j^qbjžqf`^=^mif`^a^=
|
|
|
- João Batista Silveira Caldeira
- 9 Há anos
- Visualizações:
Transcrição
1 j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem da quantia inicial fi distribuída? P Na gaveta da czinha, Maria tinha guardad duas ntas de 0 reais, duas ntas de 0 reais e duas ntas de 0 reais Durante a nite, n escur, Francisc, filh de Maria retiru a acas duas ntas Determine a prbabilidade de que Francisc tenha retirad mens de 0 reais _ Qual ds filhs recebeu mais? Éëçäì ç Seja dinheir da pupança de Valter igual a O filh mais velh recebeu e sbraram 4 O filh d mei recebeu sbraram 4 4 O filh mais nv recebeu distribuíds da pupança Respstas: O ^ _ Cm fram distribuíds Assim, fram Fi distribuída 60% da quantia inicial da pupança Os três filhs receberam quantias iguais Brun e Carls sã irmãs e pssuem junts 78 medas de real Brun, que pssuía mais medas, deu a Carls dbr d númer de medas que Carls pssuía Nesse mment, Carls ficu cm mais medas que irmã e deu a Brun 0 medas N final dessas duas transações, Brun ficu cm duas medas a mais d que Carls Determine quantas medas cada um tinha inicialmente Éëçäì ç Cm eles tinham junts, 78 medas, n final Brun terminu cm 40 medas e Carls cm 8 medas Sejam e y s númers de medas que Brun e Carls tinham, respectivamente, n iníci De acrd cm enunciad, Carls inicialmente triplicu seu númer de medas e depis deu 0 a irmã Entã y 0 8, u seja, y 6 Cnsequentemente, Inicialmente Brun tinha 6 medas e Carls tinha 6 medas Éëçäì çn Retirand uma nta após utra, Francisc nã pde retirar nenhuma nta de 0 reais em nenhuma das duas retiradas Na primeira retirada a prbabilidade de que Francisc, nã 4 tenha pegad uma nta de 0 reais é de 6 Na segunda retirada a prbabilidade de que Francisc, nã tenha pegad uma nta de 0 reais, dad que a primeira nã fi de 0 reais, é de A prbabilidade de que Francisc, nã tenha pegad uma nta de 0 reais em nenhuma das duas retiradas é p 40% Éëçäì ço Sejam A e A as ntas de 0 reais, B e B as ntas de 0 reais e C e C as ntas de 0 reais O númer de maneiras de retirar duas dessas seis ntas é C 6 Para retirar mens de 0 reais Francisc deve pegar duas ntas entre A, A, B e B O númer de maneiras de Francisc retirar duas dessas ntas é C A prbabilidade pedida é p 40% Q Uma vela, cm cm de altura, é fabricada de tal md que, a ser acesa, ela derrete primeir centímetr em 0 segunds, segund centímetr em 60 segunds, terceir centímetr em 90 segunds, e assim sucessivamente, gastand sempre 0 segunds a mais para derreter próim centímetr d que gastu para derreter centímetr anterir Calcule temp ttal, em hras, minuts e segunds, necessári para que a vela derreta tda após ser acesa Éëçäì ç Os temps gasts para derreter cada centímetr frmam uma PA de primeir term 0 segunds e razã 0 segunds Assim, para derreter últim centímetr temp necessári é segunds O temp ttal é, (0 + 70) prtant, 970 segunds, u seja, hras, 4 minuts e 0 segunds
2 R A figura abai mstra a trajetória de Renat cm seu barc S Em um departament de uma universidade, trabalham 4 prfessras e 4 prfessres e, entre eles, estã Astreia e Gastã, que sã casads Um grup de desses prfessres(as) deverá ir a um cngress, send, pel mens, um hmem Obrigatriamente, um ds elements d casal deverá estar n grup, mas nã ambs De quantas maneiras diferentes esse grup pderá ser rganizad? ÉëçäìÅ ç Listams, a seguir, tdas as pssibilidades Renat saiu d pnt A e percrreu 0 km em linha reta, até pnt B, numa trajetória que faz 0 cm a direçã nrte N pnt B, viru para leste e percrreu mais 0 km em linha reta, chegand a pnt C Calcule a distância d pnt A a pnt C Dads: sen 0 0, 4, cs 0 0, 940 a) Astreia + hmem + mulher: 9 pssibilidades b) Astreia + hmem + hmem: C pssibilidades c) Gastã + hmem + hmem: C pssibilidades d) Gastã + hmem + mulher: 9 pssibilidades e) Gastã + mulher + mulher: C pssibilidades Há 7 maneiras d grup ser frmad Éëçäì ç Observand a figura abai tems DBA ˆ 0, ABC ˆ 40 e CAB ˆ BCA ˆ 0 Fazend AC tems, pela lei ds sens, 0 sen40 sen0 sen 40 sen 0 0 sen0 cs0 0 sen0 Assim, 0 cs0 0 0,94 8, 8 AC 8,8 km
3 T A figura abai mstra um trnc de pirâmide regular frmad pr dis quadrads ABCD e A B C D de centrs O e O cntids em plans paralels e quatr trapézis cngruentes Os quadrads sã as bases d trnc e a sua altura é a distância O O h entre s plans paralels U A figura abai mstra um quadrad ABCD e s pnts médis de cada um ds lads Traçand s segments que unem cada pnt médi as dis vértices d lad pst d quadrad, frma-se a estrela que está smbreada na figura a seguir A área da estrela representa que prcentagem da área d quadrad? Se S e S sã as áreas das bases de um trnc de pirâmide de altura h, vlume desse trnc é dad pela h fórmula V ( S + S + SS ) Sã dadas, em decímetrs, as medidas das arestas: AB, A B 6, A A 9 Calcule vlume desse pliedr em decímetrs cúbics e dê um valr aprimad usand algum ds dads abai Éëçäì çn Esclhems cm unidade de medida, a metade d lad d quadrad Send E e F s pnts médis ds lads AB e BC, respectivamente, cnsidere s segments DE e AF que se crtam em P (figura abai) Dads:, 4,, 7,, 4, 7, 6 Éëçäì ç O O A A é um trapézi retângul nde OA 6 e O A Traçand A M perpendicular a OA e fazend O O h MA triângul retângul A MA frnece h 9 ( ) 6 7 7,9 O vlume d trnc é 7,9 7,9 V ( ) 7, dm Os triânguls DAE e ABF sã cngruentes Assim, DEA + FAB DEA + EDA 90 e, prtant, s segments DE e AF sã perpendiculares Os triânguls APE e ABF sã semelhantes Daí, cm b c AF e fazend PA b e PE c tems, u sejam, b e c Assim, a área d triângul APE é s bc e a 8 área S da estrela é igual a S 8 4 A razã que esse valr representa da área d quadrad é 60% 4
4 Éëçäì ço Pdems adtar um sistema de crdenadas cartesianas cm a rigem em A, ei X sbre AB e ei Y sbre AD Os ceficientes angulares das retas AF e DE sã m e m, respectivamente Assim, a reta AF tem equaçã y e a reta DE tem equaçã y + e a interseçã delas é pnt P Cm, da primeira equaçã y tems, substituind na segunda, y y + e, prtant, y AE y A área d triângul APE é s A área da estrela segue cm na primeira sluçã Éëçäì çp V Um alun precisava estimar a área S da regiã sb gráfic da funçã y lg (lgaritm decimal de ) entre as abscissas e 6 que se vê na figura a seguir Para bter um valr aprimad de S, alun pensu na estratégia que as figuras abai mstram Ele calculu a área S ds três retânguls da figura da esquerda, e calculu a área S ds três retânguls da figura da direita Ele imaginu que uma ba aprimaçã para a área que S deseja bter é + S S Dads lg 0, 0 e lg 0, 477, btenha um valr para S, usand a estratégia descrita acima Seja pnt R em que prlngament de AF crta lad CD Da semelhança de PRD e APE, a altura de APE é tal que h h Lg, h A área de APE é Lg a fraçã da área smbreada é 60 % 4 0 Éëçäì ç Tds s retânguls pssuem base igual a Assim, S lg + lg4 + lg lg 4 lg60 S lg4 + lg + lg6 lg4 6 lg0 Prtant, S + S S S ( (lg60 + lg0) lg60 0 (lg00 + lg + S,9 + lg7) ( + lg ) lg) ( + 0,90 + 0,94) lg700 4
5 NM A figura abai mstra s gráfics de duas funções quadráticas f e g que sã simétrics em relaçã a pnt P (, ) Sabend que g ( ) Éëçäì çn f ( ), determine uma epressã para Os gráfics sã simétrics entã sã cngruentes Cm ceficiente de em f é igual a entã ceficiente de em g é igual a Assim, g ( ) + b + c Cm vértice d gráfic de f é a rigem entã vértice d gráfic de g é pnt (, ) Assim b ( ) e, prtant, b 4 Cm gráfic da funçã g ( ) c passa pel pnt P (, ) cnclui-se que c Assim, g ( ) + 4 Éëçäì ço g( ) [ f ( ( )) ] f ( ) ( ) Fim da Prva de Matemática Aplicada
Proposta de teste de avaliação 4 Matemática 9
Prpsta de teste de avaliaçã 4 Matemática 9 Nme da Escla An letiv 0-0 Matemática 9.º an Nme d Alun Turma N.º Data Prfessr - - 0 Na resluçã ds itens da parte A pdes utilizar a calculadra. Na resluçã ds itens
MATEMÁTICA APLICADA RESOLUÇÃO
GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C
Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das
Questão 1. Questão 2. Resposta. Resposta
Questã 1 O gráfic mstra, aprimadamente, a prcentagem de dmicílis n Brasil que pssuem certs bens de cnsum. Sabe-se que Brasil pssui aprimadamente 50 milhões de dmicílis, send 85% na zna urbana e 15% na
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E
Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.
1. A figura representa uma peça de madeira que é metade de um cilindro. Determine: a) a área total da peça. b) o seu volume.
Ficha de Trabalh Módul inicial 1. A figura representa uma peça de madeira que é metade de um cilindr. Determine: a) a área ttal da peça. b) seu vlume. Matemática A - 10ºan. Observe relógi de mesinha de
UFSC. Matemática (Amarela)
Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue
1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de
1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S
Instruções Leia com atenção:
Instruções Leia com atenção: Este módulo consiste em (duas) provas discursivas: Matemática Aplicada Redação A duração total do Módulo Discursivo é de 4h. Não é permitido o uso de calculadoras. Para a prova
III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)
III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand
Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009
Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer
matemática 2 Questão 7
Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas
01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05
PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,
1 a QUESTÃO: (2,0 pontos) Avaliador Revisor
( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),
I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão
VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C
Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds
01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20
PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM 2009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui, n sentid
A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1
OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste
Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta
Questã O númer de gls marcads ns 6 jgs da primeira rdada de um campenat de futebl fi 5,,,, 0 e. Na segunda rdada, serã realizads mais 5 jgs. Qual deve ser númer ttal de gls marcads nessa rdada para que
XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO
GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)
Questão 13. Questão 14. Resposta. Resposta
Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à
QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES
QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã
XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.
Matemática B Extensivo V. 1
Matemática Etensiv V. Eercícis 0 5 60 0) m 0) E sen cs tan Seja a medida entre prédi mair e a base da escada que está apiada. Também, seja y a medida da entre a base d prédi menr e a base da escada nele
SUPERFÍCIE E CURVA. F(x, y, z) = 0
SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit
4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes
4 Extensã d mdel de Misme e Fimbel ra a determinaçã da distribuiçã cumulativa da atenuaçã diferencial entre dis enlaces cnvergentes 4.. Distribuiçã cumulativa cnjunta das atenuações ns dis enlaces cnvergentes
Aluno(a): Código: 04. Sabendo que log 2 = x e log 3 = y, calcule o valor de: a) log 120. b) log 3 2 5
lun(a): Códig: Série: 1ª Turma: Data: / / 01. Se lg 2 = a e lg 3 = b, calcule valr de: a) lg 30 04. Sabend que lg 2 = x e lg 3 = y, calcule valr de: a) lg 120 b) lg 0,75 b) lg 3 2 5 02. Eles têm certeza
Matemática B Extensivo V. 2
Gabarit Matemática B Extensiv V. Reslva Aula Aula 7.0) a) sen 0 sen (60 0 ) 7.0) f(x) sen 0 b) cs 0 cs (80 0 ) c) cs 60 cssec 60 cssec 00 sen 00. d) sec 97 sec cs e) tg tg tg ( 80 ) Períd: p 6 Imagem:
UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.
UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)
MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156
MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã à Gemetria II. Ângul III. Paralelism Páginas: 145 à 156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias
MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156
MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã àgemetria II. Ângul III. Paralelism Páginas: 145 à156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
34
01 PQ é a crda um de duas circunferências secantes de centrs em A e B. A crda PQ, igual a, determina, nas circunferências, arcs de 60 º e 10 º. A área d quadriláter cnve APBQ é : (A) 6 (B) 1 (C) 1 6 0
MATEMÁTICA 1 o Ano Duds
MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 8 entregar em
Escla Secundária cm 3º cicl D. Dinis 1º An de Matemática A Tema II Intrduçã a Cálcul Diferencial II TPC nº 8 entregar em 17-0-01 1. Jã é cleccinadr de chávenas de café. Recebeu cm prenda um cnjunt de 10
Matemática 1ª série Ensino Médio v. 3
Matemática ª série Ensin Médi v. Eercícis 0) a),76 0 tg 7 tg 0,57 9,7 0 0) 6, cm e 9, cm tg 0 0,89,7670 6 5 cm b) 9,06 8 cm 6 sen 6 8 tg 6 a 5 0,889 8 9,060 cm c) 6,88 5 6,050 a 5 a 0,55 cm tg a 0,69 0,
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Tarefa intermédia nº 4 B
Tarefa intermédia nº B. N referencial da figura estã parte das representações gráficas das funções f e g, de dmíni IR. Sabe-se que f ( ) = + e g( ) =.. Seja A pnt de interseçã ds gráfics das funções f
No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2
COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais
L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.
AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc
INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS
1 INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS INTRODUÇÃO Os livrs de cálcul cstumam cnter um capítul u um apêndice dedicad a eplicações de fats básics da matemática e que, em geral, sã abrdads n Ensin
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 ANO DO ENSINO MÉDIO DATA: 9/0/09 PROFESSOR: CARIBÉ Td mund quer ajudar a refrescar planeta. Viru mda falar em aqueciment glbal. É precis nã esquecer que s recurss
VOLUMES: - Folha Informativa -
VOLUMES: - Flha Infrmativa - Para medir vlume de qualquer figura tridimensinal é necessári medir espaç que ela cupa. Assim, ter-se-á que esclher uma unidade de vlume que, pr cnveniência, pderá ser um cub
Questão 1. Questão 3. Questão 2. Resposta. Resposta
ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00
Matemática E Extensivo V. 2
Matemática E Etensiv V. Eercícis 0) a) d) n 8!! 8...!! 8.. (n )!! n n b) 0 0) A 0! 9! 0. 9! 9! 0 c) 00! 00 d) 9! 9. 8...! 9 8... 9..!!...!.. 0) a) ( + )! ( + )( )! +!! b) n 0 nn ( )( n )! ( n )! ( n )!
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 4.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/03/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
1 a Lista de Exercícios MAT 105 Geometria Analitica
1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo
Gabarito Extensivo MATEMÁTICA volume 1 Frente D
Gabarit Extensiv MATEMÁTICA vlume 1 Frente D 01) 8x 40 6x 0 8x 6x 0 + 40 x 0 x 10 8x 40 8.10 40 80 40 40 6x 0 6.10 0 60 0 40 0) Pnteir pequen (hras): 30-1 hra 60 minuts 1 -? 30 60 1 x x 4 min Prtant, 1h4min
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 4.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/03/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Geometria Plana aplicada na FGV e INSPER
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Geometria Plana aplicada na FGV e INSPER Questão 01 - (FGV /2016) O triângulo ABC possui medidas conforme indica a figura a seguir. A área
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
( ) Assim, de 2013 a 2015 (2 anos) houve um aumento de 40 casos de dengue. Ou seja: = 600 casos em 2015.
Resposta da questão : [B] É fácil ver que a equação da reta s é = 3. Desse modo, a abscissa do ponto de interseção das retas p e s é tal 8 que 3 = + 3 =. 7 8 7 8 7 Portanto, temos = 3 = e a resposta é,.
1) Determine e represente graficamente o domínio de cada uma das funções:
UNIVESIDADE FEDEAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPATAMENTO DE MATEMÁTICA ª LISTA DE EXECÍCIOS DE CÁLCULO II-A Última atualizaçã 4-4-4 ) Determine e represente graficamente dmíni de cada uma das funções:
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.
Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará
Exercícios de Matemática Fatoração
Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique
DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA GOUVEIA.
RESOLUÇÃO DA AVALIAÇÃO FINAL DE MATEMÁTICA APLICADA EM 008 NO COLÉGIO ANCHIETA-BA, AOS ALUNOS DA a SÉRIE DO ENSINO MÉDIO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. 0. D C
Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B
Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os
UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6
MATEMÁTICA 0) Respsta: A Cx, Ax, = 0x + 0 x! x! = 0x + 0!( x )! ( x )! xx ( )( x )( x )! xx ( )( x )( x )! =0( x ) ( x )! ( x )! xx ( )( x ) x( x )( x ) =0( x ) Cm x, dividims ambs s lads pr (x ) e btems:
CAPÍTULO 10 TRANSLAÇÃO E ROTAÇÃO DE EIXOS
CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam O e O s eis primitivs, d Sistema Cartesian de Eis Crdenads cm rigem O(0,0). Sejam O e O s nvs eis crdenads cm rigem O (h,k), depis
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
Questão 2. Questão 1. Questão 3. alternativa C. alternativa D
NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular
LISTA DE EXERCÍCIOS 3º ANO
Questão 0 a) Soma dos ângulos internos de um pentágono: 180 ( 5 ) = 540 Sendo o ângulo FPG = α, temos: α + 90 + 10 + 90 = 360 => α = 60. Como os lados adjacentes ao ângulo α são os lados de quadrados congruentes,
Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.
MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.
1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x
COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA
COMPARAÇÃO DE CURVAS DE SOBREVIVÊNCIA O prblema de cmparaçã de distribuições de sbrevivências surge cm freqüência em estuds de sbrevivência. Pr exempl, pde ser de interesse cmparar dis trataments para
Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado
ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a
01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do
T.D. - Resolução Comentada
T.D. - Resolução Comentada Matéria: Série: Turmas: Professor: Matemática º Ano A, B, C, D e Olímpica Wilkson Linhares Bimestre: 3º Assunto: Geometria Analítica Questão: 01 Resposta: Item: c) O ponto P
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se
UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer
PROVA DE MATEMÁTICA. Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão.
PÁG0 PROVA DE MATEMÁTICA Marque no cartão-resposta anexo, a única opção correta correspondente a cada questão 1 Daniel tem ração suficiente para alimentar quatro galinhas durante 18 dias No fim do 6 o
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
Estudo do efeito de sistemas de forças concorrentes.
Universidade Federal de Alagas Faculdade de Arquitetura e Urbanism Curs de Arquitetura e Urbanism Disciplina: Fundaments para a Análise Estrutural Códig: AURB006 Turma: A Períd Letiv: 2007 2007-2 Prfessr:
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo
