Prova final de MATEMÁTICA - 3o ciclo a Fase
|
|
|
- Júlio César Desconhecida Madureira
- 7 Há anos
- Visualizações:
Transcrição
1 Prova final de MATEMÁTICA - 3o ciclo a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os dois intervalos Assim temos que Resposta: Opção C ] 1, 9 ] [ 5,3 ] = [ ] 5, 9 +. Como a resolução máxima do olho humano é 0,1 = mm e a resolução máxima do referido microscópio eletrónico é 0, = 10 6, então o quociente entre a resolução máxima do olho humano e a resolução máxima do referido microscópio eletrónico, em notação científica é: 0,1 = =,5 10 0, Escrevendo os dados apresentados numa lista ordenada, temos: 3 } 5 {{ 31 3 }} 3 {{ 5 56 } 50% 50% Pelo que a mediana deste conjunto de dados é x = 3, e a média é: Resposta: Opção B x = = 88 8 = 36 Página 1 de 6
2 . O triângulo [CDE] é retângulo em E. Como, relativamente ao ângulo DCE, o lado [CE] é o cateto adjacente e o lado [CD] é a hipotenusa, usando a definição de cosseno, temos: cos 10 = Como cos 10 0,985, vem que: CE CD cos 10 = CE,1 CE,1 0,985,039 m CE =,1 cos 10 Assim, como a distância (d) da reta t ao ponto C é 0 centímetros, ou seja, 0, metros e como AB = CE+d, vem que a distância do candeeiro ao tabuleiro da ponte, em metros, arredondado às décimas, é: AB, ,, m Como as bases de um prisma são paralelas entre si, qualquer reta contida no plano que contém a base superior do prisma [ABCD] é paralela ao plano que contém a base inferior do prisma [F GHE]. A D B C Assim, uma reta paralela ao plano EF G, é, por exemplo: a reta AC (Qualquer reta contida no plano RST também é paralela ao plano EF G). S F R E T G H Como o plano ST R é paralelo ao plano EF G, e o plano EF G é perpendicular ao plano AF G, então também o plano ST R é perpendicular ao plano AF G, ou seja, o ângulo AST é reto, pelo que o triângulo [AST ] é um triângulo retângulo em S, pelo que podemos, recorrendo ao Teorema de Pitágoras, afirmar que: AT = AS + ST A S T Logo, substituindo os valores dados, vem que: AT = 6 + AT = AT = 5 AT = 5 AT >0 E assim, arredondando o valor pedido às décimas, temos que AT 7, cm Página de 6
3 5... Os triângulos [AST ] e [AF G] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo - os lados [ST ] e [F G] são paralelos), a razão entre lados correspondentes é igual, ou seja: F G ST = AF AS Desta forma, substituindo os valores conhecidos, vem que: F G = 9 6 F G = 9 6 F G = 36 6 F G = 6 cm Desta forma, como [F GHE] é um quadrado, temos que EF = F G = 6 e a área da base da pirâmide, ou seja, a área do triângulo [EF G] é: A [EF G] = 6 6 = 36 = 18 cm Pelo que, como a altura da pirâmide é AF = 9, o volume da pirâmide [AF GE], em centímetro cúbicos, é: V [AF GE] = A [EF G] AF 3 = = 5 cm 3 Caderno Recorrendo à Regra de Laplace, e verificando que, existem 3 salas com sessões de divulgação do curso de Espanhol (as salas 3, e 5), ou seja, 3 casos possíveis; e que apenas uma delas tem um número par (a sala ), ou seja, 1 caso favorável, temos que a probabilidade, escrita na forma de fração, é: p = Organizando todas as hipóteses possíveis para o Daniel assistir às duas apresentações, com recurso a uma tabela, temos: Espanhol Alemão Sala 3 Sala Sala 5 Sala 3 A3 E3 A3 E A3 E5 Sala A E3 A E A E5 Assim, podemos verificar que existem 6 alternativas para as escolhas dos pares de sessões, dos quais quatro são em salas diferentes, pelo que, recorrendo à Regra de Laplace, para calcular a probabilidade do Daniel escolher as sessões em salas diferentes e apresentando o resultado na forma de fração irredutível, temos: p = 6 = 3 Página 3 de 6
4 7. Verificando que em cada termo da sequência, os círculos estão dispostos em três linhas, em que: a linha de cima tem exatamente o número de círculos da ordem do termo a linha do meio tem mais um círculo que a linha de cima a linha de baixo tem mais um círculo que a linha do meio, ou ainda, mais dois círculos que a linha de cima 3 o termo Assim, o 100. o termo da sequência tem 100 círculos na linha de cima, = 101 círculos na linha do meio e = 10 na linha de baixo, pelo que somando o número de círculos das três linhas do 100. o termo da sequência, obtemos: = 303 círculos 8. Como a função f é uma função de proporcionalidade inversa, então f(x) = k x, k R \ {0} Como o ponto (3; 6) pertence ao gráfico de f, então f(3) = 6, e assim, temos que o valor da constante de proporcionalidade (k), pode ser calculado, substituindo as coordenadas do ponto na expressão algébrica da função f: 6 = k = k k = 18 Resposta: Opção D 9. Como o ponto B é o ponto do gráfico de f que tem abcissa, podemos calcular a sua ordenada (y B ), recorrendo à expressão algébrica da função f: y B = f() = () = = 8 Identificando o segmento [OA] como a base maior do trapézio, o segmento [CB] como a base menor e o segmento [OC] como a altura, temos que a área do trapézio [OABC] é: A [OABC] = OA + CB OC = x A + x B y B = + 8 = 6 8 = 3 8 = 10. Como a equação está escrita na fórmula canónica, usando a fórmula resolvente para resolver a equação e escrevendo as soluções na forma de fração irredutível, temos: (a = 6, b = 1 e c = 1) 6x x 1 = 0 x = ( 1) ± ( 1) (6)( 1) (6) { C.S.= 1 } 3,1 x = x = x = 1 ± x = 6 1 x = 1 x = 1 x = 1 3 x = 1 ± Resolvendo a inequação, temos: 3(1 x) > x x > x x 1 () 1 () > x x > x x > x + 5 6x x > 5 6 7x > 1 7x < 1 x < 1 7 ] C.S.=, 1 [ 7 Página de 6
5 1. Analisando as representações geométricas apresentadas, podemos verificar quem em todas existe uma representação da reta horizontal de equação y = 3 Relativamente à reta de equação y = x+, podemos observar que apenas as opções (A) e (B) apresentam uma reta com declive negativo (m = 1) e apenas as opções (A) e (D) apresentam uma reta, de declive não nulo, com ordenada na origem igual a y = 3 Desta forma podemos concluir que a representação geométrica do sistema de equações y = x + é o que está representado na opção (A). Resposta: Opção A 13. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base 3, temos que: ( 6 ) = = = = = 11 = 611 ( ) 11 6 = Identificando o caso notável a b = (a b)(a + b) e observando que =, temos que: x = x = (x )(x + ) 15. Considerando três plano perpendiculares (como por exemplo no canto de uma sala) podemos identificar um plano e dois planos perpendiculares que contêm um ponto exterior ao primeiro plano. Desta forma a afirmação Por um ponto exterior a um plano passa um único plano perpendicular ao primeiro, é falsa. Resposta: Opção D 16. Como o ângulo ACB é o ângulo inscrito relativo ao arco AB, a amplitude do ângulo é metade da amplitude do arco, ou seja: AB AĈB = = 10 = 60 Assim, podemos determinar a amplitude do ângulo ABC (porque a soma das amplitudes dos ângulos internos de um triângulo é 180 : BÂC + AĈB + A ˆBC = A ˆBC = A ˆBC = A ˆBC = 80 Página 5 de 6
6 17. Como um hexágono regular tem os lados opostos paralelos e com o mesmo comprimento, então as diagonais [QS] e [P T ] também são paralelas e com o mesmo comprimento, pelo que: E assim, vem que: QS = P T P + QS = P + P T = P Ou seja, a imagem do ponto P pelo translação associada ao vetor QS é o ponto T (como se pretende ilustrar na figura ao lado). Resposta: Opção D P U Q T R S 18. Escolhendo para o valor de a um número negativo e para o valor de b um número com menor valor absoluto, podemos ilustrar que a afirmação é falsa, por exemplo: Se a = e b = 1, temos que a < b, porque < 1, mas a > b, porque ( ) > 1 1 > 1 Página 6 de 6
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 01-1 a Fase Proposta de resolução Caderno 1 1. Como a função representada graficamente é uma função de proporcionalidade inversa, a sua expressão algébrica é da forma
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009
Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 009 Proposta de resolução 1. 1.1. Como na gaveta 1 existem três maillots (1 preto, 1 cor-de-rosa e 1 lilás), são 3 os casos possíveis, dos quais são
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MTMÁTI - o ciclo 017 - a ase Proposta de resolução aderno 1 1. omo no histograma estão representados todos os alunos a probabilidade de um aluno, escolhido ao acaso, ter uma massa corporal
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,
Teste Intermédio de MATEMÁTICA - 9o ano 12 de abril de 2013
Teste Intermédio de MATEMÁTICA - 9o ano 1 de abril de 013 Proposta de resolução Parte 1 1. Como 7 0,33, representando os valores na reta real, temos 11 7 11 0,33 0,7 0.4 0,37 + Logo, ordenando por ordem
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 2009-2 a Chamada Proposta de resolução 1. 1.1. Considerando que não queremos que o automóvel preto seja atribuído à mãe, e selecionando, ao acaso, um elemento da família,
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTEMÁTI - 3o ciclo 01 - a hamada Proposta de resolução aderno 1 1. 1.1. omo o ponto de coordenadas (,) pertence ao gráfico de f, então f() = 1.. omo a função f é uma função de proporcionalidade
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2009-1 a Chamada Proposta de resolução 1. 1.1. Observando os dados da tabela, podemos verificar que o número total de viagens vendidas para Paris, nos meses de janeiro,
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTMÁTI - o ciclo 014-1 a hamada Proposta de resolução aderno 1 1. omo as grandezas x e y são inversamente proporcionais, sabemos que x y é um valor constante. ntão temos que 15 0 = 1 a 00
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTEMÁTIC - 3o ciclo 008 - a Chamada Proposta de resolução 1. Como a e b são números primos diferentes são primos entre si, ou seja não têm fatores comuns na sua decomposição em fatores primos.
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 005 - a Chamada Proposta de resolução 1. Analisando cada uma das afirmações, confrontando com a observação do gráfico, temos que: Observando o eixo vertical, podemos
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Chamada Caderno 1: 7 Páginas Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos. Tolerância: 30 minutos.
Prova de Aferição de MATEMÁTICA - 8o Ano 2016
Prova de Aferição de MATEMÁTICA - 8o Ano 201 Proposta de resolução PARTE A 1. Como o número de alunos matriculados em 201 é igual a temos que o número de alunos matriculados em 201 é: do número de alunos
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o D 30/05/017 Parte I - 30 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao
Proposta de teste de avaliação Matemática 9
Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ponto N é o pé da perpendicular traçada do ponto M para a reta OP, então
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 07 - Época especial Proposta de resolução GRUPO I. Como o número a formar deve ser maior que 0 000, então para o algarismo das dezenas de milhar existem apenas 3 escolhas
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução
MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente
Teste Intermédio 2012
Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
MATEMÁTICA A - 10o Ano Geometria Propostas de resolução
MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no
Calendarização da Componente Letiva
Calendarização da Componente Letiva 2015/2016 7º Ano Matemática s 1º 2º 3º Número de aulas previstas (45 minutos) 61 50 48 Apresentação e Diagnóstico 2 Avaliação (preparação, fichas de avaliação e correção)
MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Figuras semelhantes (7 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo
TESTE DE DIAGNÓSTICO
TESTE DE DIAGNÓSTICO 9.º 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DURAÇÃO DO TESTE: 90 MINUTOS DATA: / / O teste é constituído por dois grupos. No Grupo I, são indicadas quatro opções de resposta para
Escola Secundária de Lousada. Matemática do 9º ano FT 17 Data: / / 2013 Assunto: Ficha de Preparação para o 3º Teste
Escola Secundária de Lousada Matemática do 9º ano FT 7 Data: / / 0 Assunto: Ficha de Preparação para o º Teste Apresentação dos Conteúdos e Objetivos para o º Teste de Avaliação de Matemática Data da Realização
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a água no reservatório ocupa o cilindro, cuja base é o círculo de diâmetro
MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0
MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +
Teste Intermédio de MATEMÁTICA - 8o ano 30 de abril de 2009
Teste Intermédio de MATEMÁTICA - 8o ano 0 de abril de 009 Proposta de resolução... Como no campeonato cada equipa conquista pontos por cada vitória, então, consultando a tabela, podemos observar que Os
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular
MATEMÁTICA A - 11o Ano. Propostas de resolução
MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola Básica de Ribeirão (Sede) ANO LETIVO 013/014 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 35 minutos (Caderno 1) +
Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.
Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,
Prova de Aferição de MATEMÁTICA - 3o ciclo 2003
Prova de Aferição de MATEMÁTICA - o ciclo 200 Proposta de resolução 1. 1.1. Quando se lança o dado uma vez, existem oito números possíveis de se obter: 1, 2,, 4, 5, 6, 7 e 8. Dos oito casos possíveis,
Proposta de Prova Final de Matemática
Proposta de Prova Final de Matemática 3. o Ciclo do Ensino Básico Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos Tolerância: 30 minutos Data: Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º
TPC PÁSCOA. A função g é de proporcionalidade inversa e o ponto Os segmentos de reta OD e AB e EF. são paralelos;
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS TPC PÁSCOA Ano letivo 014 / 15 1. No referencial da figura está representado um quadrilátero e um triângulo retângulo em F. A figura não está desenhada à
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas
AGRUPAMENTO DE ESCOLAS DE SANTO ANTÓNIO - PAREDE ESCOLA EB23 DE SANTO ANTÓNIO - PAREDE
NOTA: O formulário e a tabela trigonométrica encontram-se nas páginas e 3 da prova e não nas páginas 3 e 4 como é referido nas Instruções Gerais. 1. 1.1. A ViajEuropa vendeu, nos 3 meses indicados, um
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Circunferência - ângulos e arcos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o trapézio é isósceles, então BC = AD, pelo que também
REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE
MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 20152 Gabarito Questão 01 [ 1,00 ::: (a)0,50; (b)0,50 ] Determine TODOS os valores possíveis para os algarismos x, y, z e t de modo que os números
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução
MTEMÁTI - 11o no Geometria - Produto escalar Propostas de resolução Eercícios de eames e testes intermédios 1. omo para qualquer ponto P da circunferência de diâmetro [RS] o ângulo RP Q é reto, então para
Prova de Aferição de MATEMÁTICA - 3o ciclo 2002
Prova de Aferição de MATEMÁTICA - 3o ciclo 2002 Proposta de resolução 1. Como a Rita obteve a segunda melhor marca, percorreu uma distância inferior ao João (que fez a melhor marca) e superior à Leonor
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A
PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO 3.º CICLO (CÓDIGO DA PROVA 92) 21 DE JUNHO 2016
PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO º CICLO (CÓDIGO DA PROVA 9) DE JUNHO 0 Constante de proporcionalidade: k 0 porque o produto das coordenadas de qualquer ponto do gráfico de uma proporcionalidade
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Prova Escrita de Matemática
PROVA FINAL DE CICLO A NÍVEL DE ESCOLA Decreto-Lei nº 139/2012, de 5 de julho Prova Escrita de Matemática 9.º Ano de Escolaridade Prova 82 / 1.ª Fase 16 Páginas Duração da Prova: Caderno 1-35 min ( tolerância:
AVF - MA Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 9 Páginas Braille Duração da Prova: 90 minutos.
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 39/0, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
Exercícios de exames e provas oficiais
mata Exercícios de exames e provas oficiais. Na figura, está representado, no plano complexo, um quadrado cujo centro coincide com a origem e em que cada lado é paralelo a um eixo. Os vértices deste quadrado
3.º Ciclo do Ensino Básico. Duração da Prova: 90 minutos Tolerância: 30 minutos. 9 páginas. Prova modelo de Matemática. 3º ciclo do ensino básico
Prova modelo de Matemática 3.º Ciclo do Ensino Básico Duração da Prova: 90 minutos Tolerância: 30 minutos 9 páginas 2013 1 / 9 1. A família Antunes percebeu, depois de algumas análises, que a probabilidade
Matemática 8º ano TPC
Matemática 8º ano TPC 1. Sabe-se que f é uma função afim cujo gráfico passa pelos pontos de coordenadas A 5,1 e B,7. 1.1. Determina a expressão analítica da função f. 1.. Determina as coordenadas dos pontos
Teste de Avaliação Escrita
Teste de Avaliação Escrita Duração: 90 minutos de março de 01 Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 013/01 Matemática 7.º Ano Nome: N.º Turma: Classificação: Fraco (0% 19%) Insuficiente
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 8o Ano
Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 8o Ano Teste de Avaliação 14/12/2015 PROPOSTA DE RESOLUÇÃO 1. (18) 4 ( 9 2) 2 ( 4) 2 = ( ) 4 ( ) 2 1 1 = (9) 4 = 18 4 ( ) 4 ( ) 2 9 1 = = 18 4 ( )
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno ): 90 minutos. Tolerância: 30 minutos.
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3
01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Braille, Entrelinha 1,5 sem figuras Critérios de Classificação Página 1
Prova Final de Matemática Prova 9.ª Fase.º Ciclo do Ensino Básico 07 Decreto-Lei n.º 9/0, de 5 de julho Braille, Entrelinha,5 sem figuras Critérios de Classificação 0 Páginas Prova 9/.ª F./Adp CC Página
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 01/013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 9 de abril de 013 Nome: N.º Turma: Classificação:
Prova Vestibular ITA 2000
Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar
RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5.
1. Num referencial o.m. do plano, considere a reta r de equação x = -5. Qual dos seguintes pares de pontos define uma reta perpendicular à reta r? (A) (B) ( C) (D) 2. A condição que define o domínio plano
Planificação de Matemática 9º ano. Ano letivo: 2014/15
Planificação de 9º ano Ano letivo: 01/15 Unidades Tema Total de previstas Unidade 8 (8ºano) Sólidos Geométricos 1ºP Unidade 1 Probabilidades 65 Unidade Funções Unidade 3 Equações ºP Unidade Circunferência
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como M é o ponto médio da corda [], temos que AM = MB, e assim Logo, substituindo
NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B
NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento
MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem
Escola Secundária/2,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 23/01/2012 Circunferência e polígonos; Rotações. 9.
Escola Secundária/,3 da Sé-Lamego Proposta de Resolução da Ficha de Trabalho de Matemática 3/01/01 Circunferência e polígonos; Rotações. 9.º Ano Nome: N.º: Turma: 1. Coloca, na figura, pela letra conveniente,
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1
Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?
PLANIFICAÇÃO ANUAL DE CONTEÚDOS Disciplina: MATEMÁTICA 5ºAno
PLANIFICAÇÃO ANUAL DE CONTEÚDOS Disciplina: MATEMÁTICA 5ºAno Ano Letivo 2012/2013 Conteúdos Nº médio de Aulas Previstas Atividades de diagnóstico e caraterização da turma. Números Naturais Adição. Propriedades.
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: CADERNO I (60 minutos com calculadora) 1 Em R, a equação ( π) cos x = π : (A) admite a solução x = π ; (B)
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS ... 1º PERÍODO. Medidas de localização
ANO LETIVO 2017/2018... 1º PERÍODO DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS Metas Curriculares Conteúdos Aulas Previstas Medidas de localização
PROVA FINAL DE MATEMÁTICA 9.º ano de escolaridade
Nome: N.º Turma Data: / / Avaliação Professor Encarregado Educação Parte 1: 35 minutos. (é permitido o uso de calculadora) 1 2 1. Sabe-se que A ]3, 21 21 ] = ] 2, ]. 2 2 Qual dos conjuntos seguintes poderá
