VOLUMES: - Folha Informativa -
|
|
|
- Isaque Assunção Ramires
- 9 Há anos
- Visualizações:
Transcrição
1 VOLUMES: - Flha Infrmativa - Para medir vlume de qualquer figura tridimensinal é necessári medir espaç que ela cupa. Assim, ter-se-á que esclher uma unidade de vlume que, pr cnveniência, pderá ser um cub cuja aresta tenha uma unidade de cmpriment. O vlume de um sólid é númer de vezes que cub unitári cabe nesse sólid: Vlume de um prisma quadrangular rect. Este prisma cujas arestas têm, respectivamente, 5, 3 e 2 unidades de cmpriment, pde ser decmpst em 5 x 3 x 2 cubs unitáris, Entã a medida d vlume de um prisma, cujas arestas medem medidas a, b e c, é: V = a x b x c a b c Atendend que a x b é a medida da área da base d sólid (A b ) e c a sua altura (h), implica que se pssa dizer que vlume d sólid é: V = A b x h Vlume d cub O cub é um cas particular de um prisma quadrangular rect, dad que cmpriment das suas arestas é sempre igual: a = b = c Entã: V = a x b x c = a x a x a = a 3 Lg vlume d cub é: V = a 3
2 VOLUMES: - Flha Infrmativa - Vlume d cilindr Se cnsiderarms cilindr cm send um prisma cm n - númer de faces laterais - em que n tende para infinit, cnsidera-se, entã, a fórmula para cálcul d seu vlume: V = A b x h = r 2 x h Prtant, a medida d vlume de um cilindr também é dada pel prdut da medida da área da base pela altura: V cilindr = r 2 x h r h Vlume da pirâmide Actividade experimental: Cnstruir em cartlina um prisma e uma pirâmide cujas bases sejam gemetricamente iguais e que a medida das suas alturas seja igual. h Utilizand grãs de arrz u areia, verificar que é necessári despejar três vezes cnteúd da pirâmide n interir d prisma para encher cmpletamente. Assim, cnclui-se que a medida d vlume de uma pirâmide é um terç da medida d vlume de um prisma cm a mesma base e a mesma altura: V pirâmide = 3 Vprisma = 3 Ab x h Entã, vlume de uma pirâmide é V pirâmide = 3 Ab x h h 2
3 VOLUMES: - Flha Infrmativa - Vlume d cne Seguind a mesma experiência anterir, mas agra em relaçã a cilindr, chega-se à mesma cnclusã: V cne = 3 Vcilindr = 3 r2 x h Prtant, a medida d vlume de um cne é dad pela seguinte fórmula: V cne = 3 r 2 x h h r Vlume da esfera De acrd cm site: a esfera é um ds sólids mais curiss que existem, e, mstra cm tda a evidência que é extremamente útil a Hmem. É pssível demnstrar que a fórmula de cálcul d seu vlume é a seguinte: V esfera = 3 4 r 3 r 3
4 ACTIVIDADES Vlumes - Tend pr unidade de vlume cub [ ] calcula vlume de cada um ds seguintes sólids gemétrics: a) b) c) 2 Agrupa as figuras que têm mesm vlume utilizand as respectivas letras. A B C D E F G 4
5 3 Cm cubs cnstrói s sólids seguintes. 4 Os dis sólids que cnstruíste, embra diferentes, cupam igual prçã de espaç. Sã sólids equivalentes. Cnstrói mais três sólids equivalentes a estes. 5 Cnstrói um sólid cuj vlume seja igual a 9 cubs unitáris. Cnstrói mais dis sólids equivalentes a anterir. 6 Cnsidera a seguinte sequência de sólids: 6. Desenha sólid que cntinua a sequência Quants cubs unitáris sã necessáris para frmar 5º sólid da sequência? E 8º? E 0º? 5
6 7 Tend à tua dispsiçã 27 cubs unitáris, cnstrói tds s cubs pssíveis. 7. Para cnstruíres um cub cm mais de 27 cubs unitáris, quants irás utilizar? 8 Usand tds s 27 cubs unitáris, cnstrói s pssíveis sólids rectangulares. 9 Na figura estã desenhadas três faces d mesm cub Desenha a figura que é psta a cada uma destas? 6
7 0 Cnstrói duas trres cm as da figura. Trre A Trre B 0. Quants cubs têm a trre A e a trre B? 0.2 Quants andares tem cada uma das trres? 0.3 Acrescenta mais um andar a cada uma das trres. Cm quants cubs ficu cada uma delas? 0.4 Identifica cada uma das trres, sabend que uma delas é a Trre ds númers inteirs. 0.5 Cnstrói uma trre parecida cm estas, cm 5 andares, a que pssams chamar Trre ds númers pares (trre C). 0.6 Quants cubs tem a trre C? 0.7 Cmpleta as tabelas para cada uma das trres (cmeça de cima para baix): 0.7. Trre A Nº d andar Nº de cubs Trre B Nº d andar Nº de cubs Trre C Nº d andar Nº de cubs
8 0.8 - De quants cubs precisas para cnstruir a trre A, a trre B e a trre C cm 0 andares? Explica teu racicíni. 0.9 Cnsegues descbrir de quants cubs precisas para cnstruir uma trre A, B u C cm 20 andares? Explica teu racicíni. Observa seguinte cub apresentad na figura a lad, frmad pr 27 cubinhs. O Jã pintu cub de vermelh.. Quants cubinhs têm apenas uma face pintada?.2 - Quants cubinhs têm duas faces pintadas?.3 - Quants cubinhs têm três faces pintadas?.4 - Quants cubinhs têm quatr faces pintadas?.5 Haverá algum cubinh que nã tem nenhuma face pintada? Explica teu racicíni. 2 O nss amig Jsé Filipe gsta muit de prblemas cúbics. Há dias surpreendeu-ns, apresentand quatr cubs maciçs, d mesm material, cm diferentes alturas, a saber 6 cm, 8 cm, 0 cm e 2 cm. Para aumentar a surpresa, clcu-s numa balança, em prats diferentes, e esta ficu em equilíbri. Cm é que nss amig Jsé Filipe distribuiu s cubs ns prats da balança, de md a equilibrá-la? 8
EB de. Nome. Data. Tarefa 1
Tarefa 1 Material: Flha de papel cm a reprduçã de páginas de um livr de histórias (anex); Na flha de papel estã reprduzidas 4 páginas da história O Rapaz ds Hippótams. Observa essas páginas cm atençã e
1. A figura representa uma peça de madeira que é metade de um cilindro. Determine: a) a área total da peça. b) o seu volume.
Ficha de Trabalh Módul inicial 1. A figura representa uma peça de madeira que é metade de um cilindr. Determine: a) a área ttal da peça. b) seu vlume. Matemática A - 10ºan. Observe relógi de mesinha de
A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1
OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste
1 a QUESTÃO: (2,0 pontos) Avaliador Revisor
( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),
MATEMÁTICA APLICADA RESOLUÇÃO
GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã
Proposta de teste de avaliação 4 Matemática 9
Prpsta de teste de avaliaçã 4 Matemática 9 Nme da Escla An letiv 0-0 Matemática 9.º an Nme d Alun Turma N.º Data Prfessr - - 0 Na resluçã ds itens da parte A pdes utilizar a calculadra. Na resluçã ds itens
As várias interpretações dos Números Racionais
As várias interpretações ds Númers Racinais (Algumas das tarefas apresentadas a seguir fram retiradas u adaptadas da Tese de Dutrament de Maria Jsé Ferreira da Silva, cuj text se encntra n seguinte endereç:
j^qbjžqf`^=^mif`^a^=
j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem
matemática 2 Questão 7
Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C
Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds
1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de
1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S
Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 8 entregar em
Escla Secundária cm 3º cicl D. Dinis 1º An de Matemática A Tema II Intrduçã a Cálcul Diferencial II TPC nº 8 entregar em 17-0-01 1. Jã é cleccinadr de chávenas de café. Recebeu cm prenda um cnjunt de 10
XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO
GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)
SUPERFÍCIE E CURVA. F(x, y, z) = 0
SUPERFÍIE E URVA SUPERFÍIE E URVA As superfícies sã estudadas numa área chamada de Gemetria Diferencial, desta frma nã se dispõe até nível da Gemetria Analítica de base matemática para estabelecer cnceit
III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)
III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand
Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009
Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer
QUESTÕES DISCURSIVAS
QUESTÕES DISCURSIVAS Questã 1 Um cliente tenta negciar n banc a taa de jurs de um empréstim pel praz de um an O gerente diz que é pssível baiar a taa de jurs de 40% para 5% a an, mas, nesse cas, um valr
I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão
VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/06/09
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 ANO DO ENSINO MÉDIO DATA: 9/0/09 PROFESSOR: CARIBÉ Td mund quer ajudar a refrescar planeta. Viru mda falar em aqueciment glbal. É precis nã esquecer que s recurss
Em geometria, são usados símbolos e termos que devemos nos familiarizar:
IFS - ampus Sã Jsé Área de Refrigeraçã e ndicinament de r Prf. Gilsn ELEENTS E GEETRI Gemetria significa (em greg) medida de terra; ge = terra e metria = medida. nss redr estams cercads de frmas gemétricas,
MATEMÁTICA 1 o Ano Duds
MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã
XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)
Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C
Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das
L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.
AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc
UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6
MATEMÁTICA 0) Respsta: A Cx, Ax, = 0x + 0 x! x! = 0x + 0!( x )! ( x )! xx ( )( x )( x )! xx ( )( x )( x )! =0( x ) ( x )! ( x )! xx ( )( x ) x( x )( x ) =0( x ) Cm x, dividims ambs s lads pr (x ) e btems:
01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05
PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,
Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B
Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem
4 MÉTODO DE CONTROLE DE CUSTOS
4 MÉTODO DE CONTROLE DE CUSTOS 4.1 Métds de cntrle de custs O sistema de custs para atendiment das necessidades infrmativas scietárias e fiscais deve utilizar a mensuraçã ds recurss cm base em valres histórics
CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA FOLHA DE QUESTÕES
CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC FOLH DE QUESTÕES 007 1 a QUESTÃO Valr: 1,0 Um hmem está de pé diante de um espelh plan suspens d tet pr uma mla. Sabend-se que: a distância entre s lhs d hmem
4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes
4 Extensã d mdel de Misme e Fimbel ra a determinaçã da distribuiçã cumulativa da atenuaçã diferencial entre dis enlaces cnvergentes 4.. Distribuiçã cumulativa cnjunta das atenuações ns dis enlaces cnvergentes
1) Determine e represente graficamente o domínio de cada uma das funções:
UNIVESIDADE FEDEAL DA BAHIA INSTITUTO DE MATEMÁTICA DEPATAMENTO DE MATEMÁTICA ª LISTA DE EXECÍCIOS DE CÁLCULO II-A Última atualizaçã 4-4-4 ) Determine e represente graficamente dmíni de cada uma das funções:
Matemática E Extensivo V. 2
Matemática E Etensiv V. Eercícis 0) a) d) n 8!! 8...!! 8.. (n )!! n n b) 0 0) A 0! 9! 0. 9! 9! 0 c) 00! 00 d) 9! 9. 8...! 9 8... 9..!!...!.. 0) a) ( + )! ( + )( )! +!! b) n 0 nn ( )( n )! ( n )! ( n )!
Escola Secundária com 3º Ciclo D. Dinis Curso Profissional de Técnico de Informática de Gestão Teste Diagnóstico do módulo A1
Nome: Nº 10º IG 1ª Parte 1. Qual é o perímetro da estrela representada na figura ao lado, sabendo que é formada por quatro circunferências, cada uma com 5 cm de raio, um quadrado e quatro triângulos equiláteros?
_ z~ '--z7-70. ----- 7ã ~ 174. 26. Observe o gráfico abaixo. MATEMÁTICA. 10... it
MATEMÁTICA 26. Observe gráfic abai. TRANSPlAtms IlEAUZADOS NORSEM lols,alíluuto I - RLA DE ESPERA POR TRANSPlANJE EM.uut NO AS 305 ----- 7ã ~ 174 '--z7-70 10... it _ z~ Fnte: Jmal Zer Hra Nele está retratad
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.
Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará
Pirâmide, cone e esfera
A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E
Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.
QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES
QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã
CONCEITOS DOS SISTEMAS (DE LÓGICA) FORMAIS: AXIOMAS: são wffs cujas verdades são evidentes, isto é, que sã evidentemente verdadeiras
LÓGICA PROPOSICIONAL Os Sistemas Ló gics Frmais pssibilitam cnstruir demnstraçõ es frmais na lógica prpsicinal, e de predicads, e usá -las para determinar a validade de um argument na Língua Prtuguesa
Caixas Ativas e Passivas. SKY 3000, SKY 2200, SKY 700, SKY 600 e NASH Áreas de Cobertura e Quantidade de Público
Caixas Ativas e Passivas SKY 3000, SKY 00, SKY 700, SKY 600 e NASH 144 Áreas de Cbertura e Quantidade de Públic www.studir.cm.br Hmer Sette 18-07 - 01 A área cberta pelas caixas acima, em funçã d psicinament
Questão 1. Questão 2. Resposta. Resposta
Questã 1 O gráfic mstra, aprimadamente, a prcentagem de dmicílis n Brasil que pssuem certs bens de cnsum. Sabe-se que Brasil pssui aprimadamente 50 milhões de dmicílis, send 85% na zna urbana e 15% na
Aluno(a): Código: 04. Sabendo que log 2 = x e log 3 = y, calcule o valor de: a) log 120. b) log 3 2 5
lun(a): Códig: Série: 1ª Turma: Data: / / 01. Se lg 2 = a e lg 3 = b, calcule valr de: a) lg 30 04. Sabend que lg 2 = x e lg 3 = y, calcule valr de: a) lg 120 b) lg 0,75 b) lg 3 2 5 02. Eles têm certeza
01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20
PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM 2009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui, n sentid
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prf. Marcs Diniz Prf. André Almeida Prf. Edilsn Neri Júnir Prf. Emersn Veiga Prf. Tiag Celh Aula n 02: Funções. Objetivs da Aula Denir funçã e cnhecer s seus elements; Recnhecer grác de uma funçã;
Algoritmos e Estruturas de Dados 1 Lista de Exercícios 2
Algritms e Estruturas de Dads 1 Lista de Exercícis 2 Prfessr Paul Gmide Parte Teórica 1 Analisand as 2 estruturas mdificadras d flux de execuçã da linguagem C cnhecidas cm estruturas de seleçã ( ifelse
Sólidos Geométricos. Sólidos Geométricos. Proposta de sequência de tarefas para o 8.º ano - 3.º ciclo
Sólidos Geométricos Proposta de sequência de tarefas para o 8.º ano - 3.º ciclo Autores: Professores das turmas piloto do 8º ano 3º ciclo de escolaridade Ano Lectivo 2009 / 2010 Novembro de 2010 Novo Programa
Questão 2. Questão 1. Questão 3. alternativa C. alternativa D
NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad
(a,b,c) P.G. b c. b ac. b ac. a.a.a...a. P a.(a.q).(a.q )...[a.q ] P a.q. P a.q. P a.q. P a.q. P a.a. a + b 2 ³ ab a + b ³ 2 ab.
EXTENSIVO APOSTILA 08 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 01) (a,b,c) P.G b c a b b ac b ac b ac 0) P a.a.a...a 1 P a.(a.q).(a.q )...[a.q ] (1) 1 1 1 1 1... (1) 1 P a.q 1 1 P a.q P a.q (1 1)( 1) 1 (1)
Disciplina: Matemática Data da entrega: 21/11/2014.
Lista de Exercícios - 08 Aluno (a): Nº. Professor: Flávio Série: 2º (Ensino médio) Disciplina: Matemática Data da entrega: 21/11/2014. Observação: A lista deverá apresentar capa e enunciados. 1. Uma pirâmide
UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.
UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)
Escola Secundária de Lousada
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data: / 04 / 01 Assunto: Áreas e Volumes de Sólidos II Lições nº, 1. Para vedar um terreno quadrangular com 900 m de área, o
3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA
3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados
FACULDADE DE ARQUITETURA E URBANISMO CURSO DE DESIGN TRABALHO DE CONCLUSÃO DE CURSO TCC DIRETRIZES
FACULDADE DE ARQUITETURA E URBANISMO CURSO DE DESIGN TRABALHO DE CONCLUSÃO DE CURSO TCC DIRETRIZES - 2012 1. ESTRUTURA As atividades didáticas relacinadas cm Trabalh de Cnclusã de Curs TCC estã estruturadas
Halliday & Resnick Fundamentos de Física
Halliday & Resnick Fundaments de Física Mecânica Vlume 1 www.grupgen.cm.br http://gen-i.grupgen.cm.br O GEN Grup Editrial Nacinal reúne as editras Guanabara Kgan, Sants, Rca, AC Farmacêutica, LTC, Frense,
Sinopse das entrevistas realizadas aos agentes sociais ligados à velhice (Dirigentes, técnicos e auxiliares de acção directa)
Sinpse das entrevistas realizadas as agentes sciais ligads à velhice (Dirigentes, técnics e auxiliares de acçã directa) Dimensã 1 Experiência e trabalh n lar Temp de experiência «Há 4 ans.» (P. 1) 4 ans.
Questão 1. Questão 3. Questão 2. Resposta. Resposta
ATENÇÃO: Escreva a resluçã COMPLETA de cada questã n espaç a ela reservad. Nã basta escrever resultad final: é necessári mstrar s cálculs u racicíni utilizad. Questã Uma pessa pssui a quantia de R$7.560,00
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Física E Extensivo V. 3
Gabarit ula 9 Física E Extensiv V. Reslva c) De acrd cm gráfic, a temperatura de fusã é de 10 C. 9.01) D 9.0) B I. Incrreta. té que se atinja a temperatura de ebuliçã, deve-se deixar fg alt, pis mais rapidamente
Capítulo 6 - Medidores de Grandezas Elétricas Periódicas
Capítul 6 - Medidres de Grandezas Elétricas Periódicas 6. Intrduçã Neste capítul será estudad princípi de funcinament ds instruments utilizads para medir grandezas (tensões e crrentes) periódicas. Em circuits
BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS
BREVE INTRODUÇÃO À REALIZAÇÃO DE INVESTIGAÇÕES NA AULA DE MATEMÁTICA: APROXIMAÇÃO DO TRABALHO DOS ALUNOS AO TRABALHO DOS MATEMÁTICOS MARIA HELENA CUNHA Área Científica de Matemática - Escla Superir de
Hewlett-Packard PRISMAS. Aulas 01 a 03. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard PRISMAS Aulas 01 a 03 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 PARALELEPÍPEDO... 1 PARALELEPÍPEDO RETO RETÂNGULO... 1 CUBO...
UFSC. Matemática (Amarela)
Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue
Notas de aula prática de Mecânica dos Solos II (parte 13)
Ntas de aula prática de Mecânica ds Sls II (parte ) Héli Marcs Fernandes Viana Cnteúd da aula prática xercíci relacinad a cálcul d empux ativ pel métd de Rankine, qual é causad pr um sl granular (u arens)
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Inequações Modulares 1.- Resolver em IR a) x 1 < 2 b) 1-2x > 3 c) x 2 4x < 0 Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...)
Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho. Espaço - Outra Visão
Matemática Escola Básica dos 2º e 3º Ciclos de Santo António Ficha de Trabalho 9º ano Espaço - Outra Visão 1. Arrumaram-se três esferas iguais dentro de uma caixa cilíndrica (figura 1). Como se pode observar
CÓDIGO DE CONDUTA EMPRESARIAL DE WINCHE REDES COMERCIAIS
CÓDIGO DE CONDUTA EMPRESARIAL DE WINCHE REDES COMERCIAIS Barcelna, 2016 ÍNDICE 1.- Intrduçã 2.- Âmbit de aplicaçã 3.- Valres étics 4.- Integridade relacinal Relaçã cm s clientes Relaçã cm s prveedres Relaçã
Apostila de Física MOVIMENTO DE QUEDA LIVRE (1 a versão - Versão provisória - setembro/2000) Prof. Petrônio Lobato de Freitas
Apstila de Física MOVIMENTO DE QUEDA LIVRE (1 a versã - Versã prvisória - setembr/000) Prf. Petrôni Lbat de Freitas A Experiência de Galileu Observand a queda de um bjet pdems ntar que a sua velcidade
Questão 1. Questão 3. Questão 2. Questão 4. Resposta. Resposta. Resposta. ATENÇÃO: Escreva a resolução COM- PLETA de cada questão no espaço reservado
ATENÇÃO: Escreva a resluçã COM- PLETA de cada questã n espaç reservad para a mesma. Nã basta escrever apenas resultad final: é necessári mstrar s cálculs racicíni utilizad. Questã Caminhand sempre cm a
LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE
LÓGICA FORMAL parte 2 QUANTIFICADORES, PREDICADOS E VALIDADE Algumas sentenças nã pdem ser expressas apenas cm us de símbls prpsicinais, parênteses e cnectivs lógics exempl: a sentenç a Para td x, x >0
Teste de Avaliação de Matemática B
Teste de Avaliação de Matemática B 10.º Ano Dezembro 2010 Em todas as questões da prova, apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações
MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156
MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã à Gemetria II. Ângul III. Paralelism Páginas: 145 à 156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:
Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard PRISMAS Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 ÁREAS EM UM PRISMA... 1 EXERCÍCIOS FUNDAMENTAIS...
MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156
MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã àgemetria II. Ângul III. Paralelism Páginas: 145 à156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias
Geometria Espacial - Prismas
Geometria Espacial - Prismas ) As três dimensões de um paralelepípedo reto retângulo de volume 05 m, são proporcionais a, e 5. A soma do comprimento de todas as arestas é: a) 08m b) 6m c) 80m d) m 7m )
Actividade Laboratorial Física 12º Ano Condensador Plano
Actividade Labratrial Física 12º An Cndensadr Plan 1. Questã prblema a. Verificar cm varia a capacidade de um cndensadr cm a distância entre as armaduras. b. Verificar cm varia a capacidade de um cndensadr
Matéria: Matemática Assunto: Volume Prof. Dudan
Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como
Matemática Geometria Espacial. Professor Bacon
Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas
Problemas de volumes
Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução
Gestão Administrativa 3 COMUNICAÇÃO DE INVENTÁRIOS
Gestã Administrativa 3 COMUNICAÇÃO DE INVENTÁRIOS 1. Intrduçã Aprvad a 25 de nvembr de 2014, nv rçament de estad para 2015 vem cmplementar cm uma nva regra a Decret-Lei nº 198/2012 (cmunicaçã de guias/faturas),
AL 1.1 Movimento num plano inclinado: variação da energia cinética e distância percorrida. Nome dos membros do grupo: Data de realização do trabalho:
Escla Secundária de Laga Física e Química A 10º An Paula Mel Silva Relatóri Simplificad AL 1.1 Mviment num plan inclinad: variaçã da energia cinética e distância percrrida Identificaçã d trabalh (Capa)
