Prova final de MATEMÁTICA - 3o ciclo a Chamada
|
|
|
- Bárbara Garrau Meneses
- 8 Há anos
- Visualizações:
Transcrição
1 Prova final de MTMÁTI - o ciclo a hamada Proposta de resolução aderno 1 1. omo as grandezas x e y são inversamente proporcionais, sabemos que x y é um valor constante. ntão temos que 15 0 = 1 a 00 = 1a 00 1 = a 5 = a. Organizado os dados numa tabela, podemos obter os quatro primeiros termos da sequência subtraindo sucessivamente a cada termo, partindo do quinto termo: Ordem Termo Pela observação da tabela podemos verificar que todos os termos da sequência diferem de 1 unidade de um múltiplo de. ssim, temos que 8 é um termo da sequência, porque 8 = 1 80 é um termo da sequência porque 80 = é um termo da sequência porque 800 = 67 1 Logo 88 não é um termo da sequência porque 88 = 0. omo sabemos que a b = 88, os valores da opção () não podem ser os de a e de b porque = 8 Podemos excluir os valores da opção (), porque 4 = 1, logo o máximo divisor comum entre estes números é 1 e não 7 Também podemos excluir a opção () porque 7 não é um divisor de 18, logo não pode ser o máximo divisor comum entre 18 e 49 ssim, os valores de a e b podem ser 14 e 6, porque 14 6 = 88, e também podemos verificar que, como 14 = 7 e 6 = 7, logo, M.d.c.(14,6)=7 Resposta: Opção O lugar geométrico dos pontos que estão a igual distância de um ponto fixo é uma circunferência. Neste caso o lugar geométrico é a circunferência de centro no ponto e raio 1,6 cm (ou raio P ). Página 1 de 5
2 4.. O triângulo [P ] é retângulo em P. omo, relativamente ao ângulo P, o lado [P ] é o cateto adjacente e o lado [P ] é o cateto oposto, usando a definição de tangente, temos: tg 65 = P P tg 65 = P 1,6 1,6 tg 65 = P omo tg 65,14, vem que: P 1,6,14,4 ssim, arredondando o resultado às décimas, vem que P,4 cm 4.. omo o ângulo O é o ângulo ao centro que, para o mesmo arco, corresponde ao ângulo inscrito temos que Ô = Â ssim, vem que Ô = 65 = O volume total (V T ) do sólido pode ser calculado como a soma dos volumes do paralelepípedo retângulo (V P R ) e do prisma triangular (V P T ). alculando o volume do paralelepípedo retângulo, temos: V P R = J = = 150 alculando o volume do prisma triangular, considerando como base o triângulo [] e a altura a medida da aresta [I], como I = J e =, vem ssim, temos que V P T = [] J = h Logo o volume total do sólido é 05 cm J = 15 6 V T = V P R + V P T = = = = 675 H 5.. omo o plano I é o plano que contém a base superior do paralelepípedo retângulo, qualquer reta contida na base inferior do paralelepípedo é paralela ao plano I e não está contida no plano. ssim, usando as letras da figura, uma das respostas possíveis é a reta J G F I J Página de 5
3 aderno 6. Observando os dados do gráfico, podemos concluir que o número total de alunos da turma é =, dos quais 5 têm olhos azuis. ssim, temos que, recorrendo à Regra de Laplace, existem 5 casos favoráveis para que o aluno escolhido tenha olhos azuis e casos possíveis, pelo que a probabilidade é p = omo o casal tem filhos, duas filhas (que vamos designar por M 1 e M ) e um filho (que vamos designar por H), podemos organizar uma lista de todas as disposições possíveis para a fotografia: H M 1 M H M M 1 M 1 H M M 1 M H M H M 1 M M 1 H Observando os seis casos possíveis, podemos verificar que em 4 deles as filhas do casal ficam juntas, pelo que, recorrendo à Regra de Laplace, temos que a probabilidade é p = 4 6 = 7.. esignado por x a idade do filho do casal Silva, como o valor exato da média das idades dos três irmãos é 14, temos que x = x Logo, o filho do casal Silva tem 1 anos. = x = x = 4 x = 4 0 x = 1 8. Representando o conjunto na reta real, temos: ssim temos que ]0,[ ],5[=]0,5[ Resposta: Opção 9. Usando as potências de e a potência de expoente negativo, temos que: = 1 = ois pontos com a mesma ordenada pertencem à mesma reta horizontal. ssim, dois pontos com a mesma ordenada, são (por exemplo) os pontos e Página de 5
4 10.. altura do trapézio () pode ser calculada como a diferença das ordenadas dos pontos e ssim, calculando a ordenada do ponto, recorrendo à função g, temos: y = g() = () = 4 = 8 a mesma forma, podemos obter a ordenada do ponto, com recurso à função f: y = f(4) = 1 4 = 4 = ssim temos que = y y = 8 = 6, = 4 e = alculado a área do trapézio [], vem: [] = + b 11. Pela observação da figura, temos que h = ssim, a área do quadrado de lado O é Resposta: Opção + = 4 + O = O = a 6 = 6 6 = 6 = 18 = (a ) (a ) = (a ) = a + = a 6a screvendo a equação na fórmula canónica, e usando a fórmula resolvente, vem: (a = 8, b = e c = 1) x = 4x 1 x 1 () = 4x 1 1 () x = 8x 1 8x + x + 1 = 0 x = ± 4( 8)(1) ( 8) x = 6 x = + 6 {.S.= 1 } 4,1 x = ± 4 + x = ± 6 x = ± 6 x = 8 x = 4 x = 1 x = Resolvendo a inequação, temos 1 + x x x 6.S.=[ 1, + [ 1 x + 1 (1 x) x 1 + x x 1 (6) () () () 7 x + 4x 6 7x 7 x 7 x omo os triângulos [] e [] são semelhantes, e os lados [] e [] são lados correspondentes, a razão de semelhança (r) é r = = 4 6 = omo a razão das áreas é o quadrado da razão de semelhança, temos que Resposta: Opção área do triângulo [] área do triângulo [] = r = ( ) = 4 9 Página 4 de 5
5 esignado por M o ponto médio do lado [], temos que o triângulo [M] é retângulo em M, e que M = = 6 = omo l = M, usando o Teorema de Pitágoras, temos: l = M + M 7 = M + 49 = M = M 40 = M 40 = M M>0 cm 4 cm M 6 cm Os triângulos [] e [F ] são congruentes, porque F =, [] é um lado comum, e os ângulos e F são iguais (porque são ângulos alternos internos). F ssim, temos que os lados [F ] e [] são lados correspondentes, e por isso F = = 7 7 cm 7 cm Logo o raio da circunferência de centro em F e que contém o ponto tem comprimento 7 cm. Página 5 de 5
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTEMÁTI - 3o ciclo 01 - a hamada Proposta de resolução aderno 1 1. 1.1. omo o ponto de coordenadas (,) pertence ao gráfico de f, então f() = 1.. omo a função f é uma função de proporcionalidade
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MTMÁTI - o ciclo 017 - a ase Proposta de resolução aderno 1 1. omo no histograma estão representados todos os alunos a probabilidade de um aluno, escolhido ao acaso, ter uma massa corporal
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MTMÁT - 3o ciclo 011 - Época especial Proposta de resolução 1. 1.1. onstruindo uma tabela para identificar todos os pares de pares de bolas que existem, e calculando o produto dos dois números,
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MTEMÁTI - o ciclo 018 - Época especial Proposta de resolução aderno 1 1. omo os dados da tabela já estão ordenados podemos verificar que os valores centrais, são 61,6 e 6,4. Logo a mediana,
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MTEMÁTI - 3o ciclo 015 - Época especial Proposta de resolução aderno 1 1. omo foi escolhido um dos convidados que gostam de gelatina, existem escolhas possíveis (a na, o Paulo, o Rui, a
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MTEMÁTIC - 3o ciclo 008 - a Chamada Proposta de resolução 1. Como a e b são números primos diferentes são primos entre si, ou seja não têm fatores comuns na sua decomposição em fatores primos.
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 200-2 a Chamada Proposta de resolução. Como são 20 as pessoas entrevistadas e 0 reponderam que a relação entre o seu cão e o seu gato é boa, temos que, calculando a
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 01-1 a Fase Proposta de resolução Caderno 1 1. Como a função representada graficamente é uma função de proporcionalidade inversa, a sua expressão algébrica é da forma
Teste Intermédio de MATEMÁTICA - 9o ano 12 de abril de 2013
Teste Intermédio de MATEMÁTICA - 9o ano 1 de abril de 013 Proposta de resolução Parte 1 1. Como 7 0,33, representando os valores na reta real, temos 11 7 11 0,33 0,7 0.4 0,37 + Logo, ordenando por ordem
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo o triângulo [] é um triângulo retângulo em, (porque [EF GH] é paralelepípedo
Prova final de MATEMÁTICA - 3o ciclo Época especial
Prova final de MATEMÁTICA - 3o ciclo 017 - Época especial Proposta de resolução Caderno 1 1. Como 3π 9,7 então vem que 9, < 3π < 9,3, pelo que, de entre as opções apresentadas, o número 9,3 é a única aproximação
Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009
Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 009 Proposta de resolução 1. 1.1. Como na gaveta 1 existem três maillots (1 preto, 1 cor-de-rosa e 1 lilás), são 3 os casos possíveis, dos quais são
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 2009-2 a Chamada Proposta de resolução 1. 1.1. Considerando que não queremos que o automóvel preto seja atribuído à mãe, e selecionando, ao acaso, um elemento da família,
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 018-1 a Fase Proposta de resolução Caderno 1 1. Ordenando os dados da tabela podemos verificar que os valores centrais, são 166 e 189. Logo a mediana, x, do conjunto
Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 2012
Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 01 Proposta de resolução 1. 1.1. Como, na turma A os alunos com 15 anos são 7% do total, a probabilidade de escolher ao acaso um aluno desta turma
Teste Intermédio 2012
Teste Intermédio 01 1. Uma escola básica tem duas turmas de 9. ano: a turma e a turma. Os alunos da turma distribuem-se, por idades, de acordo com o seguinte diagrama circular. Idades dos alunos da turma
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/01, de 5 de julho Prova 9/1.ª Chamada Caderno 1: 7 Páginas Duração da Prova (CADERNO 1 + CADERNO ): 90 minutos. Tolerância: 30 minutos.
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 005 - a Chamada Proposta de resolução 1. Analisando cada uma das afirmações, confrontando com a observação do gráfico, temos que: Observando o eixo vertical, podemos
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2009-1 a Chamada Proposta de resolução 1. 1.1. Observando os dados da tabela, podemos verificar que o número total de viagens vendidas para Paris, nos meses de janeiro,
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 007 - a Chamada Proposta de resolução. Como a planta está desenhada à escala de :0 e o Miguel está sentado a 3 m do televisor, ou seja 300 cm, então a distância, em
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2006-2 a Chamada Proposta de resolução 1. 1.1. Fazendo mas medições com uma régua, obtemos valores para as dimensões do retângulo do lado esquerdo e da bandeira: Calculando
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2007-2 a Chamada Proposta de resolução 1. Organizando todas as somas que o Paulo pode obter, com recurso a uma tabela, temos: + 1 2 3 4 5 6-6 -5-4 -3-2 -1 0-5 -4-3
MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução
MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a reta T P é tangente à circunferência no ponto T é perpendicular ao
MATEMÁTICA A - 11o Ano Geometria -Trigonometria Propostas de resolução
MTEMÁTI - o no Geometria -Trigonometria ropostas de resolução Eercícios de eames e testes intermédios. bservando que os ângulos e RQ têm a mesma amplitude porque são ângulos de lados paralelos), relativamente
Proposta de teste de avaliação Matemática 9
Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta
MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução
MTMÁT - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. nalisando as quatro retas indicadas podemos ver que a reta é paralela
Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas
Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas
Aula 9 Triângulos Semelhantes
MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos
MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução
MTEMÁTI - 11o no Geometria - Produto escalar Propostas de resolução Eercícios de eames e testes intermédios 1. omo para qualquer ponto P da circunferência de diâmetro [RS] o ângulo RP Q é reto, então para
PLANIFICAÇÃO ANUAL DE CONTEÚDOS Disciplina: MATEMÁTICA 5ºAno
PLANIFICAÇÃO ANUAL DE CONTEÚDOS Disciplina: MATEMÁTICA 5ºAno Ano Letivo 2012/2013 Conteúdos Nº médio de Aulas Previstas Atividades de diagnóstico e caraterização da turma. Números Naturais Adição. Propriedades.
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
MA13 Geometria I Avaliação
13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo
MATEMÁTICA - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução
MTMÁT - 3o ciclo Posição relativa de retas e planos (9 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. s retas e não são complanares, porque os pontos, e pertencem à
Programação Anual. 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) VOLUME VOLUME
Programação Anual 6 ọ ano (Regime 9 anos) 5 ạ série (Regime 8 anos) 1 ọ 2 ọ 1. Sistemas de numeração Características de um sistema de numeração (símbolos e regras) Alguns sistemas de numeração (egípcio,
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
MATEMÁTICA A - 10o Ano Geometria Propostas de resolução
MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no
Ano lectivo 2010 / 2011 Conteúdos programáticos essenciais
Ano de escolaridade: 7º Área curricular disciplinar de Matemática 1. Números inteiros Números naturais Números primos e números compostos. Múltiplos e divisores de um número natural. Decomposição de um
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +
3.º Ciclo do Ensino Básico. Duração da Prova: 90 minutos Tolerância: 30 minutos. 9 páginas. Prova modelo de Matemática. 3º ciclo do ensino básico
Prova modelo de Matemática 3.º Ciclo do Ensino Básico Duração da Prova: 90 minutos Tolerância: 30 minutos 9 páginas 2013 1 / 9 1. A família Antunes percebeu, depois de algumas análises, que a probabilidade
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA
Simulado enem 013 3a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM 1 Simulado NM 013 Questão 1 lternativa: omo a soma das medidas dos ângulos de um triângulo é 180º, tem-se que α + β = 90º.
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Quadro de conteúdos MATEMÁTICA
Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares
Prova Final ª chamada
Prova Final 01.ª chamada 1. Um saco contém várias bolas com o número 1, várias bolas com o número e várias bolas com o número. s bolas são indistinguíveis ao tato. Maria realizou dez vezes o seguinte procedimento:
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
Preparar o Exame Matemática A
07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes
AGRUPAMENTO DE ESCOLAS DE SANTO ANTÓNIO - PAREDE ESCOLA EB23 DE SANTO ANTÓNIO - PAREDE
NOTA: O formulário e a tabela trigonométrica encontram-se nas páginas e 3 da prova e não nas páginas 3 e 4 como é referido nas Instruções Gerais. 1. 1.1. A ViajEuropa vendeu, nos 3 meses indicados, um
Agrupamento de Escolas Eugénio de Castro Escola Básica de Eugénio de Castro Planificação Anual. Ano Letivo 2016/17 Matemática- 3º Ciclo 9º Ano
Reconhecer propriedades da relação de ordem em IR. Definir intervalos de números reais. Operar com valores aproximados de números reais. Resolver inequações do 1.º grau. CONHECIMENTO DE FACTOS E DE PROCEDIMENTOS.
NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.
R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática 10. O NO DE ESOLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
Calendarização da Componente Letiva
Calendarização da Componente Letiva 2015/2016 7º Ano Matemática s 1º 2º 3º Número de aulas previstas (45 minutos) 61 50 48 Apresentação e Diagnóstico 2 Avaliação (preparação, fichas de avaliação e correção)
C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).
GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma
Prova de Aferição de MATEMÁTICA - 3o ciclo 2002
Prova de Aferição de MATEMÁTICA - 3o ciclo 2002 Proposta de resolução 1. Como a Rita obteve a segunda melhor marca, percorreu uma distância inferior ao João (que fez a melhor marca) e superior à Leonor
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem
PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO 3.º CICLO (CÓDIGO DA PROVA 92) 21 DE JUNHO 2016
PROPOSTA DE RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA DO º CICLO (CÓDIGO DA PROVA 9) DE JUNHO 0 Constante de proporcionalidade: k 0 porque o produto das coordenadas de qualquer ponto do gráfico de uma proporcionalidade
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º
Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 1.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Planificação de Matemática 9º ano. Ano letivo: 2014/15
Planificação de 9º ano Ano letivo: 01/15 Unidades Tema Total de previstas Unidade 8 (8ºano) Sólidos Geométricos 1ºP Unidade 1 Probabilidades 65 Unidade Funções Unidade 3 Equações ºP Unidade Circunferência
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas
ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1
ITA18 - Revisão LMAT10A-1 - ITA 2017 (objetivas) Questão 1 Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: 1. Existe uma bijeção f : X Y. 2. Existe uma função injetora
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A
Matemática B Extensivo V. 7
GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
TESTE DIAGNÓSTICO DE MATEMÁTICA DO 10.º ANO. Informações Gerais. TDmat 10.º ano
TESTE DIAGNÓSTICO DE MATEMÁTICA DO 10.º ANO Informações Gerais TDmat 10.º ano Objetivo Quem pode participar Averiguar os conhecimentos dos alunos acerca de alguns conteúdos de Matemática que foram tratados
