Capítulo 6. Geometria Plana
|
|
|
- Roberto Campelo Padilha
- 9 Há anos
- Visualizações:
Transcrição
1 Capítulo 6 Geometria Plana 9. (UEM Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior a ) Se r, s e t são retas contidas em um mesmo plano e r é paralela a s e sé paralela a t, então r é paralela a t. 04) Se r, s e t são retas contidas em um mesmo plano e r é perpendicular a s e s é perpendicular a t, então r é perpendicular a t. 08) Dois triângulos semelhantes com razão de semelhança 1 são sempre congruentes. 16) O perímetro de um polígono regular de n lados inscrito em uma circunferência de raio R é igual a 2nR sin( π n ). 10. (UEM EAD) Considere um triângulo retângulo de forma que a hipotenusa tenha o dobro da medida de um dos catetos. Em seguida, considere os sólidos obtidos ao rotacionar esse triângulo em torno de seus lados. Sobre esses objetos construídos, assinale o que for correto. 01) Os ângulos internos desse triângulo retângulo medem 40 0, 50 0 e ) O seno do menor ângulo interno do triângulo é igual a ) Se a hipotenusa do triângulo medir 3 então a medida da altura do triângulo referente ao vértice que contém o ângulo reto será 1. 08) Ao rotacionar o triângulo em torno dos catetos, obtemos dois cones distintos mas com o mesmo volume. 16) Ao rotacionar o triângulo em torno da hipotenusa, obtemos um sólido formado pela união de dois cones com bases iguais, um dos quais com o volume igual ao triplo do volume do outro. 12
2 11. (UEM EAD) Sobre um plano considere uma reta r e pontos P e Q não pertencentes à reta e contidos em um mesmo semiplano delimitado por r. Considere ainda os pontos R e S de r para os quais os segmentos P R e QS são ambos perpendiculares a r. Sabe-se ainda que o segmento P R mede 12 cm, o segmento QS mede 24 cm e o segmento P Q mede 15 cm. Dois amigos desejam encontrar o ponto X do segmento RS que minimiza a soma da distância de P a X com a distância de Q a X. O primeiro afirma que o ponto X deve ser tal que a distância de X até R seja metade da distância de X até S. O segundo afirma que X é o ponto de intersecção de RS com o segmento P T, sendo T Q o ponto sobre a reta que contém o segmento QS e cuja distância até S é igual à distância de Q a S. Assinale o que for correto. 01) O segmento RS mede 9 cm. 02) Qualquer que seja o ponto Y pertencente ao segmento RS, os triângulos Y QS e Y T S são congruentes. 04) Sendo Z o ponto descrito pelo primeiro amigo, a razão entre as áreas dos triângulos ZQS e ZP R é 2. 08) Sendo W o ponto proposto pelo segundo amigo, a reta perpendicular a RS e que passa por W contém a bissetriz do ângulo P Ŵ Q. 16) O ponto descrito por ambos é o mesmo e corresponde à solução do problema. 12. (UEM Dezembro) Considere um triângulo ABC retângulo em A, a circunferência λ que passa pelos pontos A, B e C e considere D o ponto de BC de modo que AD é uma altura do triângulo ABC. Sendo o ponto O o centro de λ, assinale o que for correto. 01) A mediana relativa ao lado BC mede metade do comprimento do lado BC. 02) O comprimento do lado BC é igual à soma dos comprimentos dos lados AB e AC. 04) Os triângulos ABC, DBA e DAC são semelhantes. 08) O segmento BCé um diâmetro da circunferência λ. 16) Se o triângulo ABC é isósceles, sua área corresponde a mais de um terço da área do círculo delimitado por λ. 13. (UEM Julho) Seja P ext um polígono circunscrito a uma circunferência λ e P int o polígono inscrito em λ cujos vértices são os pontos onde P ext tangencia λ. Sobre essa situação, assinale o que for correto. 01) Se P ext é um triângulo isósceles, então P int também é um triângulo isósceles. 02) Se P ext é um triângulo retângulo, então P int também é um triângulo retângulo. 04) Se P ext é um quadrado, então P int também é um quadrado. 08) Se P ext é um paralelogramo, então P int é um retângulo. 13
3 16) Se P ext é um quadrilátero, então as diagonais de P int são diâmetros de λ. 14. (UEM Julho) Considere ABC um triângulo retângulo em B e no qual o ângulo BĈA mede 600. Considere ainda D sobre o segmento AB de modo que CD é bissetriz de BĈA. A respeito do exposto, assinale o que for correto. 01) O segmento AB mede o triplo do comprimento do segmento BD. 02) O ângulo C DB mede ) O segmento AC mede o dobro do comprimento do segmento BC. 08) O triângulo ADC é escaleno. 16) A medida, em radianos, do ângulo C DA é 2π (UEM Julho) Considere um retângulo ABCD de lados AB = 6cm e BC = 3cm. Sobre o lado AB, marque o ponto E, tal que AE = 4cm, e, sobre o lado BC, marque o ponto F, tal que BF = 1cm. Denote por G o ponto de interseção dos segmentos AF e CE. Sobre a figura descrita acima, é correto afirmar que 01) os pontos B, G e D são colineares 02) os triângulos AGE e CF G têm a mesma área. 04) os triângulos GCD e GEB são semelhantes. 08) a área do quadrilátero AGCD é o triplo da área do quadrilátero F GEB. 16) os triângulos AGE e CF G são semelhantes. 16. Em um triângulo ABC, o lado AB mede 6 cm, e o lado BC mede 8 cm. Sabendo ainda que a circunferência λ 1 com centro A e raio AB intercepta o segmento AC em D C, e a circunferência λ 2 de centro C e raio BC intercepta o segmento AC em E A, assinale o que for correto. 01) A área desse triângulo não pode ser superior a 24cm 2. 02) O lado AC é o maior dos lados em qualquer triângulo com as propriedades descritas. 04) Em qualquer triângulo, tal como descrito, o segmento DE mede 4 cm. 08) Se o lado AC mede 10 cm, a circunferência é λ 1 tangente ao segmento BC. 16) O perímetro de ABC deve ser inferior a 28 cm. 17. (UEM Dezembro) A respeito das definições e propriedades de figuras geométricas planas, assinale a(s) alternativa(s) correta(s). 14
4 01) Dois triângulos com áreas iguais devem ter perímetros iguais. 02) Dois quadrados com áreas iguais devem ter perímetros iguais. 04) Quaisquer triângulos semelhantes tem áreas iguais. 08) Quadrados com perímetros iguais têm áreas iguais. 16) Se um círculo tem área igual à de um quadrado, então o comprimento da circunferência é maior do que o perímetro do quadrado. 18. (UEM Dezembro) Considere um circunferência de centro O e raio 2 u.c. Sejam A, B, C, D e E pontos sobre essa circunferência, nessa ordem, e tais que AD e BE sejam diâmetros. Assinale o que for correto. 01) ] Os triângulos ABD e ACD são triângulos retângulos. 02) O quadrilátero ABDE é um retângulo. 04) A área do triângulo ACD é maior que 4 u.a. 08) A medida do ângulo AEB é a metade da medida do ângulo EOD. 16) A área do quadrilátero ABDE é maior que 3 4 da medida da área do círculo. 19. (UEM Dezembro) Considere um triângulo ABC com medida AB = 5cm, AC = 2cm e BC = 4cm. Sejam D o ponto médio de BC e E o ponto médio de AB. Assinale o que for correto. 01) Os triângulos ABC e EBD são congruentes. 02) A área do triângulo ABC é menor que 4cm 2. 04) O triângulo EBD é obtusângulo. 08) O centro da circunferência circunscrita ao triângulo ABC está no interior desse triângulo. 16) A área do quadrilátero AEDC é o triplo da área do triângulo EBD. 20. (UEM Julho) Considere um triângulo ABC, no qual os lados AB e AC possuem o mesmo comprimento, a bissetriz do ângulo BĈA intercepta AB em P, e o comprimento de AP é igual ao comprimento de CP. Assinale o que for correto. 01) O ângulo BÂC mede ) O segmento CP, além de ser bissetriz de BÂC, é mediana com relação ao lado AB. 04) Os triângulos BP C e BCA são semelhantes. 08) Os triângulos BP C e AP C são congruentes. 15
5 16) O triângulo BP C é isósceles. 21. (UEM Dezembro) Considerando ABCD um quadrilátero convexo inscrito em uma circunferência de centro O, assinale o que for correto. 01) Se ABCD é um paralelogramo, então necessariamente trata-se de um retângulo. 02) Se os ângulos A BC e BĈD medem, respectivamente, 750 e 120 0, os demais ângulos internos de ABCD são agudos. 04) Se o raio da circunferência mede 2 cm e ABCD é um quadrado, a área do mesmo é 8cm 2. 08) Se o centro da circunferência pertence à diagonal BD, o ângulo BĈD é reto. 16) Se a diagonal BD possui o mesmo comprimento do raio da circunferência, um dentre os ângulos BĈD e BÂD mede GABARITO
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
Cevianas: Baricentro, Circuncentro, Incentro e Mediana.
Cevianas: Baricentro, Circuncentro, Incentro e Mediana. 1. (Ita 014) Em um triângulo isósceles ABC, cuja área mede 48cm, a razão entre as medidas da altura AP e da base BC é igual a. Das afirmações abaixo:
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor
Lista de Exercícios Geometria Plana - Pontos notáveis do triângulo 3ª Série do Ensino Médio Prof. Lucas Factor 1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância
30's Volume 8 Matemática
30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã
Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal
Propriedade: Num trapézio isósceles os ângulos de uma mesma base são iguais e as diagonais são também iguais.
125 19 QUADRILÁTEROS Propriedades 1) Num quadrilátero qualquer ABCD a soma dos ângulos internos é 1800. 2) Um quadrilátero ABCD é inscritível quando seus vértices pertence a uma mesma circunferência. 3)
II - Teorema da bissetriz
I - Teorema linear de Tales Se três ou mais paralelas são cortadas por duas transversais, então os segmentos determinados numa transversal têm medidas que são diretamente proporcionais às dos segmentos
a) 8 b) 12 c) 16 d) 20 e) 24
0) (UFRGS) Na figura abaixo, A, B e C são vértices de hexágonos regulares justapostos, cada um com área 8. Segue-se que a área do triângulo cujos vértices são os pontos A, B e C é: a) 8 b) 1 c) 16 d) 0
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
1 SOMA DOS ÂNGULOS 2 QUADRILÀTEROS NOTÀVEIS. 2.2 Paralelogramo. 2.1 Trapézio. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA IX 1 SOMA DOS ÂNGULOS A primeira (e talvez mais importante) relação válida para todo quadrilátero é a seguinte: A soma dos ângulos internos de qualquer quadrilátero
Geometria Plana Triângulos Questões Resolvidas (nem todas)
Questão 1 A bissetriz interna do ângulo  de um triângulo ABC divide o lado oposto em dois segmentos que medem 9 cm e 16 cm. Sabendo que medida de. 9 16 = AC = 3 18 AC Questão mede 18 cm, determine a O
TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...
1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência
Triângulo Retângulo. Relações Métrica e Teorema de Pitágoras
Triângulo Retângulo Relações Métrica e Teorema de Pitágoras 1. (Pucrj 013) Uma bicicleta saiu de um ponto que estava a 8 metros a leste de um hidrante, andou 6 metros na direção norte e parou. Assim, a
Construções Geométricas
Desenho Técnico e CAD Técnico Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Ângulo - é a região plana limitada por duas semirretas de mesma origem. Classificação dos ângulos: Tipos
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ângulo BDA é reto (porque está inscrito numa semicircunferência),
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos 19 de fevereiro de 014 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/014 Matemática 9.º B Nome: N.º Classificação: Fraco (0% 19%) Insuficiente
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L.
Lista de exercícios para a P8 Conteúdo: Pontos notáveis do triângulo, quadriláteros e polígonos. Prof. Rafa, Prof. Bill, Prof. Marcelo C. e Marcelo L. Mas antes de começar, atente para as seguintes dicas:
Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício
Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.
Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.
Terceira lista de exercícios.
MA092 Geometria plana e analítica Segundo semestre de 2016 Terceira lista de exercícios. Polígonos. Quadriláteros notáveis. Pontos notáveis do triângulo. 1. (Dolce/Pompeo) Determine o valor de xx nas figuras
Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:
Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,
1 PONTOS NOTÁVEIS. 1.1 Baricentro. 1.3 Circuncentro. 1.2 Incentro. Matemática 2 Pedro Paulo
Matemática 2 Pedro Paulo GEOMETRIA PLANA VIII 1 PONTOS NOTÁVEIS 1.1 Baricentro O baricentro é o encontro das medianas de um triângulo. Na figura abaixo, é o ponto médio do lado, é o ponto médio do lado
Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.
1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:
Desenho Técnico e Geometria Descritiva Construções Geométricas. Construções Geométricas
Desenho Técnico e Geometria Descritiva Prof. Luiz Antonio do Nascimento Engenharia Ambiental 2º Semestre Bissetriz - é a reta que divide um ângulo qualquer em dois ângulos iguais, partindo do vértice deste
Circunferência e círculo
54 Circunferência e círculo Ângulos na circunferência Ângulo central Ângulo central é o ângulo que tem o vértice no centro da circunferência. A medida de um ângulo central é igual à medida do arco correspondente
Relações métricas nos triângulos retângulos 1) Usando o teorema de Pitágoras, determine os elementos indicados por x ou y nas figuras seguintes:
AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Relações métricas nos triângulos retângulos ) Usando o teorema de Pitágoras, determine os elementos indicados por ou nas figuras seguintes: d) e) f) g) h) 0
UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA CIVIL
Exercícios propostos: aulas 01 e 02 GOVERNO DO ESTADO DE MATO GROSSO GA - LISTA DE EXERCÍCIOS 001 1. Calcular o perímetro do triângulo ABC, sendo dado A = (2, 1), B = (-1, 3) e C = (4, -2). 2. Provar que
LISTA DE EXERCÍCIOS DE GEOMETRIA PLANA
LIST E EXERÍIOS E GEOMETRI PLN 01) FUVEST - medida do ângulo inscrito na circunferência de centro O é: a) 125 o b) 110 o c) 120 o 35 d) 100 o O e) 135 o 02) Num triângulo de lados = 12, = 8 e = 10, a medida
Polígonos Regulares Inscritos e Circunscritos
Polígonos Regulares Inscritos e Circunscritos 1. (Fgv 013) Na figura, ABCDEF é um hexágono regular de lado 1 dm, e Q é o centro da circunferência inscrita a ele. O perímetro do polígono AQCEF, em dm, é
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )
GEOMETRIA. 1 Definições. 2 Notações
GEOMETRIA 1 Definições Mediatriz (de um segmento): conjunto de pontos que estão à mesma distância de dois pontos unidos por um segmento de recta. É uma recta e é perpendicular a este segmento no seu ponto
A área do triângulo OAB esboçado na figura abaixo é
Questão 01 - (UNICAMP SP) No plano cartesiano, a reta de equação = 1 intercepta os eios coordenados nos pontos A e B. O ponto médio do segmento AB tem coordenadas (4, 4/) b) (, ) c) (4, 4/) d) (, ) Questão
Lista 3 Figuras planas
Profa. Debora Cristiane arbosa Kirnev Disciplina: Geometria Descritiva I Curso: rquitetura e urbanismo 2º Semestre Nome: 1. Construa o que se pede: Lista 3 Figuras planas a) Semi-reta de origem e que passa
EXERCÍCIOS COMPLEMENTARES
EXERCÍCIO COMPLEMENTARE ÁREA DE FIGURA PLANA PROF.: GILON DUARTE Questão 01 Uma sala retangular tem comprimento x e largura y, em metros. abendo que (x + y) (x y) =, é CORRETO afirmar que a área dessa
REVISITANDO A GEOMETRIA PLANA
REVISITANDO A GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados a
Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro.
Lista de exercícios de geometria Relações métricas no triângulo retângulo, Áreas de figuras planas, Prisma e Cilindro. 1. A figura abaixo representa um prisma reto, de altura 10 cm, e cuja base é o pentágono
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
a) 30 b) 40 c) 50 d) 60 e) 70
Geometria Plana I Exercícios TEXTO PARA A PRÓXIMA QUESTÃO: O revestimento do piso de um ambiente, com a utilização de tacos de madeira, pode ser feito formando desenhos que constituam um elemento decorativo
Unidade 11 Geometria Plana I. Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer
Unidade 11 Geometria Plana I Congruência e semelhança de figuras planas Relações métricas do triângulo retângulo Triângulo qualquer Congruência e Semelhança de Figuras Planas TRIÂNGULOS SEMELHANTES Dois
Gabarito - Colégio Naval 2016/2017 Matemática Prova Amarela
Gabarito - Colégio Naval 016/017 PROFESSORES: Carlos Eduardo (Cadu) André Felipe Bruno Pedra Jean Pierre QUESTÃO 1 Considere uma circunferência de centro O e raio r. Prolonga-se o diâmetro AB de um comprimento
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa
1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx
Aula 6 Pontos Notáveis de um Triângulo
MODULO 1 - AULA 6 Aula 6 Pontos Notáveis de um Triângulo Definição: Lugar Geométrico é um conjunto de pontos que gozam de uma mesma propriedade. Uma linha ou figura é um lugar geométrico se: a) todos os
NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B
R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA
UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS COORDENADOR: Dr. MARCIO LIMA TEXTO: CÍRCULO TRIGONOMÉTRICO AUTORES: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR:
Professor Alexandre Assis. Lista de exercícios - Geometria Analítica. 6. Duas pessoas A e B decidem se encontrar em
6. Duas pessoas A e B decidem se encontrar em 1. Sendo (x + 2, 2y - 4) = (8x, 3y - 10), determine o valor de x e de y. um determinado local, no período de tempo entre 0h e 1h. Para cada par ordenado (x³,
Geometria Plana - Lista 1. 1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32
1. (utfpr 2015) Calcule o valor de x, em graus, na figura: a) 16 b) 10 c) 20 d) 58 e) 32 2. (Uece 2015) Considere um segmento de reta XY cuja medida do comprimento é 10 cm e P um ponto móvel no interior
Lista de Geometria 1 - Professor Habib
Lista de Geometria 1 - Professor Habib b) Para que valores de x e de y a área ocupada pela casa será máxima? 1. Na figura a seguir, as medidas são dadas em cm. Sabendo que m//n//t, determine o valor de
Professor Alexandre Assis. Lista de exercícios de Geometria
1. O polígono regular representado na figura tem lado de medida igual a 1cm e o ângulo mede 120. 4. Num círculo, inscreve-se um quadrado de lado 7 cm. Sobre cada lado do quadrado, considera-se a semi-circunferência
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [Novembro 2015]
Proposta de Teste Intermédio [Novembro 05] Nome: Ano / Turma: N.º: Data: - - Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Para cada resposta, identifica
é necessário percorrer pelas seguintes etapas: , sendo ACV e BCA ângulos suplementares; , por ser um ângulo inscrito e portanto ser igual a
Escola Secundária com º CEB de Lousada PM Assunto: Soluções da Mega-ficha de Preparação para o Eame Nacional I _ No cálculo de AV B é necessário percorrer pelas seguintes etapas: AB A- Determinar A C B
UNIGRANRIO
1) UNIGRANRIO Dados os polinômios p1 = x 2 5x + 6, p2 = 2x² 6x + 7 e p3 = x² 3x + 4. A respeito destes polinômios, sabe-se que p3 = ap1 + bp2. Dessa forma, pode-se afirmar que a b vale: a) 1 b) 2 c) 3
Matemática Fascículo 07 Manoel Benedito Rodrigues
Matemática Fascículo 07 Manoel Benedito Rodrigues Índice Geometria Resumo Teórico...1 Exercícios...4 Dicas...5 Resoluções...7 Geometria Resumo Teórico 1. O volume de um prisma eodeumcilindro (retos ou
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) (UFPE) Uma ponte deve ser construída sobre um rio, unindo os pontos e B, como ilustrado na figura abaixo. Para calcular o comprimento B, escolhe-se um ponto C, na mesma margem em que B está, e medem-se
Aula 01 Introdução à Geometria Espacial Geometria Espacial
Aula 01 Introdução à 1) Introdução à Geometria Plana Axioma São verdades matemáticas aceitas sem a necessidade de demonstração. 1 1.1) Axioma da Existência Existem infinitos pontos em uma reta (e fora
maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios
Geometria Plana II Exercícios 1. A figura abaixo é plana e composta por dois trapézios isósceles e um losango. O comprimento da base maior do trapézio ABCD é igual ao da base menor do trapézio EFGH, que
Lista de Estudo P2 Matemática 2 ano
Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.
TRIGONOMETRIA. AULA 1 _ Os triângulos Professor Luciano Nóbrega. Maria Auxiliadora
1 TRIGONOMETRIA AULA 1 _ Os triângulos Professor Luciano Nóbrega Maria Auxiliadora 2 CLASSIFICAÇÃO DOS TRIÂNGULOS Vamos relembrar como classificam-se os triângulos: Quanto aos lados: 3 lados iguais Triângulo
ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos
GABARITO MA13 - Avaliação 1 - o semestre - 013 Questão 1. (pontuação: ) ABCDE é um pentágono regular e ABF é um triângulo equilátero interior ao pentágono. Calcule os ângulos internos do triângulo AF C.
10 FGV. Na figura, a medida x do ângulo associado é
urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas
AULAS 4 a 6. Ângulos (em polígonos e na circunferência)
www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática N Í V L 3 ULS 4 a 6 Ângulos (em polígonos e na circunferência) onceitos Relacionados Proposição 1 Se duas retas são paralelas, cada par de
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa
1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar
Projeto Rumo ao ITA Exercícios estilo IME
EXERÍIOS DE GEOMETRI PLN REVISÃO 1991 PROF PULO ROERTO 01 (IME-64) Uma corda corta o diâmetro de um círculo segundo um ângulo de 45º Demonstrar que a soma do quadrado dos segmentos aditivos m e n, com
MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO
MATEMÁTICA - 2 o ANO MÓDULO 01 PONTO, RETA E PLANO r s A E B D C F α G H A B r r s r s α r P s s r α A α B C α P B r A α r α P α r P P α r A B r α A B r r r P α A B α A B F F α α=β α β = α = β α β α β
Projeto Rumo ao ITA Exercícios estilo IME
PROGRAMA IME ESPECIAL 1991 GEOMETRIA ESPACIAL PROF PAULO ROBERTO 01 (IME-64) Um cone circular reto, de raio da base igual a R e altura h, está circunscrito a 1 1 uma esfera de raio r Provar que = rh r
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E
Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)
NOME: CURSO: MATEMÁTICA DATA: / /2013
1. (Upe 013) Dois retângulos foram superpostos, e a intersecção formou um paralelogramo, como mostra a figura abaixo: Sabendo-se que um dos lados do paralelogramo mede,5 cm, quanto mede a área desse paralelogramo?
Aula 2 - Revisão. Claudemir Claudino 2014 1 Semestre
Aula 2 - Revisão I Parte Revisão de Conceitos Básicos da Matemática aplicada à Resistência dos Materiais I: Relações Trigonométricas, Áreas, Volumes, Limite, Derivada, Integral, Vetores. II Parte Revisão
Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1
Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: TRIÂNGULOS E POLÍGONOS 3 a SÉRIE ENSINO MÉDIO
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: TRIÂNGULOS E POLÍGONOS 3 a SÉRIE ENSINO MÉDIO ======================================================================= SÉRIE A 1) (UFOP Ouro Preto/MG) - Os
QUESTÃO 16 Dois garotos, tentando pular um muro, encostaram um banco de 50 cm de altura no muro e colocaram uma escada sobre ele, conforme a figura.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Dois garotos, tentando pular um muro, encostaram um banco de 50
5-(UFMA MA-98) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem 4cm e 1cm respectivamente. A área desse triângulo mede:
Relações Métricas nos Triângulos Retângulos Professor lístenes unha 1-(Mack SP-97) Num triângulo, retângulo, um cateto é o dobro do outro. Então a razão entre o maior e o menor dos segmentos determinados
Lista de exercícios do teorema de Tales
Componente Curricular: Professor(a): PAULO CEZAR Turno: Data: Matemática Matutino / /2014 Aluno(a): Nº do Aluno: Série: Turma: 8ª (81) (82) Sucesso! Lista de Exercícios Lista de exercícios do teorema de
Ficha de Trabalho nº11
Ano lectivo 011/01 Matemática A 11º Ano / Curso de Ciências e Tecnologias Tema: Geometria Ficha de Trabalho nº11 Geometria no Espaço 1. Observa a figura onde está representado um cone recto cuja base pertence
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)
MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura seguinte, estão representadas duas circunferências com centro no ponto, uma de raio e outra
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 2 Professor Marco Costa
1 1. (Fgv 2001) a) No plano cartesiano, considere a circunferência de equação x +y -4x=0 e o ponto P(3,Ë3). Verificar se P é interior, exterior ou pertencente à circunferência. b) Dada a circunferência
A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â
A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos
ABCD ADEF 810. é a corda da circunferência contida no eixo Oy. é uma corda da circunferência, paralela ao eixo Ox
Ficha de Trabalho n.º 3 página.1. Mostre que o ponto C tem coordenadas ( 09, ) e que o ponto D tem coordenadas ( 8, 9 )... Determine uma equação da mediatriz do segmento AD. Apresente a sua resposta na
PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm
PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
Lista de Exercícios de Recuperação de MATEMÁTICA 2. NOME Nº SÉRIE: DATA 4 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática 2 VISTO COORDENAÇÃO
Lista de Exercícios de Recuperação de MTEMÁTIC NME Nº SÉRIE: DT 4 IMESTRE RFESSR : Denis Rocha DISCILIN : Matemática VIST CRDENÇÃ EM no ) Na figura abaixo 0 e a distância entre o centro da circunferência
7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:
EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2
= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.
VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre
3. (Uerj 98) a) Calcule o comprimento da corda AB, do círculo original, em função de R e m.
1. (Unicamp 91) Uma esfera de raio 1 é apoiada no plano xy de modo que seu pólo sul toque a origem desse plano. Tomando a reta que liga o pólo norte dessa esfera a qualquer outro ponto da esfera, chamamos
P 3 ) Por dois pontos distintos passa uma única reta. P 4 ) Um ponto qualquer de uma reta divide-a em duas semi-retas.
Geometria Espacial Conceitos primitivos São conceitos primitivos ( e, portanto, aceitos sem definição) na Geometria espacial os conceitos de ponto, reta e plano. Habitualmente, usamos a seguinte notação:
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos
MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Equações de retas e planos 1 Seja um número real. Considere, num referencial o.n., a reta e o plano definidos, respetivamente, por e Sabe-se
Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA
Escola Secundária de Francisco Franco Exercícios de 11.º ano nos Testes Intermédios TRIGONOMETRIA 1. Na figura está representado o círculo trigonométrico e um triângulo [OPR]. O ponto P desloca-se ao longo
2. (Uerj 2001) Um triângulo acutângulo ABC tem 4cm de área e seus lados åæ e åè medem, respectivamente, 2cm e 5cm.
1 Projeto Jovem Nota 10 1. (Ufv 2001) Seja AB o diâmetro de uma circunferência de raio r, e seja C um ponto da mesma, distinto de A e B, conforme figura a seguir. a) Sendo o ângulo AïC=, determine a área
Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos
Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na
GEOMETRIA NO PLANO E NO ESPAÇO I Alguns exercícios saídos em provas globais, exames e testes intermédios
Escola Secundária de Francisco Franco Matemática A 10.º ano GEMETRIA N PLAN E N ESPAÇ I Alguns eercícios saídos em provas globais, eames e testes intermédios 1. Num referencial o.n. z, a intersecção das
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:
Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,
Programa Institucional de Bolsas de Iniciação à Docência Projeto Matemática 1 Coordenadora Professora Drª Elisangela Campos. Teorema de Pitágoras
Programa Institucional de Bolsas de Iniciação à Docência Projeto Matemática 1 Coordenadora Professora Drª Elisangela Campos Teorema de Pitágoras Curitiba 2014 CONTEÚDO: Teorema de Pitágoras DURAÇAO: 1
01) 45 02) 46 03) 48 04) 49,5 05) 66
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função
Lista de GEOMETRIA 1 REVISÃO DE FÉRIAS
1. (G1 - utfpr) O valor de x no pentágono abaixo é igual a: c) 111 d) 115 e) 117 5. (G1 - utfpr) Calcule o valor de x, em graus, na figura: a) 25. b) 40. c) 250. d) 540. e) 1.000. 2. (G1 - ifsul) As medidas
MÓDULO 25. Geometria Plana I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 5 Geometria Plana I. Mostre que o ângulo inscrito em uma circunferência é a metade do ângulo central correspondente. 1. (MAM-Mathematical
Escola Secundária Gabriel Pereira. Nome: N.º: Ano Turma
Escola Secundária Gabriel Pereira FICHA DE EXERCÍCIOS Nº MATEMÁTICA A Rectas e Planos Nome: Nº: Ano Turma 1) Determina uma equação vectorial e cartesianas da recta que passa em A,1, 4 11) paralela ao vector
