 1 o semestre de 2018 Questão 1. Seja U = [(2, 1, 1), (1, 0, 2)], subespaço vetorial de R 3 e ax + by + z = 0 uma equação de U, isto é U = { (x, y, z)
Geometria Analítica e Álgebra Linear
UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra
Método de Gauss-Jordan e Sistemas Homogêneos
Método de Gauss-Jordan e Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2017.1 14 de agosto
Álgebra Linear e Geometria Analítica. 7ª aula
Álgebra Linear e Geometria Analítica 7ª aula ESPAÇOS VECTORIAIS O que é preciso para ter um espaço pç vectorial? Um conjunto não vazio V Uma operação de adição definida nesse conjunto Um produto de um
Espaços Vectoriais. Espaços Vectoriais
Espaços Vectoriais Espaço vectorial sobre um corpo V - conjunto não vazio de objectos, chamados vectores F - conjunto de escalares, com estrutura de corpo Em V definimos duas operações: - adição de elementos
Álgebra Linear e Geometria Analítica
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha
Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2
Matemática - 008/09 - Determinantes Determinantes de ordem e. Determinantes O erminante de uma matriz quadrada é um número real obtido a partir da soma de erminados produtos de elementos da matriz. Vamos
Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia
Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios
Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan
Álgebra Matricial - Nota 03 Eliminação Gaussiana e Método de Gauss-Jordan Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú Curso de Licenciatura em Matemática [email protected] 8
Sistemas de equações lineares
Matemática II - / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a
ÁLGEBRA LINEAR. Combinação Linear, Subespaços Gerados, Dependência e Independência Linear. Prof. Susie C. Keller
ÁLGEBRA LINEAR Combinação Linear, Subespaços Gerados, Dependência e Prof. Susie C. Keller Combinação Linear Sejam os vetores v 1, v 2,..., v n do espaço vetorial V e os escalares a 1, a 2,..., a n. Qualquer
Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n
Método prático para extrair uma base de um conjunto de geradores de um subespaço de R n 1. Descrição do método e alguns exemplos Colocamos o seguinte problema: dado um conjunto finito: A = {a 1, a 2,...,
MAT 1202 ÁLGEBRA LINEAR II SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro
MAT 1202 ÁLGEBRA LINEAR II 2012.2 SUBESPACCOS FUNDAMENTAIS E TRANSF. LINEARES 23/08/12 Profs. Christine e Pedro 1. Subespaços Fundamentais de uma Matriz (1.1) Definição. Seja A uma matriz retangular m
Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013
MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro
Espaços vectoriais reais
Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o
Primeira prova de Álgebra Linear - 06/05/2011 Prof. - Juliana Coelho
Primeira prova de Álgebra Linear - 6/5/211 Prof. - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1 (2, pts)
Indicação de uma possível resolução do exame
Eame de Álgebra Linear e Geometria Analítica Eng Electrotécnica e Eng Mecânica 3 de Janeiro de 7 Duração horas, Tolerância 5 minutos (Sem consulta) Indicação de uma possível resolução do eame Considere
Matemática II /06 - Matrizes 1. Matrizes
Matemática II - 00/0 - Matrizes Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma função A : f; ; :::; mg f; ; :::; ng R: (i; j) A (i; j)
Seja f um endomorfismo de um espaço vectorial E de dimensão finita.
6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio
Método de eliminação de Gauss
Matrizes - Matemática II - 00/0 Método de eliminação de Gauss Seja A = [a ij ] uma matriz de tipo m n. a FASE - ELIMINAÇÃO DESCENDENTE Esta fase permite obter uma matriz em forma de escada a partir da
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x
Espaços vectoriais com produto interno. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19
Capítulo 6 Espaços vectoriais com produto interno ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19 Definição e propriedades ALGA 2008/2009 Mest.
Álgebra Linear Exercícios Resolvidos
Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos
3 a Lista para auto-avaliação (com um exercício resolvido)
Álgebra Linear Cursos: Engenharia Civil, Engenharia de Minas, Engenharia do Território 1 ō ano/1 ō Semestre 21/211 3 a Lista para auto-avaliação (com um exercício resolvido) 1. Indique a característica
Nota importante: U é a matriz condensada obtida no processo de condensação da matriz
Decomposição P T LU A denominada decomposição P T L U é um processo que pode ser extremamente útil no cálculo computacional, na resolução de sistemas de equações lineares. Propriedade Seja A uma matriz
Álgebra Linear Semana 05
Álgebra Linear Semana 5 Diego Marcon 4 de Abril de 7 Conteúdo Interpretações de sistemas lineares e de matrizes invertíveis Caracterizações de matrizes invertíveis 4 Espaços vetoriais 5 Subespaços vetoriais
Sistemas - Relações entre as colunas da matriz ampliada
Sistemas - Relações entre as colunas da matriz ampliada Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra
Avaliação e programa de Álgebra Linear
Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (
Álgebra Linear I. Resumo e Exercícios P3
Álgebra Linear I Resumo e Exercícios P3 Fórmulas e Resuminho Teórico Espaço Vetorial Qualquer conjunto V com 2 operações: Soma e Produto escalar, tal que 1. u + v + w = u + v + w u, v, w V 2. u + v = v
Sistemas de equações lineares
ALGA- / - Sistemas de Equações Lineares Sistemas de equações lineares Introdução Uma equação linear nas incógnitas ou variáveis x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b
Teste 1 de Matemática I - Curso de Arquitectura
Teste de Matemática I - Curso de Arquitectura de Outubro de 9 - Teste B Resolva por eliminação de Gauss e descreva geometricamente o conjunto de soluções dos sistemas em R < x + y + z = (a) ( val) x +
Ficha de Exercícios nº 1
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: um conjunto de geradores de um subespaço S 2 de V, então A 1 A 2
Q1. Seja V um espaço vetorial e considere as seguintes afirmações: (I) se A 1 é um conjunto de geradores de um subespaço S 1 de V e A 2 é um conjunto de geradores de um subespaço S 2 de V, então A 1 A
Álgebra Linear. Curso: Engenharia Electrotécnica e de Computadores 1 ō ano/1 ō S 2006/07
Álgebra Linear Curso: Engenharia Electrotécnica e de Computadores ō ano/ ō S 6/7 a Lista: SISTEMAS DE EQUAÇÕES LINEARES E ÁLGEBRA DE MATRIZES Sistemas de equações lineares. Quais das seguintes equações
MAT Resumo Teórico e Lista de
MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais
Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:
Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números
Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto
Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.
Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 1º Teste
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 1º Teste Realizado em 01 de Fevereiro de 2012 Ano Lectivo: 2011-2012 Semestre: Inverno ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear
ficha 1 matrizes e sistemas de equações lineares
Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2
ALGA I. Representação matricial das aplicações lineares
Módulo 6 ALGA I Representação matricial das aplicações lineares Contents 61 Matriz de uma aplicação linear 76 62 Cálculo do núcleo e imagem 77 63 Matriz da composta 78 64 GL(n Pontos de vista passivo e
Introduzir os conceitos de base e dimensão de um espaço vetorial. distinguir entre espaços vetoriais de dimensão fnita e infinita;
META Introduzir os conceitos de base e dimensão de um espaço vetorial. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: distinguir entre espaços vetoriais de dimensão fnita e infinita; determinar
Valores e vectores próprios
ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas
Professor João Soares 20 de Setembro de 2004
Teoria de Optimização (Mestrado em Matemática) Texto de Apoio 2A Universidade de Coimbra 57 páginas Professor João Soares 20 de Setembro de 2004 Optimização Linear Considere o problema (1) abaixo, que
Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A
Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL REGIME NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA º FREQUÊNCIA de Janeiro de 8 Duração:
Notas de ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
Departamento de Matemática Escola Superior de Tecnologia Instituto Politécnico de Viseu Notas de ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Lurdes Sousa i Índice Prefácio iii I Matrizes e sistemas de equações
Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0
Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +
Álgebra Linear Teoria de Matrizes
Álgebra Linear Teoria de Matrizes 1. Sistemas Lineares 1.1. Coordenadas em espaços lineares: independência linear, base, dimensão, singularidade, combinação linear 1.2. Espaço imagem (colunas) - Espaço
Métodos Matemáticos II
Sumário Métodos Matemáticos II Nuno Bastos Licenciatura em Tecnologias e Design Multimédia Escola Superior de Tecnologia de Viseu Gabinete 4 [email protected] http://www.estv.ipv.pt/paginaspessoais/nbastos.
Álgebra Linear e Geometria Analítica
Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL/TOPOGRÁFICA REGIMES DIURNO/NOCTURNO - º SEMESTRE - º ANO - 7 / 8 ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA EXAME DE ÉPOCA
ÁLGEBRA LINEAR. Base e Dimensão de um Espaço Vetorial. Prof. Susie C. Keller
ÁLGEBRA LINEAR Base e Dimensão de um Espaço Vetorial Prof. Susie C. Keller Base de um Espaço Vetorial Um conjunto B = {v 1,..., v n } V é uma base do espaço vetorial V se: I) B é LI II) B gera V Base de
PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32
ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços
(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas
Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química
Código do Teste: 105 Álgebra Linear 1 ō Teste - 16/ 11/ 02 Cursos: Eng. Ambiente, Eng. Biológica, Eng. Química, Lic. Química 1. Para as matrizes A = ( 1 0 3 1 ) B = ( 5 4 1 0 2 1 3 1 ) C = 1 1 1 0 5 1
Resolução de sistemas de equações lineares: Fatorações de matrizes
Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina
Resolução de sistemas de equações lineares: Fatorações de matrizes
Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina
1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0
1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo
w 1 = v 1 + v 2 + v 3 w 2 = 2v 2 + v 3 (1) w 3 = v 1 + 3v 2 + 3v 3 também são linearmente independentes. T =
Independência e dependência linear ) a) Sejam v, v e v vectores linearmente independentes de um espaço linear S. Prove que os vectores também são linearmente independentes. Resolução Seja V a expansão
decomposição de Cholesky.
Decomposição LU e Cholesky Prof Doherty Andrade - DMA-UEM Sumário 1 Introdução 1 2 Método de Eliminação de Gauss 1 3 Decomposição LU 2 4 O método de Cholesky 5 5 O Algoritmo para a decomposição Cholesky
ÁLGEBRA LINEAR. Exame Final
UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0
Ficha de Exercícios nº 3
Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)
Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir
Resolução de sistemas de equações lineares: Fatorações de matrizes
Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO
UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço
1 Subespaços Associados a uma Matriz
1 Subespaços Associados a uma Matriz Seja V = R n e para quaisquer u, v, e w em V e quaisquer escalares r,s em R 1, 1. u + v é um elemento de V sempre que u e v são elementos de V a adição é fechada, 2.
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria da Graça Marcos Marisa João Guerra Pereira de Oliveira Alcinda Maria de Sousa Barreiras
ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Maria da Graça Marcos Marisa João Guerra Pereira de Oliveira Alcinda Maria de Sousa Barreiras EDIÇÃO, DISTRIBUIÇÃO E VENDAS SÍLABAS & DESAFIOS - UNIPESSOAL LDA. NIF:
Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares
FATEC Notas de Aulas de Matrizes, Determinantes e Sistemas Lineares Prof Dr Ânderson Da Silva Vieira 2017 Sumário Introdução 2 1 Matrizes 3 11 Introdução 3 12 Tipos especiais de Matrizes 3 13 Operações
Álgebra Linear - Exercícios resolvidos
Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos
6 Valores e Vectores Próprios de Transformações Lineares
Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)
EXERCÍCIOS DE ÁLGEBRA LINEAR
IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!
ALGA I. Bases, coordenadas e dimensão
Módulo 5 ALGA I. Bases, coordenadas e dimensão Contents 5.1 Bases, coordenadas e dimensão............. 58 5.2 Cálculos com coordenadas. Problemas......... 65 5.3 Mudanças de base e de coordenadas..........
Álgebra Linear e Geometria Anaĺıtica
Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares
Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning.
1 0 Lista de Exercício de Mat 116- Álgebra Linear para Química Turma: 01410 ( 0 semestre 014) Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição,
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES
ÁLGEBRA LINEAR SISTEMAS DE EQUAÇÕES LINEARES Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 Sistemas de Equações Lineares 1 Sistemas e Matrizes 2 Operações Elementares 3 Forma
Álgebra Linear AL. Luiza Amalia Pinto Cantão. Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP
Álgebra Linear AL Luiza Amalia Pinto Cantão Depto de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocabaunespbr Espaços Vetoriais 1 Definição; 2 Subespaços; 3 Combinação Linear, dependência
Aulas práticas de Álgebra Linear
Ficha Matrizes e sistemas de equações lineares Aulas práticas de Álgebra Linear Mestrado Integrado em Engenharia Eletrotécnica e de Computadores o semestre 6/7 Jorge Almeida e Lina Oliveira Departamento
Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico
Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1
Álgebra Linear
Álgebra Linear - 0191 Lista 3 - Dependência e Independência Linear Bases e Soma Direta 1) Exiba três vetores u v w R 3 com as seguintes propriedades: nenhum deles é múltiplo do outro nenhuma das coordenadas
(Todos os cursos da Alameda) Paulo Pinto
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Resumo das Aulas Teóricas de 2 o Semestre 2004/2005 (Todos os cursos da Alameda) Paulo Pinto Álgebra Linear Conteúdo Sistemas
Álgebra Linear 1 o Teste
Instituto Superior Técnico Departamento de Matemática 1 o Semestre 2008-2009 6/Janeiro/2008 Prova de Recuperação Álgebra Linear 1 o Teste MEMec, MEAer Nome: Número: Curso: Sala: A prova que vai realizar
