Instruções Leia com atenção:
|
|
|
- Maria Fernanda Faro Regueira
- 9 Há anos
- Visualizações:
Transcrição
1
2 Instruções Leia com atenção: Este módulo consiste em (duas) provas discursivas: Matemática Aplicada Redação A duração total do Módulo Discursivo é de 4h. Não é permitido o uso de calculadoras. Para a prova de Matemática Aplicada: as respostas deverão apresentar a resolução completa das questões. Não basta escrever apenas o resultado final, é necessário mostrar o raciocínio utilizado e os cálculos, quando for o caso. A Folha de Rascunho da prova de Redação, embora não seja considerada para a correção, deverá ser devolvida juntamente com a Folha de Resposta definitiva. Adverte-se que o candidato que se recusar a entregar as Folhas de Respostas, dentro do período estabelecido para a realização das provas de cada Módulo, terá sua prova automaticamente anulada. O candidato só poderá deixar definitivamente o local das provas a partir de duas horas após seu início, não podendo levar o Caderno de Questões; ou a partir de três horas após o início da prova, podendo levar o Caderno de Questões.
3 j^qbjžqf`^^mif`^a^ N Walter tinha dinheiro na poupança e distribuiu uma parte aos três filhos. Ao mais velho deu 1/5 do que tinha na poupança. Do que sobrou, deu 1/4 ao filho do meio. Ao mais novo deu 1/3 do que restou. ^ Que porcentagem da quantia inicial foi distribuída? _ Qual dos filhos recebeu mais? O Bruno e Carlos são irmãos e possuem juntos 78 moedas de 1 real. Bruno, que possuía mais moedas, deu a Carlos o dobro do número de moedas que Carlos possuía. Nesse momento, Carlos ficou com mais moedas que o irmão e deu a Bruno 10 moedas. No final dessas duas transações, Bruno ficou com duas moedas a mais do que Carlos. Determine quantas moedas cada um tinha inicialmente. P Na gaveta da cozinha, Maria tinha guardado duas notas de 10 reais, duas notas de 0 reais e duas notas de 50 reais. Durante a noite, no escuro, Francisco, o filho de Maria retirou ao acaso duas notas. Determine a probabilidade de que Francisco tenha retirado menos de 50 reais. Q Uma vela, com 5 cm de altura, é fabricada de tal modo que, ao ser acesa, ela derrete o primeiro centímetro em 30 segundos, o segundo centímetro em 60 segundos, o terceiro centímetro em 90 segundos, e assim sucessivamente, gastando sempre 30 segundos a mais para derreter o próximo centímetro do que gastou para derreter o centímetro anterior. Calcule o tempo total, em horas, minutos e segundos, necessário para que a vela derreta toda após ser acesa. R A figura abaixo mostra a trajetória de Renato com seu barco. Renato saiu do ponto A e percorreu 10 km em linha reta, até o ponto B, numa trajetória que faz 50 o com a direção norte. No ponto B, virou para o leste e percorreu mais 10 km em linha reta, chegando ao ponto C. Calcule a distância do ponto A ao ponto C. o o Dados: sen 0 0, 34, cos 0 0,
4 S Em um departamento de uma universidade, trabalham 4 professoras e 4 professores e, entre eles, estão Astreia e Gastão, que são casados. Um grupo de 3 desses professores(as) deverá ir a um congresso, sendo, pelo menos, um homem. Obrigatoriamente, um dos elementos do casal deverá estar no grupo, mas não ambos. De quantas maneiras diferentes esse grupo poderá ser organizado? T A figura abaixo mostra um tronco de pirâmide regular formado por dois quadrados ABCD e A B C D de centros O e O contidos em planos paralelos e quatro trapézios congruentes. Os quadrados são as bases do tronco e a sua altura é a distância O O h entre os planos paralelos. Se S e S são as áreas das bases de um tronco de pirâmide de altura h, o volume desse tronco é dado pela h fórmula V ( S + S + SS ). 3 São dadas, em decímetros, as medidas das arestas: AB 1, A B 6, A A 9. Calcule o volume desse poliedro em decímetros cúbicos e dê um valor aproximado usando algum dos dados abaixo. Dados: 1, 41, 3 1, 73, 5, 4, 7, 65. U A figura abaixo mostra um quadrado ABCD e os pontos médios de cada um dos lados. Traçando os segmentos que unem cada ponto médio aos dois vértices do lado oposto do quadrado, forma-se a estrela que está sombreada na figura a seguir A área da estrela representa que porcentagem da área do quadrado?
5 V Um aluno precisava estimar a área S da região sob o gráfico da função y log x (logaritmo decimal de x) entre as abscissas x 3 e x 6 que se vê na figura a seguir. Para obter um valor aproximado de S, o aluno pensou na estratégia que as figuras abaixo mostram. Ele calculou a área S 1 dos três retângulos da figura da esquerda, e calculou a área S dos três retângulos da figura da direita. Ele imaginou que uma boa aproximação para a área que S deseja obter é 1 + S S. Dados log 0, 301 e log 3 0, 477, obtenha um valor para S, usando a estratégia descrita acima. NM A figura abaixo mostra os gráficos de duas funções quadráticas f e g que são simétricos em relação ao ponto P (1, 1). Sabendo que g ( x). f ( x) x, determine uma expressão para Fim da Prova de Matemática Aplicada 3
6 oba^ Íl "O AR DA CIDADE liberta", diz um conhecido provérbio alemão do fim da Idade Média. Depois, no início do século 0, pensadores como Georg Simmel e Walter Benjamin mostraram como a grande cidade, lugar impessoal da massa, é, paradoxalmente, o lugar da individualidade. Pois, no contexto de comunidades pequenas, a liberdade individual está sempre tolhida pelo olhar e o julgamento do vizinho. Já na cidade grande, ao contrário, o sujeito é anônimo na multidão, por isso está livre para ser ele mesmo, isto é, ser outro, aquilo que não se esperaria dele. A mistura de classes sociais, culturas, línguas, etnias e religiões que se dá na cidade é o melhor antídoto que inventamos até hoje contra a intolerância e os fundamentalismos. Filha e irmã da imigração, a cidade quebra os laços estamentais e a mentalidade paroquial dos clãs, colocando as pessoas em relação imanente e horizontal: moeda, comércio, indivíduo, democracia. O mercado, porém, não coincide com a política. Enquanto o consumo é balizado pelo poder aquisitivo e tende à desigualdade, a política existe para garantir certa equalização na multiplicidade, regulando a expansão do consumo e da desigualdade, assim como uma praça deveria ser lugar que não fosse ocupado pela "casa" ou "nome" de ninguém. Toda a graça da cidade, por isso, repousa no fato de que ela existe para dar espaço à individualidade, não ao individualismo. Lugar da coletividade, ela se funda sobre as noções de comum e de público. cçäü~çépkm~ìäç 4/04/015. Adaptado. Uma grande cidade, onde se pode viajar horas a fio sem se chegar sequer ao início do fim, é algo realmente singular. Essa concentração colossal, esse amontoado de milhões de seres humanos num único ponto centuplicou a força desses milhões... Mas os sacrifícios que isso custou, só mais tarde se descobre. Depois de se vagar durante dias pela calçadas das ruas principais, descobre-se que esses habitantes tiveram de sacrificar a melhor parte de sua humanidade para realizar todos os prodígios da civilização, com que fervilha sua cidade; que centenas de forças, neles adormecidas permaneceram inativas e foram reprimidas... O próprio tumulto das ruas tem algo de repugnante, algo que revolta a natureza humana. Essas centenas de milhares de pessoas de todas as classes e situações, que se empurram umas às outras, não são todas seres humanos presumidamente semelhantes?... E, no entanto, passam correndo uns pelos outros, como se não tivessem nada em comum; não ocorre a ninguém conceder ao outro um olhar sequer. Essa indiferença brutal, esse isolamento insensível de cada indivíduo é tanto mais repugnante e ofensivo quanto mais esses indivíduos se comprimirem em espaço exíguo. ckbåöéäëk Adaptado. Nos dois textos aqui apresentados, manifestam-se visões até certo ponto antagônicas da vida nas grandes cidades e do sentido que essas concentrações urbanas adquiriram na história e na cultura. Avalie as opiniões neles contidas e redija uma dissertação em prosa, argumentando de modo a expor com clareza seu ponto de vista sobre o tema ^îáç~å~ë ÅáÇ~ÇÉëWçéêÉëë ççìäáäéêí~ ç\ fåëíêì πéëw A redação deverá seguir as normas da língua escrita culta*. O texto deverá ter, no mínimo, 0 e, no máximo, 30 linhas escritas. Redações fora desses limites não serão corrigidas e receberão nota zero. A redação também terá nota zero, caso haja fuga total ao tema ou à estrutura definidos na proposta de redação. Dê um título a sua redação. A redação deverá ser redigida na folha de respostas, com letra legível e, obrigatoriamente, com caneta de tinta azul ou preta. * As questões das provas do Vestibular foram elaboradas conforme as novas regras do Acordo Ortográfico da Língua Portuguesa, promulgado, no Brasil, pelo Decreto 6.583, em 9/09/008. No texto escrito pelos candidatos, serão aceitos os dois Sistemas Ortográficos em vigor. Fim da Prova de Redação 4
j^qbjžqf`^=^mif`^a^=
j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem
Instruções Leia com atenção:
Instruções Leia com atenção: Este módulo consiste em 2 (duas) provas discursivas: Matemática Aplicada Redação A duração total do Módulo Discursivo é de 4h. Não é permitido o uso de calculadoras. Para a
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
Instruções para a Prova de REDAÇÃO:
Instruções para a Prova de REDAÇÃO: Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo
Instruções para a Prova de MATEMÁTICA APLICADA:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é
Instruções para a Prova de RACIOCÍNIO LÓGICO-MATEMÁTICO:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. Você terá 4 horas para realizar as provas.
... GABARITO 4 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado
CADERNO DE QUESTÕES -- PAS--UEM//0 -- ETAPA N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES I PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam
UNIVERSIDADE FEDERAL FLUMINENSE
UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 017 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,
Instruções para a Prova de MATEMÁTICA APLICADA:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é
MINISTÉRIO DA DEFESA NACIONAL F O R Ç A A É R E A C O M A N D O D E P E S S O A L CONCURSO DE ADMISSÃO AO CFS/QP 2018/19 PROVA MODELO DE MATEMÁTICA
MINISTÉRIO DA DEFESA NACIONAL F O R Ç A A É R E A C O M A N D O D E P E S S O A L D I R E Ç Ã O D E I N S T R U Ç Ã O C E N T R O D E F O R M A Ç Ã O M I L I T A R E T É C N I C A CONCURSO DE ADMISSÃO
Instruções Leia com atenção:
Instruções Leia com atenção: Este módulo consiste em 2 (duas) provas discursivas: História / Geografia Redação A duração total do Módulo Discursivo é de 4h. A Folha de Rascunho da prova de Redação, embora
Instruções para a Prova de MATEMÁTICA APLICADA:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta aul ou preta. A duração total do Módulo Discursivo é
UTILIZAR APENAS ESPAÇO-LIMITE
MATEMÁTICA INSTRUÇÕES Para a realização destas provas, você recebeu este Caderno de Questões, uma Folha de Resposta destinada à Redação e uma Folha de Respostas para as questões discursivas. NÃO AMASSE,
Matemática 02/12/2012
02/12/2012 Matemática Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização. Instruções 1. Verifique
MINISTÉRIO DA DEFESA NACIONAL FORÇA AÉREA COMANDO DE PESSOAL CONCURSO DE ADMISSÃO AO CFS/QP 2015/16 PROVA DE MATEMÁTICA
MINISTÉRIO DA DEFESA NACIONAL FORÇA AÉREA COMANDO DE PESSOAL DIREÇÃO DE INSTRUÇÃO CENTRO DE FORMAÇÃO MILITAR E TÉCNICA CONCURSO DE ADMISSÃO AO CFS/QP 05/6 PROVA DE MATEMÁTICA LEIA ATENTAMENTE AS SEGUINTES
matemática 003. caderno 1 provas da 2 a fase EESP Escola de Economia de São Paulo F U N D A Ç Ã O GETULIO VARGAS processo seletivo
F U N D A Ç Ã O GETULIO VARGAS EESP Escola de Economia de São Paulo Assinatura do Candidato 003. caderno 1 provas da 2 a fase matemática processo seletivo 1 o semestre de 2016 Você recebeu este caderno
a) 6% b) 7% c) 70% d) 600% e) 700%
- MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Instruções para a Prova de RACIOCÍNIO LÓGICO-MATEMÁTICO:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. Você terá 4 horas para realizar as provas.
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO.
UNIVERSIDADE FEDERAL DE MINAS GERAIS MATEMÁTICA 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. Leia atentamente as instruções que se seguem. 1 - Este Caderno de Prova contém seis questões, constituídas de itens,
UNIVERSIDADE FEDERAL FLUMINENSE CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA FACULTATIVA 07 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação, dois
Matemática FUVEST. Matemática 001/001 FUVEST 2009 FUVEST 2009 Q.01. Leia atentamente as instruções abaixo Q.02
/ FUVEST 9 ª Fase Matemática (8//9) Matemática LOTE SEQ. BOX / Matemática FUVEST FUNDAÇÃO UNIVERSITÁRIA PARA O VESTIBULAR Leia atentamente as instruções abaixo. Aguarde a autorização do fiscal para abrir
Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações
PREPARAR EXAME NACINAL NACINAL PRVA-MDEL Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
Olimpíada Pernambucana de Matemática 2016, Nível - 1, Caderno de Questões
Olimpíada Pernambucana de Matemática 2016 Nível - 1 Caderno de Questões LEIA COM ATENÇÃO 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola Básica de Ribeirão (Sede) ANO LETIVO 013/014 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 35 minutos (Caderno 1) +
Instruções para a Prova de RACIOCÍNIO LÓGICO-MATEMÁTICO:
Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. Você terá 4 horas para realizar as provas.
Instruções para a Prova de REDAÇÃO:
Instruções para a Prova de REDAÇÃO: Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. Você terá 4 horas para realizar
Processo Seletivo 1.º semestre de 2015
F U N D A Ç Ã O GETULIO VARGAS EESP Escola de Economia de São Paulo Assinatura do Candidato 003. caderno 1 provas da 2.ª fase matemática processo seletivo 1.º semestre de 2015 Você recebeu este caderno
As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
003. caderno 1 provas da 2.ª fase. matemática. EESP Escola de Economia de São Paulo. Processo Seletivo 1.º semestre de 2013
F U N D A Ç Ã O GETULIO VARGAS EESP Escola de Economia de São Paulo processo seletivo 1.º semestre de 2013 Assinatura do Candidato 003. caderno 1 provas da 2.ª fase matemática» Você recebeu este caderno
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
UNIVERSIDADE FEDERAL FLUMINENSE
UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA FACULTATIVA 019 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação, dois
Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações
PREPARAR EXAME O NACIONAL NACIONAL PROVA-MODELO Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.
COLÉGIO PEDRO II SECRETARIA DE ENSINO CONCURSO PARA PROFESSORES DE ENSINO FUNDAMENTAL E MÉDIO 2007 PROVA ESCRITA DISCURSIVA
SECRETARIA DE ENSINO CONCURSO PARA PROFESSORES DE ENSINO FUNDAMENTAL E MÉDIO 2007 PROVA ESCRITA DISCURSIVA Antes de iniciar a prova, leia atentamente as seguintes instruções: Reservado para Avaliação 1º
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/Época Especial Caderno 1: 8 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância:
VESTIBULAR 2002 Prova de Matemática
VESTIBULAR 00 Prova de Matemática Data: 8//00 Horário: 8 às horas Duração: 0 horas e 0 minutos Nº DE INSCRIÇÃO AGUARDE AUTORIZAÇÃO PARA ABRIR ESTE CADERNO DE QUESTÕES INSTRUÇÕES PARA REALIZAÇÃO DA PROVA
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Segunda Etapa SEGUNDO DIA 2ª ETAPA MATEMÁTICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS
Segunda Etapa SEGUNDO DIA ª ETAPA MATEMÁTIA OMISSÃO DE PROESSOS SELETIVOS E TREINAMENTOS Matemática 01. Analise as afirmações a seguir, considerando a função f, tendo como domínio e contradomínio o x conjunto
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO :
COLÉGIO MILITAR DE ELO HORIZONTE ELO HORIZONTE MG DE OUTURO DE 00 DURAÇÃO: 0 MINUTOS CONCURSO DE ADMISSÃO 00 / 00 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 1 Páginas Entrelinha 1,5 Duração da Prova: 90 minutos.
No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2
COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais
Prova de Conhecimentos Específicos Matemática Tipo 1 - Branca
GOVERNO DE SÃO PAULO GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DE ESTADO DA EDUCAÇÃO COORDENADORIA DE GESTÃO DE RECURSOS HUMANOS CONCURSO PÚBLICO 2013 PARA PROFESSOR DE EDUCAÇÃO BÁSICA II Prova de Conhecimentos
É permitida a reprodução parcial ou total deste caderno de provas apenas para fins didáticos, desde que citada a fonte.
VESTIBULAR 2º semestre 202 Transferência de Curso de Graduação Administração Matemá ca Nome do candidato Por favor, abra somente quando autorizado. É permitida a reprodução parcial ou total deste caderno
UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas. Mestrado Profissional em Ensino de Ciências
UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas Mestrado Profissional em Ensino de Ciências Seleção da primeira etapa de avaliação em conhecimentos específicos Instruções para
2;5 é o ponto médio do segmento de extremos
Professor: MARA BASTOS E CARLOS JR. Turma: 1 Nota: Obs.: Data: 4/11/014 ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou
VESTIBULAR ª Fase RACIOCÍNIO LÓGICO- MATEMÁTICO. Instruções Gerais: Instruções para a prova de Raciocínio Lógico- Matemático:
Instruções Gerais: VESTIBULAR 2012 1ª Fase RACIOCÍNIO LÓGICO- MATEMÁTICO Hoje você deverá responder às questões de Artes Visuais e Literatura, História, Geografia e de Raciocínio Lógico- Matemático. Você
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015
ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: [email protected]
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3
e) 4 GEOMETRIA ESPACIAL FGV Questão 01 - (FGV /017) O líquido AZ não se mistura com a água. A menos que sofra alguma obstrução, espalha-se de forma homogênea sobre a superfície da água formando uma fina
PROVA NÍVEL I UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIA DE TECNOLOGIA
PROVA NÍVEL I UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIA DE TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA - UAMat NOME COMPLETO DO ALUNO ENDEREÇO NÚMERO COMPLEMENTO BAIRRO CIDADE UF CEP ENDEREÇO
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona
UNIVERSIDADE FEDERAL FLUMINENSE
UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 016 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,
MATEMÁTICA EXAME DISCURSIVO 2ª FASE 02/12/2018. Boa prova! CADERNO DE PROVA INSTRUÇÕES INFORMAÇÕES GERAIS
2ª FASE EXAME DISCURSIVO MATEMÁTICA 02/12/2018 CADERNO DE PROVA Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
PROFESSOR LICENCIADO PLENO EM MATEMÁTICA
PREFEITURA MUNICIPAL DE ULIANÓPOLIS CONCURSO PÚBLICO - PROVA OBJETIVA: 10 de janeiro de 2016 NÍVEL SUPERIOR DE PROFESSOR PROFESSOR LICENCIADO PLENO EM MATEMÁTICA Nome do Candidato: Nº de Inscrição: Assinatura
Instruções Leia com atenção:
Instruções Leia com atenção: Este módulo consiste em 2 (duas) provas discursivas: Matemática Aplicada Redação A duração total do Módulo Discursivo é de 4h. Não é permitido o uso de calculadoras. Para a
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
UNIVERSIDADE FEDERAL FLUMINENSE CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO
08 UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,
Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
2ª FASE EXAME DISCURSIVO 03/12/2017 CADERNO DE PROVA Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização. INSTRUÇÕES
Matemática. x : módulo do número x. 29. Com base nos dados do gráfico, que fração das mulheres viviam na zona rural do Brasil em 1996?
Matemática Nesta prova serão utilizados os seguintes símbolos com seus respectivos significados: x : módulo do número x i: unidade imaginária sen x: seno de x 9. Com base nos dados do gráfico, que fração
Transferência de Curso de Graduação
Transferência de Curso de Graduação Administração Matemática Nome do candidato Por favor, abra somente quando autorizado. O CEFET-MG é parceiro da Coleta Seletiva Solidária e encaminhará todo o papel deste
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Chamada Caderno 1: 7 Páginas Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos. Tolerância: 30 minutos.
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
CIÊNCIAS HUMANAS E MATEMÁTICA
VESTIBULAR 2015 CIÊNCIAS HUMANAS E MATEMÁTICA INSTRUÇÕES 1. Só abra a prova quando o fiscal autorizar. 2. Nesta prova, você deverá resolver as dezesseis questões propostas, sendo oito questões de CIÊNCIAS
RESPOSTAS ESPERADAS MATEMÁTICA
Questão Um quilograma de pãezinhos corresponde a 000/50 = 0 unidades. Assim, o preço do quilograma de pãezinhos era igual a 0,0 x 0 = R$ 4,00. A diferença entre o preço novo e o antigo é de 4,50 4,00 =
MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x log x : logaritmo de base de x 6 Considere que o corpo de uma determinada pessoa
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
UFRGS MATEMÁTICA
- MATEMÁTICA 6) O Estádio Nacional de Pequim, construído para a realização dos Jogos Olímpicos de 008, teve um custo de 500 milhões de dólares, o que representa 1,5% do investimento total feito pelo país
(a) Y = X. (b) Y = 2X. (c) X = 2Y. (d) Y = 3X. (e) X = 3Y.
4. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados e Y refrigerantes nessa lanchonete, gastou o mesmo que Luana, que comprou Y salgados
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 207 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Resposta. Resposta
QUESTÕES DISCURSIVAS Questão Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A C paralelo a AC, a altura C H do triângulo
A figura abaixo mostra um retângulo ABCD onde AC é a diagonal desse retângulo.
Geometria Gilberto Gualberto 9º 8/09/07 Questão 0 - (CEFET MG/06) O triângulo ABC é retângulo em A Bˆ C e os segmentos BD e AC são perpendiculares. Assim, a medida do segmento DC vale a) 0 3 b) 6 3 c)
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/Época Especial Caderno 1: 8 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância:
