ROTEIRO DE RECUPERAÇÃO - 2º SEMESTRE -MATEMÁTICA
|
|
|
- Daniel Desconhecida Bardini
- 9 Há anos
- Visualizações:
Transcrição
1 ROTEIRO DE RECUPERAÇÃO - 2º SEMESTRE -MATEMÁTICA Nme: Nº 9ºAn Data: / / Prfessres: Dieg, Marcell e Yuri Valr 1,0 pnt 1. Apresentaçã: Prezad alun, A estrutura da recuperaçã bimestral d Clégi Pentágn pressupõe uma revisã ds cnteúds essenciais que fram trabalhads durante bimestre. O rteir de recuperaçã vai auxiliá-l a planejar e rganizar seus estuds. Para iss, sugerims que: Ante tud que tiver para fazer. Elabrar um esquema pde ajudar. Faça um planejament de estuds, estabelecend um hrári para desenvlver suas tarefas. Estabeleça priridades: em que matérias/assunts vcê pssui mais dificuldades. Quais sã suas dúvidas? Para que vcê aprveite essa prtunidade, é necessári cmprmetiment: reslva tdas as atividades prpstas cm atençã, ante em um cadern suas dúvidas e leve-as para as aulas de recuperaçã. Sempre que pssível, aprveite a mnitria de estuds para esclarecer tdas as dúvidas que ficaram pendentes durante an que passu. Tud que fr fazer, faça bem feit! 2. Cnteúds: Para ajudar em sua rganizaçã ds estuds, vale lembrar quais fram s cnteúds essenciais trabalhads durante an Temas Objetivs para s aluns cnceits Relações métricas n triângul retângul e na circunferência Cap. 6 Classificar s triânguls quant as ânguls, cnhecend-se as medidas ds seus lads Identificar em um triângul retângul a hiptenusa e s catets. Verificar e demnstrar Terema de Pitágras. Aplicar terema de Pitágras na resluçã de prblemas. Aplicar terema de Pitágras para chegar às relações entre: lad e diagnal de um prisma; lad e altura de um triângul equiláter. Reslver situações-prblemas utilizand Terema de Pitágras. Identificar s elements de um triângul retângul e assciar a cada um a sua medida. Estabelecer, a partir da semelhança de triânguls, relações entre as medidas ds catets, da hiptenusa, da altura relativa à hiptenusa e das prjeções
2 ds catets. Verificar que as relações métricas sã resultads decrrentes da semelhança de triânguls. Deduzir e aplicar a relaçã entre: duas crdas cncrrentes de mesma circunferência. Dis segments secantes em uma mesma circunferência. Um segment de secante e um segment de tangente em uma mesma circunferência. Estatística, Cmbinatória Prbabilidade Cap. 9 e Identificar e classificar variáveis estatísticas em qualitativas u quantitativas. Calcular a frequência absluta, a frequência relativa, a frequência acumulada e a frequência relativa acumulada. Interpretar infrmações pr mei de dads apresentads em histgramas. Calcular média aritmética, mda e mediana de um cnjunt de dads. Reslver situações-prblemas que envlvam racicíni cmbinatóri e a determinaçã das chances de sucess de cert event em um experiment. Elabrar experiments para estimar pssibilidades e verificar as chances de crrência de um event em um experiment Explrand ideia de funçã Crdenadas cartesianas a Explrand intuitivamente a nçã de funçã Funçã afim Funçã quadrática -Recnhecer quand uma crrespndência entre duas grandezas caracteriza uma funçã. Cmpreender cnceit de funçã. Elabrar gráfic de uma funçã dada pr uma tabela u pr uma fórmula. Identificar relações entre duas grandezas. Adquirir a nçã de funçã pr mei de exempls prátics. Elabrar gráfic de uma funçã dada pr uma tabela u pr uma fórmula. Cletar, rganizar, ler e analisar infrmações, cnstruind e interpretand tabelas de frequências e gráfics. Determinar a lei de frmaçã de uma funçã. Recnhecer uma funçã afim, suas prpriedades e cnstruir seu gráfic. Recnhecer uma funçã quadrática, suas prpriedades e cnstruir seu gráfic. Cap. 3 Intrduçã Trignmetria à Razões trignmétricas para ânguls de 30º, 45º e 60º Tabela das razões trignmétricas Cnceituaçã de tangente de ângul. -Cnceituaçã de razões trignmétricas. -Resluçã de prblemas cm us das razões trignmétricas -Resluçã de prblemas de cálcul de distâncias inacessíveis. -Percepçã da presença da Matemática na realidade -Aplicar s valres d sen, d cssen e da tangente ds ânguls ntáveis na resluçã de prblemas. -Resluçã de prblemas relativs a plígns inscrits e circunscrits Relações trignmétricas em plígns regulares
3 inscrits em uma circunferência Cap. 7 Perímetrs, Áreas e Vlumes Retmand aprfundand cálcul perímetrs e de Retmand e aprfundand cálcul de áreas. Retmand e aprfundand cálcul da medida de vlume Recnhecer a similaridade d prisma cm blcs retangulares já estudads. Calcular áreas de regiões planas Obter a relaçã matemática para a área d círcul Cnceituaçã e métd para bter vlume d cilindr e d prisma. Calcular vlume de um cilindr Reslver situações-prblemas que envlvam racicíni cmbinatóri e a determinaçã das chances de sucess de cert event em um experiment. Elabrar experiments para estimar pssibilidades e verificar as chances de crrência de um event em um experiment.. Cap.8 4. Materiais que devem ser utlilizads e/u cnsultads durante a recuperaçã: Livr didátic Listas de estuds Listas extras Antações de aula feitas n própri cadern. Exercícis d Mdle Exercícis d Mangahigh Prvas mensais Prvas bimestrais 5. Etapas e atividades: Veja quais sã as atividades que fazem parte d prcess de recuperaçã: a) Refazer as prvas mensais e bimestral para identificar suas dificuldades e aprveitar as aulas para esclarecer as dúvidas cm prfessr u mnitr da disciplina. b) Refazer as listas de estuds. c) Revisar as atividades realizadas em aula, bem cm as antações que vcê fez n cadern. d) Refazer s exercícis d Mdle
4 e) Refazer s exercícis d Mangahigh f) Fazer s exercícis d rteir de recuperaçã. 6. Trabalh de recuperaçã Imprimir a ficha de questões, cmpletar cabeçalh cm seu nme e númer. Reslver tdas as questões pedidas em flhas de papel almaç u flhas d blc de redaçã de frma rganizada, deixand tds s cálculs para prfessr cnferir seu racicíni. Escrever as respstas cmpletas a caneta preta u azul. Grampear: a ficha de questões e as flhas cm as questões reslvidas. Entregar na data estipulada. BOM TRABALHO
5 1. (Ueg 2015) Érika reslve passear cm a cachrrinha Kika e, antes de sair d apartament, esclhe clcar uma rupa e uma cleira na cachrrinha. Se Kika tem 7 rupas e 3 cleiras, tdas distintas, de quantas maneiras Érika pde esclher uma rupa e uma cleira para passear cm a Kika? a) 10 b) 21 c) 35 d) 42 e) (Upe 2012) Rita tem três dads: um branc, um azul e um vermelh. Quantas sã as frmas de ela bter sma seis n lançament simultâne ds três dads? a) 9 b) 10 c) 12 d) 18 e) 24 e) (G1 - ifsp 2014) A ligar, pr segments de retas, s pnts médis ds lads de um quadrad de lad 60 cm, btém-se um quadriláter, cuj perímetr é, em centímetrs, a) b) c) d) e) (G1 - ifce 2011) A altura, baixada sbre a hiptenusa de um triângul retângul, mede 12 cm, e as prjeções ds catets sbre a hiptenusa diferem de 7 cm. Os lads d triângul sã, em centímetrs, iguais a a) 10, 15 e 20. b) 12, 17 e 22. c) 15, 20 e 25. d) 16, 21 e 26. e) 18, 23 e (G1 - ifce 2012) Sbre s lads AB e AC d triângul ABC, sã marcads s pnts D e E, respectivamente, de tal frma, que DE // BC, AE = 6 cm, DB = 2 cm, EC = 3 cm e DE = 8 cm. Nessas cndições, a sma das medidas ds segments AD e BC, em centímetrs, vale a) 12. b) 16. c) 18. d) 24. e) 30.
6 6. (Pucrj 2012) Um baralh tem 26 cartas pretas e 26 cartas vermelhas. As cartas estã rdenadas a acas. a) Retirams uma carta d baralh cmplet: qual é a prbabilidade de que a carta seja vermelha? b) Retirams carta d baralh cmplet: qual a prbabilidade de que a carta seja preta? 7) Uma câmara frigrífica usada para armazenar certs tips de aliment precisa ter sua temperatura variand entre graus negativs e psitivs para que aliment nã perca suas prpriedades. A temperatura, em cert interval de temp, é dada pela funçã h(t) = t² - 4t +3, em que h(t) representa a temperatura na câmara medida em graus Celsius, a lng d temp, que está representad pr t e é medid em hra. a) Qual é a temperatura da câmara n instante t = 0, u seja, quand a câmara acabu de ser ligada? b) Em quais mments a temperatura é 0ºC? c) Qual é a temperatura mínima atingida? 8) Durante uma partida de futebl, a cbrar um tir de meta, gleir chutu a bla, que percrreu uma trajetória na frma de uma parábla expressa pela lei f(x) = -x² + 8x, em que f(x) indica a altura que a bla alcançu e x representa a distância, em metr, que a bla percrreu na direçã hrizntal. a) Faça um esbç d gráfic. b) Qual fi a altura máxima atingida pela bla? c) Quants metrs na direçã hrizntal essa bla já havia percrrid quant tcu nvamente sl? 9) O lucr mensal de uma empresa, em real, é dad pr L = x² + 5x 250, em que x é a quantidade mensal de mercadrias vendidas. Determine a quantidade mínima de mercadrias vendidas em um mês para que lucr seja mair que R$ ,00. (use a calculadra) 10) O prefeit de uma cidade decidiu fazer um msaic em parte de uma praça circular, cnfrme esquema abaix. A medida d diâmetr da praça é 50 metrs e a mã de bra custa R$ 9,50 pr metr quadrad cnstruíd. Quants reais serã gasts em mã de bra para fazer msaic?
7 11) Uma empresa vai pintar nas paredes externas de seu prédi lgtip ilustrtad a seguir. Cm uma lata de tinta vermelha pde-se pintar n máxim 200 m². Quants desses lgtips pdem ser pintads cm uma dessas latas? 12) Na figura abaix, sabe-se que s lsangs ACEF e BDHG sã cngruentes e pssuem área de 24 cm². sabend que AB = 10 cm determine a área de ABGF. 13) O tedlit é um instrument usad para medir ânguls muit usad na cnstruçã civil. Na situaçã abaix, tedlit tem 1,5 m de altura. Qual é a altura d pste?
8 14) Um arquitet está prjetand um prédi. Ele terá de cnstruir uma rampa que una a garagem a térre A rampa terá cmpriment de 10 m, e a diferença de altura entre a garagem e térre é 3m. Qual será, em graus, a inclinaçã da rampa? 15) Uma bicicleta sbe uma rampa lisa de 44 m de cmpriment que faz um ângul de 30º cm plan hrizntal. Que altura atinge a bicicleta a chegar a tp da rampa? 16) A imagem representa rótul que será clad sbe uma lata cilíndrica, cbrind tda sua lateral, sem sbrepsições. Qual é vlume dessa lata?
9 17) Uma peça metálica tem frmat de paralelepíped e pssui 28 aberturas cilíndricas que a atravessa, cada uma cm 1,5 cm de rai. Determine vlume de metal necessári para prduzir uma peça cm essa. FONTES: SUPER PRO MATEMÁTICA NOS DIAS DE HOJE PROJETO ARARIBÁ ED.LEYA ED.MODERNA
I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão
VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - GEOMETRIA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - GEOMETRIA Nome: Nº 9º ano Data: / / Professores: Diego, Leandro, Milena e Yuri Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, o roteiro de recuperação vai
Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta
Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Professores: Diego, Marcello e Yuri Nota: (Valor 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
_ z~ '--z7-70. ----- 7ã ~ 174. 26. Observe o gráfico abaixo. MATEMÁTICA. 10... it
MATEMÁTICA 26. Observe gráfic abai. TRANSPlAtms IlEAUZADOS NORSEM lols,alíluuto I - RLA DE ESPERA POR TRANSPlANJE EM.uut NO AS 305 ----- 7ã ~ 174 '--z7-70 10... it _ z~ Fnte: Jmal Zer Hra Nele está retratad
Gabarito Extensivo MATEMÁTICA volume 1 Frente D
Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 9º Ano Nota: (Valor 2,0) Data: / / Professores: Denys, Diego e Yuri 1. Apresentação: Prezado aluno, A estrutura da recuperação anual do Colégio Pentágono
BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.
BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...
L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.
AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc
ROTEIRO DE RECUPERAÇÃO - 3º BIMESTRE - GEOMETRIA
ROTEIRO DE RECUPERAÇÃO - 3º BIMESTRE - GEOMETRIA Nome: Nº 9ºAno Data: / / Professores: Diego Leandro, Diego Silva e Yuri 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral do Colégio
Quadriláteros. a) 30 o e 150 o b) 36 o e 72 o c) 36 o e 144 o d) 45 o e 135 o e) 60 o e 120 o. Nessas condições, a área do paralelogramo EFBG é.
1) (OBM) O retângul a lad está dividid em 9 quadrads, A, B, C, D, E, F, G, H e I. O quadrad A tem lad 1 e quadrad B tem lad 9. Qual é lad d quadrad I? Quadriláters b) Cnsidere dis plinômis, f(x) e g(x),
MATEMÁTICA. 248 = 800 mg de cálcio. 1600 k2. k 2 1600 k2
(9) 35-0 www.elitecampinas.cm.br O ELITE RESOLVE A UNICAMP 005 SEGUNDA FASE MATEMÁTICA MATEMÁTICA ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever apenas resultad
1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:
Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC
Soma dos ângulos: internos ou externos?
Refrç esclar M ate mática Sma ds ânguls: interns u externs? Dinâmica 5 9º An 4º Bimestre Prfessr DISCIPLINA An CAMPO CONCEITO Matemática 9º d Ensin Fundamental Gemétric. Plígns regulares e áreas de figuras
Lista de Estudo P2 Matemática 2 ano
Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.
A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi
MATEMÁTICA 1 o Ano Duds
MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã
2.2. ÁLGEBRA E GEOMETRIA - Circunferências e círculos (Unidade 3 - Capítulo 3).
ROTEIRO DE ESTUDOS 3 NOME Nº 8 ANO MATEMÁTICA - 3º BIMESTRE Profs. Yuri, Marcello e Décio 1. APRESENTAÇÃO Caro aluno, A estrutura da recuperação paralela do Colégio Pentágono pressupõe uma revisão dos
PLANEJAMENTO ANUAL 2014
PLANEJAMENTO ANUAL 2014 Disciplina: GEOMETRIA Período: Anual Professor: JOÃO MARTINS Série e segmento: 9º ANO 1º TRIMESTRE 2º TRIMESTRE 3º TRIMESTRE vários campos da matemática**r - Reconhecer que razão
ROTEIRO DE RECUPERAÇÃO 3 - GEOMETRIA
ROTEIRO DE RECUPERAÇÃO 3 - GEOMETRIA Nome: Nº 8º ano Data: / / Professores: Diego, Yuri e Diego Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral
01) 45 02) 46 03) 48 04) 49,5 05) 66
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade
ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL MATEMÁTICA Nome: Nº 6ºAno Data: / / Professores: Leandro e Renan Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do Colégio
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - ÁLGEBRA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA - ÁLGEBRA Nome: Nº 9º ano Data: / / 2018 Nota: (Valor 2,0) Professores: Cauê / Marcello / Milena 1. Apresentação: Prezado aluno, o roteiro de recuperação vai auxiliá-lo
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa A. alternativa D. alternativa B. alternativa A
Questã TIPO DE PROVA: A Um bjet é vendid em uma lja pr R$ 6,00. O dn da lja, mesm pagand um impst de 0% sbre preç de venda, btém um lucr de 0% sbre preç de cust. O preç de cust desse bjet é: a) R$ 6,00
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr
UNIGRANRIO
1) UNIGRANRIO Dados os polinômios p1 = x 2 5x + 6, p2 = 2x² 6x + 7 e p3 = x² 3x + 4. A respeito destes polinômios, sabe-se que p3 = ap1 + bp2. Dessa forma, pode-se afirmar que a b vale: a) 1 b) 2 c) 3
Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO
Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C
Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds
Em geometria, são usados símbolos e termos que devemos nos familiarizar:
IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,
Cevianas: Baricentro, Circuncentro, Incentro e Mediana.
Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação
REVISITANDO A GEOMETRIA PLANA
REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a
Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160
Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )
CAPÍTULO VIII. Análise de Circuitos RL e RC
CAPÍTUO VIII Análise de Circuits e 8.1 Intrduçã Neste capítul serã estudads alguns circuits simples que utilizam elements armazenadres. Primeiramente, serã analisads s circuits (que pssuem apenas um resistr
1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado
SISTEMA DE EQUAÇÕES DO 2º GRAU
SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo
Faculdade Pitágoras Unidade Betim
Faculdade Pitágoras Unidade Betim Atividade de Aprendizagem Orientada Nº 4 Profª: Luciene Lopes Borges Miranda Nome/ Grupo: Disciplina: Cálculo III Tempo da atividade: h Curso: Engenharia Civil Data da
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) (UFPE) Uma ponte deve ser construída sobre um rio, unindo os pontos e B, como ilustrado na figura abaixo. Para calcular o comprimento B, escolhe-se um ponto C, na mesma margem em que B está, e medem-se
Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.
Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO FINAL - MATEMÁTICA Nome: Nº 9ºAno Data: / / Professores: Diego, Marcello e Yuri Valor 2,0 pontos 1. Apresentação: Prezado aluno, A estrutura da recuperação final do Colégio Pentágono
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
II - Teorema da bissetriz
I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos
Lista de exercícios do teorema de Tales
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de
1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S
AEFG. Sabe-se que: ABCD e. AD, respetivamente.
Escola Básica de Ribeirão (Sede) ANO LETIVO 04/0 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 0 minutos (Caderno ) + 0 minutos
Questões Gerais de Geometria Plana
Aula n ọ 0 Questões Gerais de Geometria Plana 01. Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura. Para 1 tampa
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA r (a, b) P R C P R C P R C Como pode cair no enem (UFRRJ) Em um circo, no qual o picadeiro tem no plano cartesiano a forma de um círculo de equação igual a
Triângulo Retângulo. Relações Métrica e Teorema de Pitágoras
Triângulo Retângulo Relações Métrica e Teorema de Pitágoras 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente
Planificação Anual de Matemática 5º Ano
Planificação Anual de Matemática 5º Ano DOMÍNI OS CONTEÚDOS METAS AULA S Números naturais Compreender as propriedades e regras das operações e usá-las no cálculo. Propriedades das operações e regras operatórias:
QUESTÕES COMENTADAS DE MECÂNICA
QUSTÕS OMNTS MÂNI Prf. Ináci envegnú Mrsch MOM ept. ng. ivil UFRGS 1) etermine valr da frça F 2, figura (1), que é rtgnal à reta O, para que smatóri ds mments em O seja igual a zer. 2 16 F 2 Sluçã: Transprta-se
Valor das aposentadorias
Valr das apsentadrias O que é? O cálcul d valr de apsentadrias é a frma cm s sistemas d INSS estã prgramads para cumprir que está previst na legislaçã em vigr e definir valr inicial que vai ser pag mensalmente
ROTEIRO DE RECUPERAÇÃO DO 2º BIMESTRE MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO DO 2º BIMESTRE MATEMÁTICA Nome: Nº 6º Ano Data: / / Professores: Leandro e Décio Nota: (Valor 2,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do
1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E
Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior
matemática 2 Questão 7
Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA. Nome: Nº 9ºAno. Data: / / Professores: Diego, Denys e Yuri Nota: (Valor 1,0) 3º Bimestre/
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 9ºAno Data: / / Professores: Diego, Denys e Yuri Nota: (Valor 1,0) 3º Bimestre/2016 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
a) 8 b) 12 c) 16 d) 20 e) 24
0) (UFRGS) Na figura abaixo, A, B e C são vértices de hexágonos regulares justapostos, cada um com área 8. Segue-se que a área do triângulo cujos vértices são os pontos A, B e C é: a) 8 b) 1 c) 16 d) 0
Disciplina de Matemática Professora Valéria Espíndola Lessa. Atividades de Revisão 1º ano do EM 1º bimestre de 2011. Nome: Data:
Disciplina de Matemática Professora Valéria Espíndola Lessa tividades de Revisão 1º ano do EM 1º bimestre de 011. Nome: Data: a) I b) I e II c) II d) III e) II e III. Num curso de espanhol, a distribuição
Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,
j^qbjžqf`^=^mif`^a^=
j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Sami e Thiago Nota: (Valor 2,0) 2º Semestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C
Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das
Matemática B Extensivo V. 1
Matemática Etensiv V. Eercícis 0 5 60 0) m 0) E sen cs tan Seja a medida entre prédi mair e a base da escada que está apiada. Também, seja y a medida da entre a base d prédi menr e a base da escada nele
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1
OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste
O número mínimo de usuários para que haja lucro é 27.
MATEMÁTICA d Um reservatório, com 0 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 8% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que
Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B
Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem
PLANEJAMENTO ANUAL / TRIMESTRAL 2013 Conteúdos Habilidades Avaliação
CENTRO EDUCACIONAL LA SALLE Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Trimestre:
7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:
EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2
AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA
AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA Nome: nº Série: 3º ano Turma: Professora: Data: / / 1) A figura abaixo representa a planificação de um sólido geométrico. O sólido planificado é A) uma pirâmide de base
UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL
Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
Capítulo 6. Geometria Plana
Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior
Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.
Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.
MATEMÁTICA APLICADA RESOLUÇÃO
GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã
MATEMÁTICA PROVA 3º BIMESTRE
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 3º BIMESTRE 9º ANO 2010 QUESTÃO 1 Na reta numérica abaixo, há
1 a QUESTÃO: (2,0 pontos) Avaliador Revisor
( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),
BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS
BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS MARIA HELENA CUNHA Área Científica de Matemática - Escla Superir de
QUESTÃO 16 Dois garotos, tentando pular um muro, encostaram um banco de 50 cm de altura no muro e colocaram uma escada sobre ele, conforme a figura.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Dois garotos, tentando pular um muro, encostaram um banco de 50
EXERCÍCIOS COMPLEMENTARES
EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa
LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA
LIST E EXERÍIOS E GEOMETRI PLN 01) FUVEST - medida do ângulo inscrito na circunferência de centro O é: a) 125 o b) 110 o c) 120 o 35 d) 100 o O e) 135 o 02) Num triângulo de lados = 12, = 8 e = 10, a medida
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Perímetros e áreas Perímetro de polígonos regulares e irregulares Perímetro do círculo Equivalência de figuras planas Unidades de área Área do triângulo Área do círculo Síntese Perímetro O perímetro
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 RECUPERAÇÃO ESTUDOS INDENPENDENTES Nome Nº Turma 3 EJAS Data / / Nota Disciplina Matemática Prof. Elaine e Naísa Valor 30 Instruções: TRABALHO DE
Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre
Aula 2 - Revisão I Parte Revisão de Conceitos Básicos da Matemática aplicada à Resistência dos Materiais I: Relações Trigonométricas, Áreas, Volumes, Limite, Derivada, Integral, Vetores. II Parte Revisão
Aluno(a): Código: 04. Sabendo que log 2 = x e log 3 = y, calcule o valor de: a) log 120. b) log 3 2 5
lun(a): Códig: Série: 1ª Turma: Data: / / 01. Se lg 2 = a e lg 3 = b, calcule valr de: a) lg 30 04. Sabend que lg 2 = x e lg 3 = y, calcule valr de: a) lg 120 b) lg 0,75 b) lg 3 2 5 02. Eles têm certeza
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE DE MATEMÁTICA SEGUNDA SÉRIE. Nome: Nº: 2ª Série
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE DE MATEMÁTICA SEGUNDA SÉRIE Nome: Nº: 2ª Série Data: / /2018 Professor: Nota: Valor: 2,00 pontos 1. Apresentação Prezado aluno, A estrutura da recuperação bimestral
Proposta de teste de avaliação 4 Matemática 9
Prpsta de teste de avaliaçã 4 Matemática 9 Nme da Escla An letiv 0-0 Matemática 9.º an Nme d Alun Turma N.º Data Prfessr - - 0 Na resluçã ds itens da parte A pdes utilizar a calculadra. Na resluçã ds itens
Colégio Visconde de Porto Seguro Unidade I Ensino Fundamental Nível I (1º ao 5º ano)
Clégi Viscnde de Prt Segur Unidade I Ensin Fundamental Nível I (1º a 5º an) Ensin Fundamental Nível I Sistema de Recuperaçã 2º an 1º e 2º períds Prezads Pais Pense sempre em sua meta e trabalhe para alcançá-la.
Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 27.04.2010 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS
1 INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS INTRODUÇÃO Os livrs de cálcul cstumam cnter um capítul u um apêndice dedicad a eplicações de fats básics da matemática e que, em geral, sã abrdads n Ensin
34
01 PQ é a crda um de duas circunferências secantes de centrs em A e B. A crda PQ, igual a, determina, nas circunferências, arcs de 60 º e 10 º. A área d quadriláter cnve APBQ é : (A) 6 (B) 1 (C) 1 6 0
NOME: CURSO: MATEMÁTICA DATA: / /2013
1. (Upe 013) Dois retângulos foram superpostos, e a intersecção formou um paralelogramo, como mostra a figura abaixo: Sabendo-se que um dos lados do paralelogramo mede,5 cm, quanto mede a área desse paralelogramo?
1º ano. Unidade 1: Conjuntos Numéricos. Unidade 2: Expressões Algébricas. Capítulo 9 - Itens: 2, 3 (2º ano) Unidade 3: Equações
1º ano Unidade 1: Conjuntos Numéricos Expressão Numérica Unidade 2: Expressões Algébricas Classificação Valor numérico Monômios e polinômios Produtos notáveis Fatoração Equação do 1º grau (inteiras e fracionadas)
TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora
1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo
Conversão Grau Radiano 180 o rad Onde 3,14
RESUMO TEÓRICO Intrduçã à Trignmetria Relações Trignmétricas n Triângul Retângul Catet Opst a α sen α Hiptenusa Hiptenusa a Catet Adjacente a Catet Opst a Catet Adjacente a α cs α Hiptenusa Catet Opst
