Demonstrações Matemáticas Parte 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Demonstrações Matemáticas Parte 4"

Transcrição

1 Demonstrações Matemáticas Parte 4 Nesta aula, apresentamos técnicas de demonstração para afirmações matemática para todo e existe. Elas são baseadas nas duas últimas regras de inferências da Lógica de Predicados de 1a Ordem apresentadas na aula passada as regras de generalização. 1. Prova Universal Chamamos de prova universal a técnica mais geral usada para provar uma afirmação para todo x, é verdade P(x). (Em outra aula, veremos prova por indução, que é uma técnica mais especializada). Esta é prova universal: Para provar para todo x U, é verdade P(x), estruture a prova assim: Hipótese: x é um elemento de U qualquer (sem nenhuma restrição) Objetivo: P(x) é verdade Veja que a ideia é, basicamente, acrescentar uma hipótese dizendo que a variável x pode ter valor qualquer. Um detalhe é que P(x) deve ser provado sem assumir nenhuma restrição sobre x. (Porém, a aplicação de métodos em sequência, pode incluir novas premissas envolvendo x, mas são premissas mais locais ). No primeiro exemplo, vamos provar um produto notável. Exemplo 1: Prove que, para todos a e b reais, (a+b) 2 = a 2 + 2ab + b 2. Aplicando a prova universal, ficaria assim: Sejam a e b dois reais quaisquer. (Estamos fazendo uma demonstração universal, mas não precisa informar explicitamente). Vamos desenvolver a expressão (a+b) 2 da seguinte forma: (a+b) 2 = (a+b)(a+b) [pela definição de potência] = (a+b)a + (a+b)b = aa + ab + ba + bb [propr. de distribuitividade] 1

2 = a 2 + 2ab + b 2 Logo: (a+b) 2 = a 2 + 2ab + b 2. (Provado). Na verdade, a maioria das demonstrações que demos na disciplina foram de afirmações para todo seguindo o princípio da prova universal, mesmo que não informássemos diretamente. No próximo exemplo, refazemos uma demonstração apresentada antes, apresentando em detalhes a prova universal seguida de uma prova direta. Exemplo 2: Prove que para todos a e b inteiros, se a e b são pares, então a+b é par. Sejam a e b inteiros quaisquer. (Este primeiro passo é a aplicação da prova universal. A partir daqui, ainda temos que provar o se...então.... A seguir, usamos uma prova direta, dentro desta prova universal. Usamos um recuo maior no texto, para dar uma ideia parecida com a de aninhamento em programação). Por prova direta, vamos assumir, também, que a e b são pares. Pela definição de par, temos: a = 2k 1 b = 2k2 (para certos k1, k2 inteiros) Desenvolvendo a expressão a+b: a+ b = 2k 1 + 2k 2 = 2(k 1+2k 2) Logo, a+b é par. (Provado). Em situações semelhantes, antes, nós mostramos diretamente a aplicação da prova direta da implicação. Porém, no exemplo acima, precisamos tratar o para todo antes de implicação. Na prática, você pode fazer as duas coisas em um só passo, como no próximo exemplo. Exemplo 3: Prove que para todo n inteiro, se n é par, então n 2 é par. Aplicando a prova universal e a prova direta. Seja n um inteiro par qualquer. (Faça você mesmo, ou veja as notas de aulas). Logo, n 2 é par. (Provado). 2

3 2. Prova Existencial (Construtiva) Nesta seção, mostramos o método de prova existencial, que serve para demonstrar uma afirmação existe x tal que P(x) é verdade. Segue a explicação deste método: Para provar existe x U, tal que é verdade P(x), crie um argumento assim: Hipótese: Seja x = <escolha um valor do conjunto U> Objetivo: P(x) é verdade (apenas para o valor escolhido) o <se for um valor que cause dúvida, prove, também, que x U> Esta técnica consiste em dar um valor para x diretamente ou em explicar como calculálo ou construí-lo. Por isso, ela costuma ser chamada de prova construtiva (ou por construção). Por falta de tempo, não falaremos de prova existencial não-construtiva 1. Exemplo 5: Prove que existe um inteiro x que é solução da equação x 2 (3/2)x 1 = 0 Prova existencial. Seja x = 2. Assim, podemos desenvolver a seguinte expressão: x 2 (3/2)x 1 = (2) 2 (3/2)(2) 1 = = 0 (Provado). O próximo exemplo é muito simples (não vou cobrar nesse nível), mas serve para ilustrar. Ele se baseia no fato de que a definição de número par depende da existência de certo valor. Então, provar que um número é par, no fundo, é uma prova existencial. Exemplo 6: Prove que 6 é par. (Pela definição de par, isso corresponde a provar que existe um k inteiro tal que 6=2k ). Prova existencial. Seja k = 3, que é inteiro. Assim, temos: 6 = 2.k, para k inteiro. Logo: x é par. (Provado) 1 Ver: https://en.wikipedia.org/wiki/constructive_proof#non-constructive_proofs. 3

4 Exemplo 7: Prove que existe um n inteiro tal que n é par e primo. Prova existencial. Seja n=2, que é inteiro. Obviamente, 2 é par (pois considerando k=1, temos que 2=2.k). Além disso, os divisores positivos de 2 são apenas 1 e 2. Logo 2 é primo também. (Provado). Veja que, no argumento das provas existenciais, o valor da variável (como o x=2 do exemplo 5 ou o k=3 do exemplo 6) parece ter surgido do nada, pois não há menção de como ele foi obtido. No exemplo 5, você poderia descobrir aquele valor usando o método de Bhaskara (para resolver equação do 2º grau). Em outros casos, você poderia resolver criando um programa para testar valores, etc. Porém, na demonstração, só importa qual o valor. Não importa como você o descobriu! O processo para achar o valor pode ficar no seu rascunho ou em alguma explicação extra, mas não precisa ser relatado na demonstração. A seguir, damos mais um exemplo de prova existencial com um valor difícil de descobrir. (Esse valeria a pena tentar descobrir com um programa de computador). Exemplo 8: Prove que existe um inteiro positivo n que pode ser escrito de duas formas distintas como a soma de dois cubos perfeitos. Prova por construção. Seja n = Veja que n = = e n = = Logo, n pode ser escrito, de duas formas distintas, como a soma de dois cubos perfeitos. (Provado). A seguir, mostramos que as provas por contra-exemplo, que aprendemos antes, são, na verdade, provas existenciais. 4

5 2.1. Prova (Refutação) por Contra-Exemplo Lembre-se que a prova por contra-exemplo serve para refutar/negar uma afirmação do tipo para todo x, é verdade P(x). Assim, em fórmulas da Lógica de 1 a Ordem, ela prova x P(x). Porém, como vimos, essa fórmula é logicamente equivalente a x P(x), que quer dizer existe um x tal que P(x) é falso. Assim, a prova por contraexemplo é uma prova existencial! Veja os exemplos a seguir. Exemplo 9: Refute a afirmação para todos a e b inteiros, é verdade que a b ou b a. (Veja que a negação desta afirmação corresponde a existem a e b inteiros tais que a b e b a. A seguir, damos uma prova desta afirmação existencial). Contra-exemplos (=prova existencial da negação): a=3 e b=4. Veja que a b, pois 3 4. Além disso b a, pois 4 3. (Até aqui, provamos a negação da afirmação original). Logo a afirmação inicial é falsa. Veja que a prova existencial construtiva acima corresponde exatamente a negar a afirmação original por contra-exemplo. O par de valores a=3 e b=4 formam o contraexemplo propriamente dito. Exemplo 10: Refute a afirmação Para todos a e b irracionais, a b é irracional. (A negação desta afirmação corresponde a existem a e b irracionais tais que a b é racional. No fundo, vamos dar a prova desta nova afirmação). Contra-exemplos: a= 2 e b= log 2 9. Ambos são irracionais. (Já provamos para log 2 9 também é irracional 2 ). 2, mas, sem provar, assuma que Agora, vamos calcular a b : b a log 2 9 log Ver: https://en.wikipedia.org/wiki/irrational_number#logarithms. 5

6 Veja que a b é racional. Logo a afirmação inicial é falsa. Observação: Em questões para refutar uma afirmação, você pode continuar fazendo prova por contra-exemplo como fazia antes. Esta seção teve o objetivo apenas de mostrar que a prova existencial que aprendemos aqui, na verdade, não é uma grande novidade ela já era usada antes. A seguir, vamos falar sobre como provar afirmações que envolvem tanto o quantificador para todo como o quantificador existe. 3. Prova Existencial + Prova Universal Afirmações que envolvem para todo e existe são tratadas aplicando-se os métodos em seqüência. Isso é feito na ordem em que eles aparecem na afirmação. Vamos começar dando um exemplo de prova de uma afirmação que começa com um quantificador para todo e depois tem o quantificador existe. Exemplo 11: Provar que para todo x Z +, existe um y R tal que x.y = 1. (Primeiro aplicamos a prova universal, que cria uma nova hipótese bastante simples envolvendo o x. Depois, no argumento, vamos aplicar a prova existencial sobre o y). Seja x é um inteiro positivo qualquer. (Lembre-se que inteiro positivo exclui o zero. Agora, no restante, vamos dar a prova existencial de: existe um y R tal que x.y = 1 ). Seja y = 1/x. Como x 0, esse valor de y é sempre um valor real. Agora, calculando x.y, temos: x.y = x.(1/x) = x/x = 1 Logo: x.y = 1. (Provado). O próximo exemplo demonstra uma afirmação que começa com um quantificador existe e, depois, tem o quantificador para todo. 6

7 Exemplo 12: Prove que existe um x Z tal que, para todo y R, x.y = y. (Dessa vez, começamos com uma prova existencial sobre o x. Depois, fazemos, uma prova universal sobre o y). Seja x = 1, que é um valor inteiro. (Agora, vamos provar que para todo y real, x.y = y ). Seja y um real qualquer. (Esta é a hipótese criada pela prova universal). Agora, vamos calcular x.y: x.y = 1.y = y Logo: x.y = y. (Provado). Todas as coisas cooperam para o bem daqueles que amam a Deus (Romanos 8:28) 7

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

15.053 26 de fevereiro de 2002

15.053 26 de fevereiro de 2002 15.053 26 de fevereiro de 2002 Análise de Sensibilidade apresentado como Perguntas Freqüentes Pontos ilustrados em um exemplo contínuo de fabricação de garrafas. Se o tempo permitir, também consideraremos

Leia mais

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno, CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1)

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1) Matemática aula POLINÔMIOS I. COMENTÁRIOS ATIVIDADES PARA SALA b a P() b P() + + Calculando P (), temos: b a P() b b + b + a ab b a P () b + ( ab) + b + a b Se P () P (), podemos observar que: b + ( ab)

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

Registro de Retenções Tributárias e Pagamentos

Registro de Retenções Tributárias e Pagamentos SISTEMA DE GESTÃO DE PRESTAÇÃO DE CONTAS (SiGPC) CONTAS ONLINE Registro de Retenções Tributárias e Pagamentos Atualização: 20/12/2012 A necessidade de registrar despesas em que há retenção tributária é

Leia mais

Uso de escalas logaritmicas e linearização

Uso de escalas logaritmicas e linearização Uso de escalas logaritmicas e linearização Notas: Rodrigo Ramos 1 o. sem. 2015 Versão 1.0 Obs: Esse é um texto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas

Leia mais

Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015.

Resolução da Prova de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. de Raciocínio Lógico do MPOG/ENAP de 2015, aplicada em 30/08/2015. Considerando a proposição P: Se João se esforçar o bastante, então João conseguirá o que desejar, julgue os itens a seguir. 43 A proposição

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Prática. Exercícios didáticos ( I)

Prática. Exercícios didáticos ( I) 1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos

Leia mais

Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página: daniel.miranda

Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página:  daniel.miranda Daniel 1 1 email: daniel.miranda@ufabc.edu.br sala 819 - Bloco B página: http://hostel.ufabc.edu.br/ daniel.miranda 23 de maio de 2011 Elementos de Lógica e Linguagem Matemática Definição Uma proposição

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1

POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS. Potenciação 1 POTENCIAÇÃO, RADICIAÇÃO E LOGARITMAÇÂO NOS NÚMEROS REAIS Potenciação 1 Neste texto, ao classificarmos diferentes casos de potenciação, vamos sempre supor que a base e o expoente sejam não nulos, pois já

Leia mais

Manual Geral de Aplicação Universal Entrada 2008

Manual Geral de Aplicação Universal Entrada 2008 Universal Entrada 2008 Programa Programa - Manual do Aplicador Teste Universal - 2008 Teste Cognitivo Leitura/Escrita e Matemática Caro alfabetizador(a): Se você está recebendo este material, é porque

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 7 Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Sistemas de equações do 1 grau com duas variáveis LISTA 1

Sistemas de equações do 1 grau com duas variáveis LISTA 1 Sistemas de equações do 1 grau com duas variáveis LISTA 1 INTRODUÇÃO Alguns problemas de matemática são resolvidos a partir de soluções comuns a duas equações do 1º a duas variáveis. Nesse caso, diz-se

Leia mais

Estruturas de Repetição

Estruturas de Repetição Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados

Leia mais

Calculando seno(x)/x com o interpretador Hall.

Calculando seno(x)/x com o interpretador Hall. Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0

Leia mais

12 26, 62, 34, 43 21 37, 73 30 56, 65

12 26, 62, 34, 43 21 37, 73 30 56, 65 1 Questão 1 Solução a) Primeiro multiplicamos os algarismos de 79, obtendo 7 9 = 63, e depois somamos os algarismos desse produto, obtendo 6 + 3 = 9. Logo o transformado de é 79 é 9. b) A brincadeira de

Leia mais

Treinamento sobre Progress Report.

Treinamento sobre Progress Report. Treinamento sobre Progress Report. Objetivo O foco aqui é trabalhar o desenvolvimento pessoal de cada aluno. O instrutor irá analisar cada um e pensar em suas dificuldades e barreiras de aprendizado e,

Leia mais

Observando embalagens

Observando embalagens Observando embalagens A UUL AL A O leite integral é vendido em caixas de papelão laminado por dentro. Essas embalagens têm a forma de um paralelepípedo retângulo e a indicação de que contêm 1000 ml de

Leia mais

BALANÇO PATRIMONIAL AMBIENTAL - EXERCÍCIO COMENTADO Prof Alan

BALANÇO PATRIMONIAL AMBIENTAL - EXERCÍCIO COMENTADO Prof Alan FACULDADE EVANGÉLICA CIÊNCIAS CONTÁBEIS DISCIPLINA: CONTABILIDADE AMBIENTAL E SOCIAL TURMA: 3º, 4º e 5º PERÍODOS BALANÇO PATRIMONIAL AMBIENTAL - EXERCÍCIO COMENTADO Prof Alan Considere os fatos contábeis

Leia mais

Graphing Basic no Excel 2007

Graphing Basic no Excel 2007 Graphing Basic no Excel 2007 Tabela de Conteúdos 1. Inserindo e formatando os dados no Excel 2. Criando o gráfico de dispersão inicial 3. Criando um gráfico de dispersão de dados de titulação 4. Adicionando

Leia mais

Silogística Aristotélica

Silogística Aristotélica Silogística Aristotélica Prof. Paulo Margutti Com base na possibilidade de padronizar todas as sentenças de conformidade com os tipos A, E, I e O, Aristóteles considerava que todos os argumentos poderiam

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados? o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos e de suas propriedades. Quer ver

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Figura 4.1: Diagrama de representação de uma função de 2 variáveis

Figura 4.1: Diagrama de representação de uma função de 2 variáveis 1 4.1 Funções de 2 Variáveis Em Cálculo I trabalhamos com funções de uma variável y = f(x). Agora trabalharemos com funções de várias variáveis. Estas funções aparecem naturalmente na natureza, na economia

Leia mais

01/09/2009. Entrevista do Presidente da República

01/09/2009. Entrevista do Presidente da República Entrevista coletiva concedida pelo Presidente da República, Luiz Inácio Lula da Silva, após cerimônia de encerramento do 27º Encontro Econômico Brasil-Alemanha (EEBA) Vitória-ES, 1º de setembro de 2009

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;

Leia mais

Aula 11: Desvios e Laços

Aula 11: Desvios e Laços Aula 11: Desvios e Laços Nesta aula explicaremos alguns comandos que podem alterar o fluxo dos seus programas em JavaScript. Você aprenderá a estrutura dos comandos de desvios e laços. Entenderá como funcionam

Leia mais

Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma:

Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma: Matemática Resoluções A. Combinatória 3 os anos Blaidi/Walter Ago/09 Nome: Nº: Turma: Prezadísssimos alunos e alunas, Neste bimestre, aprenderemos a resolver questões de análise combinatória com o auílio

Leia mais

INICIADOS - 2ª Sessão ClubeMath 7-11-2009

INICIADOS - 2ª Sessão ClubeMath 7-11-2009 INICIADOS - 2ª Sessão ClubeMath 7-11-2009 Adivinhar o dia de aniversário de outra pessoa e o mês Temos uns cartões mágicos, que vão permitir adivinhar o dia de aniversário de qualquer pessoa e outros que

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

Sobre o Visual C++ 2010

Sobre o Visual C++ 2010 O Visual Studio é um pacote de programas da Microsoft para desenvolvimento de software, suportando diversas linguagens como C#, C++, C, Java, Visual Basic, etc. Nesta série de tutoriais vou focar apenas

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

UTILIZAÇÃO DE RECURSOS AVANÇADOS DO EXCEL EM FINANÇAS (PARTE III): GERENCIAMENTO DE CENÁRIOS

UTILIZAÇÃO DE RECURSOS AVANÇADOS DO EXCEL EM FINANÇAS (PARTE III): GERENCIAMENTO DE CENÁRIOS UTILIZAÇÃO DE RECURSOS AVANÇADOS DO EXCEL EM FINANÇAS (PARTE III): GERENCIAMENTO DE CENÁRIOS! Criando cenários a partir do Solver! Planilha entregue para a resolução de exercícios! Como alterar rapidamente

Leia mais

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2 Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade

Leia mais

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados Prof. Hugo Souza Após vermos uma breve contextualização sobre esquemas para bases dados e aprendermos

Leia mais

Roteiro 12: Gerenciando Compartilhamentos

Roteiro 12: Gerenciando Compartilhamentos Roteiro 12: Gerenciando Compartilhamentos Objetivos: Ativar e gerenciar compartilhamentos locais e remotos; Ativar e gerenciar o sistema de arquivos distribuídos (DFs); Gerenciar compartilhamentos ocultos;

Leia mais

Expressões de sequencias

Expressões de sequencias Expressões de sequencias Semana Olímpica/01 Prof. Armando 01 de fevereiro de 01 1 Introdução Um assunto que cai com frequência em olimpíada são as sequências. Sequências são listas ordenadas de números

Leia mais

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação:

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação: 16. Escala Absoluta Termodinâmica Kelvin propôs uma escala de temperatura que foi baseada na máquina de Carnot. Segundo o resultado (II) na seção do ciclo de Carnot, temos que: O ponto triplo da água foi

Leia mais

Exemplo COMO FAZER UM TRABALHO ESCOLAR O QUE DEVE CONSTAR EM UM TRABALHO ESCOLAR? Um Trabalho Escolar que se preze, de nível fundamental, deve conter:

Exemplo COMO FAZER UM TRABALHO ESCOLAR O QUE DEVE CONSTAR EM UM TRABALHO ESCOLAR? Um Trabalho Escolar que se preze, de nível fundamental, deve conter: COMO FAZER UM TRABALHO ESCOLAR O QUE DEVE CONSTAR EM UM TRABALHO ESCOLAR? Um Trabalho Escolar que se preze, de nível fundamental, deve conter: 1. Capa 2. Folha de Rosto 3. Sumário 4. Introdução 5. Texto

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

Programação Linear - Parte 4

Programação Linear - Parte 4 Mestrado em Modelagem e Otimização - CAC/UFG Programação Linear - Parte 4 Profs. Thiago Alves de Queiroz Muris Lage Júnior 1/2014 Thiago Queiroz (DM) Parte 4 1/2014 1 / 18 Solução Inicial O método simplex

Leia mais

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Segunda Fase Parte A PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 0 1 Matriz de Mudança de Base Bases Ortonormais 3 Matrizes Ortogonais 1 Matriz de Mudança de Base Os próximos problemas que estudaremos são os seguintes (na verdade são o mesmo

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

CRIAÇÃO DE TABELAS NO ACCESS. Criação de Tabelas no Access

CRIAÇÃO DE TABELAS NO ACCESS. Criação de Tabelas no Access CRIAÇÃO DE TABELAS NO ACCESS Criação de Tabelas no Access Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Criação de um Banco de Dados... 4 3. Criação de Tabelas... 6 4. Vinculação de tabelas...

Leia mais

Equação e Inequação do 2 Grau Teoria

Equação e Inequação do 2 Grau Teoria Equação e Inequação do Grau Teoria Candidato segue um resumo sobre resolução e discussão de equações e inequações do grau. Bons Estudos! Equação do Grau Onde Uma Equação do Grau é sentença aberta do tipo

Leia mais

COMO VENDER MAIS USANDO FUNIL DE VENDAS. Capítulo III: Etapas do Funil de Vendas

COMO VENDER MAIS USANDO FUNIL DE VENDAS. Capítulo III: Etapas do Funil de Vendas COMO VENDER MAIS USANDO FUNIL DE VENDAS Capítulo III: Etapas do Funil de Vendas Índice Introdução Defina suas etapas de vendas corretamente Como definir suas etapas de vendas 03 05 06 2 Introdução Olá,

Leia mais

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800)

Universidade Estadual de Campinas Departamento de Matemática. Teorema de Jacobson. Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Universidade Estadual de Campinas Departamento de Matemática Teorema de Jacobson Adriana Wagner(RA: 144768) Gustavo Terra Bastos(RA: 143800) Campinas - SP 2013 1 Resumo Nesta monografia apresentamos a

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

NavegadorContábil. Sim. Não. Sim. Não. Número 13-20 de agosto de 2010. Contabilização de operações de duplicata descontada e vendor

NavegadorContábil. Sim. Não. Sim. Não. Número 13-20 de agosto de 2010. Contabilização de operações de duplicata descontada e vendor NavegadorContábil Número 13-20 de agosto de 2010 Contabilização de operações de duplicata descontada e vendor Introdução Muitas empresas no Brasil, na administração de seu capital de giro, fazem uso de

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

Configuração para Uso do Tablet no GigaChef e Outros Dispositivos

Configuração para Uso do Tablet no GigaChef e Outros Dispositivos Configuração para Uso do Tablet no GigaChef e Outros Dispositivos Birigui SP Setembro - 2013 1. Configurando o Ambiente. Este documento mostra como configurar o ambiente do GigaChef para usar o Tablet

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuições Qui-quadrado, t-student e F de Snedecor 04/14

Leia mais

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões

Leia mais

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá.

Se inicialmente, o tanque estava com 100 litros, pode-se afirmar que ao final do dia o mesmo conterá. ANÁLISE GRÁFICA QUANDO y. CORRESPONDE A ÁREA DA FIGURA Resposta: Sempre quando o eio y corresponde a uma taa de variação, então a área compreendida entre a curva e o eio do será o produto y. Isto é y =

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Inversão de Matrizes

Inversão de Matrizes Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA FINANCEIRA Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Matemática Financeira da prova de Auditor da SEFAZ/PI 2015. Vale dizer que utilizei

Leia mais

Cinemática Bidimensional

Cinemática Bidimensional Cinemática Bidimensional INTRODUÇÃO Após estudar cinemática unidimensional, vamos dar uma perspectiva mais vetorial a tudo isso que a gente viu, abrangendo mais de uma dimensão. Vamos ver algumas aplicações

Leia mais

Somando os termos de uma progressão aritmética

Somando os termos de uma progressão aritmética A UA UL LA Somando os termos de uma progressão aritmética Introdução Um pouco de História Na aula passada, mostramos como calcular qualquer termo de uma progressão aritmética se conhecemos um de seus termos

Leia mais

A hora é agora 8º ano!!!

A hora é agora 8º ano!!! A hora é agora 8º ano!!! 1- Desenvolva os seguintes produtos notáveis: a) (1 x)³ = b) (1 + 3x)²= c) (3x 4)(3x + 4) = d) (3 + x)² + (3 x)² = 2- Desenvolvendo a expressão (x 3)² + (x + 3)², obteremos o seguinte

Leia mais

Exercícios de Fixação Aulas 05 e 06

Exercícios de Fixação Aulas 05 e 06 Disciplina: TCC-0.0 Prog. de Computadores III Professor: Leandro Augusto Frata Fernandes Turma: E- Data: / / Exercícios de Fixação Aulas 0 e 0. Construa um algoritmo (pseudocódigo e fluxograma) que determine

Leia mais

Considere as situações:

Considere as situações: Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

8 AULA. Operações com Conjuntos: União e Interseção LIVRO. META: Introduzir algumas propriedades da união e da interseção de conjuntos.

8 AULA. Operações com Conjuntos: União e Interseção LIVRO. META: Introduzir algumas propriedades da união e da interseção de conjuntos. 1 LIVRO Operações com Conjuntos: União e Interseção 8 AULA META: Introduzir algumas propriedades da união e da interseção de conjuntos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Demonstrar

Leia mais

Métodos de Estudo & Investigação Científica. Elaborando um projeto de pesquisa

Métodos de Estudo & Investigação Científica. Elaborando um projeto de pesquisa Elaborando um projeto de pesquisa A pesquisa é a realização concreta de uma investigação planeada, desenvolvido e redigida de acordo com as normas das metodologias consagradas pela ciência; Requerida quando

Leia mais

Disciplina: Unidade III: Prof.: E-mail: Período:

Disciplina: Unidade III: Prof.: E-mail: Período: Encontro 09 Disciplina: Sistemas de Banco de Dados Unidade III: Modelagem Lógico de Dados Prof.: Mario Filho E-mail: pro@mariofilho.com.br Período: 5º. SIG - ADM 6. Introdução ao MS Access O Microsoft

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

Nesta aula vamos rever operações com frações,

Nesta aula vamos rever operações com frações, A UA UL LA Operações com frações Introdução Nesta aula vamos rever operações com frações, verificando a validade das propriedades operatórias dos números racionais. Veremos também o cálculo de expressões

Leia mais

Microeconomia. Prof.: Antonio Carlos Assumpção

Microeconomia. Prof.: Antonio Carlos Assumpção Microeconomia Efeitos Renda e Substituição Prof.: Antonio Carlos Assumpção Efeito Renda e Efeito Substituição Uma queda no preço de um bem ou serviço tem dois efeitos: Substituição e Renda Efeito Substituição

Leia mais

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Prof. Carlos A. Heuser Dezembro de 2009 Duração: 2 horas Prova com consulta Questão 1 (Construção de modelo ER) Deseja-se projetar a base de

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional.

PROFMAT AV3 MA 11 2011. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. Questão 1. (1,0) (a) Prove isto: Se um número natural não é o quadrado de um outro número natural, sua raiz quadrada é irracional. (1,0) (b) Mostre que 2 + 5 é irracional. (a) Seja n N. Se p q Q é tal

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Fundamentos de Lógica Matemática

Fundamentos de Lógica Matemática Webconferência 4-08/03/2012 Técnicas dedutivas Prof. L. M. Levada http://www.dc.ufscar.br/ alexandre Departamento de Computação (DC) Universidade Federal de São Carlos (UFSCar) 2012/1 Objetivos Maneiras

Leia mais

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ)

ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA (UFCG- CUITÉ) P L A N O S PARALELOS AOS EIXOS E AOS PLANOS COORDENADOS Casos Particulares A equação ax + by + cz = d na qual a, b e c não são nulos, é a equação de um plano π, sendo v = ( a, b, c) um vetor normal a

Leia mais

Aula 5 VBA PARTE I 11/05/2016 DIEGOQUIRINO@GMAIL.COM 1

Aula 5 VBA PARTE I 11/05/2016 DIEGOQUIRINO@GMAIL.COM 1 Aula 5 VBA PARTE I 11/05/2016 DIEGOQUIRINO@GMAIL.COM 1 Introdução ao VBA 1. O Excel é um programa que tem um grande potencial, mas a maioria do pessoal o maneja de forma simples, utilizando somente as

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015. de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que

Leia mais

Aprendendo a trabalhar com frações parciais

Aprendendo a trabalhar com frações parciais Parte 1: Aprendendo a trabalhar com frações parciais Para trabalhar com frações parciais em Matlab, você tem que conhecer o funcionamento das seguintes funções: roots, poly e residue. Os pontos abaixo

Leia mais