1) Aplicações das Leis de Newton

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1) Aplicações das Leis de Newton"

Transcrição

1 1 Fonte: SEARS E ZEMANSKY Física I Mecânica 10 a edição. São Paulo: Addison Wesley, Capítulo 5: Aplicações das Leis de Newton 1) Aplicações das Leis de Newton Estratégia para solução de problemas utilizando as Leis de Newton 1. Defina um sistema de coordenadas. Um diagrama indicando a direção e o sentido positivo de cada eixo é sempre útil. 2. Seja coerente com os sinais. Uma vez definido o sentido positivo do eixo Ox, os componentes da aceleração, da força e da velocidade com esta direção e este sentido possuem sinais positivos. 3. Ao aplicar a primeira e a segunda lei de Newton, sempre se concentre sobre um corpo específico. Desenhe um diagrama do corpo livre mostrando todas as forças que atuam sobre o corpo, mas não inclua as forças que este corpo exerce sobre outros corpos. No seu diagrama você pode representar o seu corpo como uma partícula. 4. Identifique as grandezas conhecidas e as desconhecidas e use um símbolo algébrico para cada grandeza desconhecida. Caso no início você conheça a direção e o sentido da força, uso um símbolo para representar o módulo da força, uma grandeza sempre positiva. Lembre-se que os componentes da força ao longo de um eixo particular podem ser positivos ou negativos. 5. Escreva a primeira lei de Newton (para problemas com aceleração nula) ou a segunda lei de Newton (para problemas com aceleração diferente de zero) através de seus componentes usando o seu sistema de coordenadas, conforme recomendação da etapa 1. Resolva as equações, explicitando as incógnitas. Exercício 1: Tensão de uma corrente sem massa. Para melhorar a acústica em um auditório, um refletor de som com massa igual a 200 kg é suspenso por uma corrente presa ao teto (figura 4.22a). Qual é o peso do refletor? Qual é a força (o módulo, a direção e o sentido) que a corrente exerce sobre ele? Qual é a tensão na corrente? Suponha que a massa seja desprezível. ( w=1960n, T=1960N, -T=-1960N.) Exercício 2: Tensão em uma corrente com massa. No exercício 1, suponha que a massa da corrente não seja desprezível, e sim igual a 10,0 kg. Determina as forças na extremidade da corrente. (T1 = 2058N) Exercício 3: Equilíbrio em duas dimensões. Na figura 5.2a, o motor de um automóvel com peso w está suspenso por uma corrente ligada no ponto O a duas outras correntes, uma delas amarrada ao teto e a outra presa na parede. Ache as tensões nas três correntes, desprezando os pesos das correntes e sabendo-se que w = 2200 N. (T1=2200N, T2=1270N, T3 = 2540N)

2 2 Exercício 4: Um plano inclinado. Um carro está em repouso sobre a rampa de um rebocador de carro (Figura 5.3a) formando um ângulo de 10 o com a horizontal. O freio do carro está solto e o carro não está engrenado; logo, somente o cabo ligado ao carro e ao rebocador impede o carro de deslizar para baixo ao longo da rampa. Se o peso do carro é w = 5000N, ache a tensão no cabo e a força com a qual a rampa empurra os pneus do carro. Exercício 5: Tensão em torno de uma polia sem atrito. Blocos de granito estão sendo retirados de uma pedreira e transportados para cima de um plano inclinado de 15 o. Por razões ambientais, o barro também está sendo despejado na pedreira para preencher buracos antigos. Pediram que você descobrisse um meio de usar esse barro para mover facilmente o granito para fora da pedreira. Você projeta um sistema no qual o bloco de granito sobre um carrinho com rodas de aço (peso w1, incluindo o carrinho) é puxado para cima sobre trilhos de aço por um balde cheio de barro (peso w2, incluindo o balde) que cai verticalmente para o interior da pedreira (Figura 5.4a). Desprezando o peso do cabo e os atritos na polia e nas rodas, determine a relação entre os pesos w1 e w2 para que o sistema se mova com velocidade constante. (w2 = 0,26w1)

3 3 Exercício 6: Tensão em um cabo de elevador. Um elevador e sua carga possuem massa total igual a 800 kg (Figura 5.8a). O elevador está inicialmente descendo com velocidade igual a 10,0 m/s; a seguir ele atinge o repouso em uma distância de 25,0m. Ache a tensão T no cabo de suporte enquanto o elevador está diminuindo de velocidade até atingir o repouso. (T= 9440N) Exercício 7: Peso aparente dentro de um elevador em aceleração. Uma garota de 50,0 kg está sobre uma balança dentro do elevador do exercício 6 (figura 5.9a). Qual é a leitura da balança? (N=590N)

4 Exercício 8: Aceleração descendo a montanha. Um tobogã cheio de estudantes em férias (peso total w) escorrega para baixo numa encosta coberta de neve (Figura 5.10a). A montanha possui uma inclinação constante e o tobogã está tão bem lubrificado que não existe qualquer atrito. Qual é a aceleração do tobogã? (ax=g.sen) 4 Exercício 9: Dois corpos com a mesma aceleração. Um braço de robô puxa um carrinho de 4,0 kg ao longo de um trilho horizontal sem atrito com uma corda de 0,50 kg, aplicando na corda uma força horizontal de módulos F=9,0N (Figura 5.12a). Calcule a aceleração do sistema e a tensão no ponto onde a corda é amarrada no carrinho. (a= 2,0m/s 2, T = 8N) Exercício 10: Dois corpos com acelerações de mesmo módulo. Na figura 5.13a, um cavaleiro com massa m 1 = 1kg desliza sobre um trilho de ar horizontal sem atrito em um laboratório de física. Ele está ligado a um peso de laboratório de massa m 2 = 5 kg através de um fio leve, flexível e não deformável, que passa sobre uma pequena polia sem atrito. Calcule a aceleração de cada corpo e a tensão no fio.

5 5 2) Forças de Atrito O atrito é uma força importante em muitos aspectos de nossa vida cotidiana. O óleo no motor de um automóvel minimiza o atrito entre as partes móveis, porém se não fosse o atrito entre os pneus do carro e o solo, não poderíamos guiar um carro nem fazer curvas. Atrito estático e atrito cinético Quando um corpo está em repouso ou desliza sobre uma superfície, podemos sempre decompor as forças de contato em componentes perpendiculares e paralelas à superfície. Chamamos o vetor componente perpendicular à superfície de força normal e a representamos por N ( normal é sinônimo de perpendicular). O vetor componente paralelo à superfície é a força de atrito, representada por f. Por definição, N e f são forças sempre ortogonais entre si. O sentido da força de atrito é sempre contrário ao sentido do movimento relativo entre as duas superfícies. O tipo de atrito que atua quando um corpo está deslizando sobre uma superfície denomina-se força de atrito cinético fc. O módulo da força de atrito cinético geralmente cresce quando a força normal cresce. Por exemplo, no sistema de freios do carro, quanto mais as pastilhas de freio são comprimidas contra o disco de freio, maior é o efeito da freada. Em muitos casos verifica-se experimentalmente que o módulo da força de atrito cinético fc é proporcional ao módulo N da força normal. Em tais casos, podemos escrever: f c = c.n (módulo da força de atrito cinético) equação 1 c = coeficiente de atrito cinético adimensional (sem unidade) A força de atrito também pode atuar quando não existe movimento relativo ( corpo parado). Quando você tenta arrastar uma caixa ela pode não se mover porque o solo exerce uma força igual e contrária. Essa força denomina-se força de atrito estático fs. Na figura 5.16a) a caixa está em repouso equilibrada pela ação do peso w e pela força normal N exercida da de baixo para cima pelo solo sobre a caixa (Figura 5.16b) e aumentamos gradualmente a tensão T na corda. No início, a caixa permanece em repouso porque, à medida que T cresce, a força de atrito fs também cresce (permanecendo com o mesmo módulo de T). Em dado ponto, T torna-se maior que o máximo valor da força de atrito estático fs que a superfície pode exercer. Então a caixa quebra o vínculo ( a tensão é capaz de quebrar as ligações moleculares entre as superfícies da caixa e o solo) e começa a deslizar. A Figura 5.16c mostra um diagrama das forças quando T atingiu esse valor crítico. Quando T supera esse valor, a caixa não está mais em equilíbrio. Para um dado par de superfícies, o valor máximo de fs depende da força normal. A experiência mostra que esse valor máximo (fs) max é aproximadamente proporcional a N; chamamos o fator de proporcionalidade de s de coeficiente de atrito estático. f s s.n (módulo da força de atrito estático) equação 2 Na equação 2, o sinal de igual só é válido quando a força T, paralela a superfície, atingiu seu valor crítico e o movimento está na iminência de começar (Figura 5.16c). Quando T for menor do que esse valor (Figura 5.16b), o sinal da desigualdade é válido. Neste caso é necessário usar a condição de equilíbrio (Fr = 0 força resultante nula) para achar fs. Quando não existe nenhuma força aplicada (T=0), como na figura 5.16a, então também não existe nenhuma força de atrito estático (fs=0). Logo que o deslizamento começa (Figura 5.16d), a força de atrito normalmente diminui; manter a caixa deslizando é mais fácil do que produzir o início do movimento. Portanto, o coeficiente de atrito cinético é geralmente menor do que o coeficiente de estático para um dado par de superfícies, conforme mostra tabela abaixo. Valores aproximados dos coeficientes de atrito Materias Estático, s Cinético, c Aço com aço 0,74 0,57 Alumínio com aço 0,61 0,47 Cobre com aço 0,53 0,36 Teflon com teflon 0,04 0,04 Borracha com concreto (seco) 1,00 0,80 Borracha com concreto (úmido) 0,30 0,25 Quando para t=0 começamos sem nenhuma força aplicada (T=0) e gradualmente aumentamos a força, ocorrerá uma pequena variação de força de atrito, conforme indicado na Figura Em alguns casos, as superfícies podem alternadamente aderir (atrito estático) e deslizar (atrito cinético). Ex: giz numa posição errada sobre o quadro negro, som do violino...

6 Exercício 11: Atrito em um movimento horizontal. Uma empresa de entrega acaba de descarregar na calçada em frente a sua casa um engradado de 500N com equipamento de ginástica (Figura 5.18a). Você verifica que para começar o movimento até a porta da sua casa você precisa aplicar uma força horizontal de módulo igual a 230N. Depois da quebra do vínculo e de iniciado o movimento, você necessita apenas de 200N para manter o movimento com velocidade constante. (a)qual é o coeficiente de atrito estático e o coeficiente de atrito cinético? (b) Qual é a força de atrito se o engradado está em repouso sobre uma superfície, e uma força horizontal de 50N é aplicada sobre ele? (a: s = 0,46 e C = 0,40; b: fs = 50N) 6

7 7 Exercício 12: No exercício 11, suponha que você tente mover o engradado amarrando uma corda em torno dele e puxando a corda para cima com um ângulo de 30 o com a horizontal (Figura 5.19a). Qual a força que você deve fazer para manter o movimento com velocidade constante? O esforço que você faz é maior ou menor do que quando aplica uma força horizontal? Supor w = 500N e c = 0,40. ( T = 188N,N = 406N) Exercício 13: Movimento de um tobogã com atrito I: Um tobogã possui um atrito cinético c sendo que sua inclinação é apenas suficiente para que o tobogã se desloque com velocidade constante. Deduza uma expressão para o ângulo de inclinação em função de w e de c. ( c = tan)

8 Exercício 14: Movimento de um tobogã com atrito II: Qual seria a solução do exercício 13 considerando o mesmo tobogã, porém uma inclinação mais íngreme? Agora o tobogã se acelera. Deduza uma expressão para aceleração em termos de g,, c e w. (ax = g.(sen - c.cos) ) 8 Atrito de rolamento É mais fácil mover um armário cheio sobre um carrinho com rodas do que arrasta-lo sobre o piso Quanto é mais fácil? Podemos definir um coeficiente de rolamento r, como uma força horizontal necessária para um deslocamento com velocidade constante sobre uma superfície plana dividida pela força normal de baixo para cima exercida pela superfície. Os engenheiros de transporte chamam r de resistência a tração. Valores típicos de r, são 0,002 a 0,003 para rodas de aço sobre trilhos de aço e 0,001 a 0,002 para pneus de borracha sobre concreto. Esses valores mostram a razão pela qual um trem que se desloca sobre trilhos gasta muito menos combustível do que um caminhão em uma auto-estrada. Exercício 15: Movimento com atrito de rolamento: O peso de um carro comum é cerca de 12000N. Se o coeficiente de atrito de rolamento for r = 0,010, qual a força horizontal necessária para deslocar este carro com velocidade constante em uma estrada plana? Despreze a resistência do ar. (fr = 120N) Resistência de um fluido e velocidade terminal Se você colocar sua mão para fora da janela de um carro que se move com alta velocidade, ficará convencido da existência da resistência de um fluido, a força que um fluido (um gás ou um líquido) exerce sobre o corpo que se move em seu seio. O corpo que se move exerce uma força sobre o fluido para afastalo do caminho. Pela terceira lei de Newton, o fluido exerce sobre o corpo uma força igual e contrária. O módulo da força da resistência de um fluido normalmente cresce com a velocidade do corpo através do fluido. Para baixas velocidades (menores que a velocidade de uma bola de tênis no ar), o módulo f da força de resistência de um fluido é aproximadamente proporcional à velocidade do corpo v: f = k. v (resistência de um fluido para baixas velocidades) onde k é um fator de proporcionalidade que depende da forma e do tamanho do corpo e das propriedades do fluido. Para velocidades maiores, a força é aproximadamente proporcional a v 2. Ela é então chamada de arraste do ar, ou simplesmente arraste. Aviões, gotas de água caindo e carros que se movem com velocidades elevadas, todos sofrem a ação do arraste do ar. f = D. v 2 (resistência de um fluido para altas velocidades) O fator de proporcionalidade D depende da forma e do tamanho do corpo e da densidade do ar. Por causa dos efeitos da resistência do fluido, um objeto caindo em um fluido não terá aceleração constante. Para descrever seu movimento devemos aplicar a segunda lei de Newton (Fr = m.g + (-k.v) = m.a). Por exemplo, caso você deixe cair uma pedra num lago profundo (baixa velocidade) a velocidade final v t (quando a=0), denominada velocidade terminal, é dada por: v t = (m.g)/k (velocidade terminal, resistência do fluido f = k.v) Para um objeto caindo no ar com velocidade elevada, a velocidade terminal é dada por: v t = raiz quadrada (m.g)/d (velocidade terminal, resistência do fluido f = D. v 2 )

9 Exercício 16: Velocidade terminal de um pára-quedista. Para um corpo humano caindo no ar em posição horizontal, o valor da constante D é aproximadamente 0,25 kg/m. Considerando um pára-quedista de 80,0 kg, a sua velocidade terminal é: (56 m/s) 3) Dinâmica do Movimento Circular Para uma partícula que se desloca ao longo de uma circunferência com velocidade escalar constante, a aceleração é sempre orientada para o centro do círculo (perpendicular a velocidade instantânea) O módulo a rad da aceleração centrípeta é constante, sendo dado em termo da velocidade v e do raio R por: a rad = v 2 /R A velocidade v é dada em função do comprimento da circunferência (2..R) e o período T. v = (2..R)/T O movimento circular uniforme, como qualquer movimento de uma partícula, é governado pela segunda lei de Newton. A aceleração da partícula orientada para o centro deve ser produzida por alguma força, ou diversas forças, tais que a soma vetorial (força resultante F rad ) seja um vetor sempre orientado para o centro do círculo. O módulo da força radial (F rad ) é dado por: F rad = m.a rad = (m.v 2 )/R 9 Exercício 16: Força no movimento circular uniforme. Uma pequena caixa de plástico com massa de 0,300 kg se desloca com movimento circular uniforme em um plano horizontal sem atrito, como o de uma mesa de ar (figura 5.26a). A caixa está segura por uma corda de 0,140 m de comprimento presa a um pino fixado na superfície. Se a caixa completa duas revoluções por segundo, ache a força F exercida sobre ela pela corda. (F=6,63N)

10 Exercício 17: Contorno de uma curva. O carro está fazendo uma curva plana com raio R. Se o coeficiente de atrito entre os pneus e a estrada for igual s, qual a velocidade máxima vmáx com a qual o carro pode completar a curva sem deslizar? 10 Exercício 18: Movimento circular uniforme em um círculo vertical. Um passageiro na roda-gigante de um parque de diversões se move em um círculo vertical de raio R com velocidade v. Supondo que o assento permaneça sempre na vertical durante o movimento, deduza relações para a força que o assento exerce sobre o passageiro no topo do círculo e em seu ponto inferior.

11 11 Exercícios para entregar no dia da segunda avaliação: 01) Ache a tensão em cada corda da figura abaixo, sabendo que o peso suspenso w = 100N. (Ta = 73,2N e Tb = 89,2N) curso para cima, de modo que o avião passa a descrever um círculo vertical. a) Se a velocidade do avião na base do círculo for igual a 95,0 m/s, qual será o raio mínimo do círculo para que a aceleração não supere 4 vezes a aceleração da gravidade? b) Qual é seu peso aparente neste ponto? (a) 230m (b) 2450N 02) Dois blocos, cada um com peso w = 100N, são mantidos em equilíbrio em um plano inclinado sem atrito. Sabendo que o ângulo = 30 o, determine: a) a tensão na corda que conecta os dois blocos; b) a tensão na corda que conecta o bloco A com a parede; c) Calcule o módulo da força que o plano inclinado exerce sobre cada bloco; d) Interprete suas respostas para os casos = 0 e = 90 o. a) 50N, b) 100N, c) 87N 03) Duas caixas estão ligadas por uma corda sobre uma superfície horizontal. A caixa A possui massa m a = 10kg e a caixa B possui massa m b = 10kg. O coeficiente de atrito cinético C = 0,40. As caixas são empurradas para a direita com uma velocidade constante F. a) Calcule o módulo da força F; b) a tensão na corda que conecta os blocos. (a) 98N (b) 39,2N 04) No exercício 10, calcule a aceleração e atração no fio, caso o coeficiente de atrito cinético entre o cavaleiro de massa m 1 e o trilho de ar seja de C = 0,10. a=8m/s 2 ; T=9N (aproximadamente) 05) Uma mulher de 50,0 kg pilota um avião mergulhando verticalmente para baixo e muda o

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Exercícios 6 Aplicações das Leis de Newton

Exercícios 6 Aplicações das Leis de Newton Exercícios 6 plicações das Leis de Newton Primeira Lei de Newton: Partículas em Equilíbrio 1. Determine a intensidade e o sentido de F de modo que o ponto material esteja em equilíbrio. Resp: = 31,8 0,

Leia mais

FIS-14 Lista-05 Setembro/2012

FIS-14 Lista-05 Setembro/2012 FIS-14 Lista-05 Setembro/2012 1. A peça fundida tem massa de 3,00 Mg. Suspensa em uma posição vertical e inicialmente em repouso, recebe uma velocidade escalar para cima de 200 mm/s em 0,300 s utilizando

Leia mais

Mais aplicações das Leis de Newton

Mais aplicações das Leis de Newton Mais aplicações das Leis de Newton Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: A natureza dos diversos tipos de força de atrito

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

Mecânica 2007/2008. 3ª Série

Mecânica 2007/2008. 3ª Série Mecânica 2007/2008 3ª Série Questões: 1. Se o ouro fosse vendido a peso, preferia comprá-lo na serra da Estrela ou em Lisboa? Se fosse vendido pela massa em qual das duas localidades preferia comprá-lo?

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m. Referência: Sears e Zemansky Física I Mecânica Capítulo 7: Energia Potencial e Conservação da Energia Resumo: Profas. Bárbara Winiarski Diesel Novaes. INTRODUÇÃO Neste capítulo estudaremos o conceito de

Leia mais

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima Física Geral Série de problemas Unidade II Mecânica Aplicada Departamento Engenharia Marítima 2009/2010 Módulo I As Leis de movimento. I.1 Uma esfera com uma massa de 2,8 10 4 kg está pendurada no tecto

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

LISTA UERJ 1ª FASE LEIS DE NEWTON

LISTA UERJ 1ª FASE LEIS DE NEWTON 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente ao plano inclinado é igual

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

FIS-14 Lista-09 Outubro/2013

FIS-14 Lista-09 Outubro/2013 FIS-14 Lista-09 Outubro/2013 1. Quando um projétil de 7,0 kg é disparado de um cano de canhão que tem um comprimento de 2,0 m, a força explosiva sobre o projétil, quando ele está no cano, varia da maneira

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças.

Trabalho. a) F; b) peso c) força normal; d) força de atrito; e) resultante das forças. Trabalho 1- Um corpo de massa igual 20Kg deslocava-se para a direita sobre um plano horizontal rugoso. Sobre o corpo é, então, aplicada uma força F, horizontal, constante de módulo igual a 100N. O módulo

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças:

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças: UNIVERSIDADE FEDERAL DE SANTA CATARINA-CFM DEPARTAMENTO DE FÍSICA FSC 5107 FÍSICA GERAL IA- Semestre 2012.2 LISTA DE EXERCÍCIOS 4 LEIS DE NEWTON (PARTE I) Imagine que você esteja sustentando um livro de

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa DINÂMICA FORÇA: LEIS DE NEWTON A partir de agora passaremos a estudar a Dinâmica, parte

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia

Leia mais

FORÇA DE ATRITO PLANO INCLINADO

FORÇA DE ATRITO PLANO INCLINADO FORÇA DE ATRITO PLANO INCLINADO Prof. Ms. Edgar Leis de Newton - dinâmica Pensamento Antigo Associavam o movimento a presença obrigatória de uma força. Esta idéia era defendida por Aristóteles, e só foi

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

Mecânica 2007/2008. 6ª Série

Mecânica 2007/2008. 6ª Série Mecânica 2007/2008 6ª Série Questões: 1. Suponha a=b e M>m no sistema de partículas representado na figura 6.1. Em torno de que eixo (x, y ou z) é que o momento de inércia tem o menor valor? e o maior

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº

Série 1º ANO. Colégio da Polícia Militar de Goiás - Hugo. MAT Disciplina: FISICA Professor: JEFFERSON. Aluno (a): Nº Polícia Militar do Estado de Goiás CPMG Hugo de Carvalho Ramos Ano Letivo - 2015 Série 1º ANO Lista de Exercícios 4º Bim TURMA (S) ABC Valor da Lista R$ MAT Disciplina: FISICA Professor: JEFFERSON Data:

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia potencial

Leia mais

Plano Inclinado com e sem atrito

Plano Inclinado com e sem atrito Plano Inclinado com e sem atrito 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente

Leia mais

Lista de Exercícios de Física

Lista de Exercícios de Física Lista de Exercícios de Física Assunto: Dinâmica do Movimento Circular, Trabalho e Potência Prof. Allan 1- Um estudante, indo para a faculdade, em seu carro, desloca-se num plano horizontal, no qual descreve

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

4. Princípios matemáticos da dinâmica

4. Princípios matemáticos da dinâmica 4. Princípios matemáticos da dinâmica Aos 23 anos Isaac Newton teve uma ideia inovadora que foi a inspiração para a sua teoria da gravitação e da mecânica em geral. Newton pensou que assim como uma maçã

Leia mais

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua

Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Lista de Exercícios - Unidade 9 A segunda lei de Newton e a eterna queda da Lua Segunda Lei de Newton 1. (G1 - UTFPR 01) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física). Coluna I Afirmação

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON Aluno (a): N Série: 1º Professor : Vinicius Jacques Data: 03/08/2010 Disciplina: FÍSICA EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON 01. Explique a função do cinto de segurança de um carro, utilizando o

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR:

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR: 2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE DATA: / / 2011 PROFESSOR: ALUNO(A): Nº: NOTA: Questão 1 - A cidade de São Paulo tem cerca de 23 km de raio. Numa certa madrugada, parte-se de carro, inicialmente

Leia mais

Plano Inclinado Com Atrito

Plano Inclinado Com Atrito Plano Inclinado Com Atrito 1. (Fgv 2013) A figura representa dois alpinistas A e B, em que B, tendo atingido o cume da montanha, puxa A por uma corda, ajudando-o a terminar a escalada. O alpinista A pesa

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi. Atenção: Semana de prova S1 15/06 até 30/06 Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) Prof.: João Arruda e Henriette Righi Maio/2015 Atenção: Semana de prova S1 15/06 até 30/06 LISTA DE EXERCÍCIOS # 2 1) Um corpo de 2,5 kg está

Leia mais

Problemas de Mecânica e Ondas 5

Problemas de Mecânica e Ondas 5 Problemas de Mecânica e Ondas 5 P 5.1. Um automóvel com uma massa total de 1000kg (incluindo ocupantes) desloca-se com uma velocidade (módulo) de 90km/h. a) Suponha que o carro sofre uma travagem que reduz

Leia mais

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos Resumo de Física 2C13 Professor Thiago Alvarenga Ramos ENERGIA Grandeza escalar que existe na natureza em diversas formas: mecânica, térmica, elétrica, nuclear, etc. Não pode ser criada nem destruída;

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

Aula de Véspera - Inv-2008

Aula de Véspera - Inv-2008 01. Um projétil foi lançado no vácuo formando um ângulo θ com a horizontal, conforme figura abaixo. Com base nesta figura, analise as afirmações abaixo: (001) Para ângulos complementares teremos o mesmo

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

AULA 4: Força e Equilíbrio

AULA 4: Força e Equilíbrio COLÉGIO PEDRO II CAMPUS HUMAITÁ II PROJETO UERJ-ENEM/2014 Prof. Carlos Frederico (Fred) AULA 4: Força e Equilíbrio 1. (UERJ - 2005) Uma caixa está sendo puxada por um trabalhador, conforme mostra a figura

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

5) A bola da figura é solta em A (topo de uma rampa). Como se comporta a velocidade da bola no trecho inclinado e no trecho horizontal? Por quê?

5) A bola da figura é solta em A (topo de uma rampa). Como se comporta a velocidade da bola no trecho inclinado e no trecho horizontal? Por quê? COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III Lista de Exercícios (Leis de Newton) SÉRIE: 1ª COORDENADOR: Eduardo Gama PROFESSOR(A): Sandro Fernandes ALUNO(A): 1) Imagine uma superfície horizontal

Leia mais

Um momento, por favor

Um momento, por favor Um momento, por favor A UU L AL A Outro domingo! Novo passeio de carro. Dessa vez foi o pneu que furou. O pai se esforça, tentando, sem sucesso, girar o parafuso da roda. Um dos filhos então diz: Um momento,

Leia mais

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315.

(Desconsidere a massa do fio). SISTEMAS DE BLOCOS E FIOS PROF. BIGA. a) 275. b) 285. c) 295. d) 305. e) 315. SISTEMAS DE BLOCOS E FIOS PROF. BIGA 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se as massas

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( ) Fundamental (x ) Médio SÉRIE: 1º TURMA: TURNO: DISCIPLINA: FÍSICA PROFESSOR: Equipe de Física Roteiro e Lista de Recuperação de

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

CENTRO EDUCACIONAL CHARLES DARWIN NOME: TURMA: PROFESSOR: G:\2014\Pedagógico\Documentos\Exercicios\Est_Comp_Rec_Parcial\1ª Série\Física.

CENTRO EDUCACIONAL CHARLES DARWIN NOME: TURMA: PROFESSOR: G:\2014\Pedagógico\Documentos\Exercicios\Est_Comp_Rec_Parcial\1ª Série\Física. NOME: TURMA: PROFESSOR: 1 INTRODUÇÃO AO ESTUDO DOS MOVIMENTOS Movimento: Um corpo está em movimento quando a posição entre este corpo e um referencial varia com o tempo. Este é um conceito relativo, pois

Leia mais

www.aliancaprevestibular.com

www.aliancaprevestibular.com Professor Gleytton Figueiredo Disciplina Física I Lista nº 02 Assuntos EQUILÍBRIO E LEIS DE NEWTON 01- (UERJ- 2001) As figuras abaixo mostram dois tipos de alavanca: a alavanca interfixa (I) e a alavanca

Leia mais

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Centro de Massa O centro de massa de um sistema de partículas é o ponto que se move

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

Os princípios fundamentais da Dinâmica

Os princípios fundamentais da Dinâmica orça, Trabalho,Quantidade de Movimento e Impulso - Série Concursos Públicos M e n u orça, Exercícios Trabalho,Quantidade propostos Testes de Movimento propostos e Impulso Os princípios fundamentais da

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

DINÂMICA DO PONTO MATERIAL

DINÂMICA DO PONTO MATERIAL DINÂMICA DO PONTO MATERIAL 1.0 Conceitos Forças se comportam como vetores. Forças de Contato: Representam o resultado do contato físico entre dois corpos. Forças de Campo: Representam as forças que agem

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento

Leia mais

a) 1200 W b) 2600 W c) 3000 W d) 4000 W e) 6000 W

a) 1200 W b) 2600 W c) 3000 W d) 4000 W e) 6000 W TRABALHO/ POTÊNCIA 01)UTFPR- No SI (Sistema Internacional de Unidades), o trabalho realizado pela força gravitacional pode ser expressa em joules ou pelo produto: a) kg.m.s 1 b)kg.m.s 2 c) kg.m 2.s 2 d)kg.m

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

MATERIAL DE APOIO FÍSICA

MATERIAL DE APOIO FÍSICA COLÉGIO FRANCO-BRASILEIRO NOME: N : TURMA: PROFESSOR(A): SÉRIE: 1º DATA: / / 2014 MATERIAL DE APOIO FÍSICA I. VETORES 1. Dois vetores de módulos iguais possuem direções que fazem entre si um ângulo de

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

a 2,0 m / s, a pessoa observa que a balança indica o valor de

a 2,0 m / s, a pessoa observa que a balança indica o valor de 1. (Fuvest 015) Uma criança de 30 kg está em repouso no topo de um escorregador plano de,5 m,5 m de altura, inclinado 30 em relação ao chão horizontal. Num certo instante, ela começa a deslizar e percorre

Leia mais

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton.

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton. CAPÍTULO 8 As Leis de Newton Introdução Ao estudarmos queda livre no capítulo cinco do livro 1, fizemos isto sem nos preocuparmos com o agente Físico responsável que provocava a aceleração dos corpos em

Leia mais

UFMG - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante uma brincadeira, Rafael utiliza o dispositivo mostrado nesta figura para lançar uma bolinha horizontalmente. Nesse

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Considere uma transformação linear T(x,y) em que, 5 autovetores de T com relação aos auto valores -1 e 1, respectivamente. e,7 são os Determine

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais

Gráficos no MU e MUV. E alguns exercícios de vestibulares

Gráficos no MU e MUV. E alguns exercícios de vestibulares Gráficos no MU e MUV E alguns exercícios de vestibulares Tipos de movimentos -MU Velocidade positiva Velocidade negativa v = s t Que tipo de informação tiramos s x t V x t v = s t s = v. t MUV -espaço

Leia mais

Energia Cinética e Trabalho

Energia Cinética e Trabalho Energia Cinética e Trabalho Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa uma força realizar um trabalho sobre

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2011 1 a QUESTÃO Valor: 1,00 Um varal de roupas foi construído utilizando uma haste rígida DB de massa desprezível, com

Leia mais

LEIS DE NEWTON E SUAS APLICAÇÕES

LEIS DE NEWTON E SUAS APLICAÇÕES NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO LEIS DE NEWTON E SUAS APLICAÇÕES 1. INTRODUÇÃO Como pode um rebocador pequeno rebocar um navio muito mais pesado do que ele? Por que ele precisa de uma longa

Leia mais

No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727).

No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727). 2.1-1 2 As Leis de Newton 2.1 Massa e Força No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727). As três Leis (leges)

Leia mais

Lista de Exercícios- PRA Física Geral Experimental I

Lista de Exercícios- PRA Física Geral Experimental I I Velocidade Média: Lista de Exercícios- PRA Física Geral Experimental I 1 - Um avião vai de São Paulo a Recife, em 1 h 40. A distância entre as cidades é aproximadamente 3 000km. Qual a velocidade média

Leia mais

Exemplos de aceleração Constante 1 D

Exemplos de aceleração Constante 1 D Exemplos de aceleração Constante 1 D 1) Dada a equação de movimento de uma partícula em movimento retilíneo, s=-t 3 +3t 2 +2 obtenha: a) A velocidade média entre 1 e 4 segundos; e) A velocidade máxima;

Leia mais

PROVA DE FÍSICA 3 o TRIMESTRE DE 2014

PROVA DE FÍSICA 3 o TRIMESTRE DE 2014 PROVA DE FÍSICA 3 o TRIMESTRE DE 2014 PROF. VIRGÍLIO NOME N o 1 a SÉRIE A compreensão do enunciado faz parte da questão. Não faça perguntas ao examinador. É terminantemente proibido o uso de corretor.

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Cálculo de resultante I Considere um corpo sobre o qual atual três forças distintas. Calcule a força resultante. F 1 = 10 N 30 F

Leia mais

UNIGRANRIO www.exerciciosdevestibulares.com.br. 2) (UNIGRANRIO) O sistema abaixo encontra-se em equilíbrio sobre ação de três forças

UNIGRANRIO www.exerciciosdevestibulares.com.br. 2) (UNIGRANRIO) O sistema abaixo encontra-se em equilíbrio sobre ação de três forças 1) (UNIGRANRIO) Um veículo de massa 1200kg se desloca sobre uma superfície plana e horizontal. Em um determinado instante passa a ser acelerado uniformemente, sofrendo uma variação de velocidade representada

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido Página 1 de 10 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes formas: a) Equilíbrio estático - É aquele no qual o corpo está em

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

Elevadores. Qual deve ter sido o menor tempo para cada ascensão do elevador?

Elevadores. Qual deve ter sido o menor tempo para cada ascensão do elevador? Elevadores 1. (Uftm 01) No resgate dos mineiros do Chile, em 010, foi utilizada uma cápsula para o transporte vertical de cada um dos enclausurados na mina de 700 metros de profundidade. Considere um resgate

Leia mais