f (x) dx = 2 cos (xξ) f (x) dx R.

Tamanho: px
Começar a partir da página:

Download "f (x) dx = 2 cos (xξ) f (x) dx R."

Transcrição

1 LISTA DE EXERCÍCIOS 3 - TÓPICOS DE MATEMÁTICA APLICADA MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os exercícios a seguir foram selecionados do livro do G Folland e do D Figueiredo F X, exy indica o exercício Y do capítulo X do livro do Folland e D X, exy indica o exercício Y do capítulo X do livro do Djairo Nos exercícios abaixo denotaremos a transformada de Fourier por F f ou por ˆf Exercício {D 6, ex Calcule as transformadas de Fourier das funções abaixo:, se x a i u a x =, para uma constante a >, se x > a { x ii fx = a, se x a, se x > a iii fx = { e a x e iv fx = ax, se x >, para uma constante a >, se x a v fx = e ax, para uma constante a > Respostas: i senaξ ξ ii cosaξ iii iv aξ a a +ξ a+iξ v π a e ξ 4a Exercício D 6, ex3 Encontre uma função f : R C tal que ˆf = f, ou seja, tal que f seja igual a sua transformada de Fourier Lembre-se dos exemplos dados em sala de aula Resposta: Na verdade, o enunciado deveria ter sido ˆf = πf Ele foi retirado do Djairo que coloca uma convenção diferente para F Uma função que satisfaz esta relação é f x = e x Exercício 3 D 6, ex4 Mostre que se f : R C é uma função par, ou seja, fx = f x, então a sua transformada de Fourier ˆf é uma função que assume apenas valores reais, ou seja, ˆf ξ R para todo ξ R Devemos assumir também que f x R para todo x R Faltou esta hipótese no enunciado Com a hipótese acima, basta observar que ˆ F f ξ = e ixξ f x dx = e ixξ f x dx + e ixξ f x dx = e ixξ f x dx + e ixξ f x dx = e ixξ f x dx + e ixξ + e ixξ f x dx = cos xξ f x dx R e ixξ f x dx = Exercício 4 D 6, ex5 Mostre que se f : R C é uma função ímpar, ou seja, fx = f x, então a sua transformada de Fourier ˆf é uma função que assume apenas valores imaginários puros, ou seja, ˆf ξ é um imaginário puro para todo ξ R Devemos assumir também que f x R para todo x R Faltou esta hipótese no enunciado Com a hipótese acima, basta observar que ˆ F f ξ = e ixξ f x dx = e ixξ f x dx + e ixξ f x dx =

2 LISTA DE EXERCÍCIOS 3 - TÓPICOS DE MATEMÁTICA APLICADA MAP 33 e ixξ f x dx + e ixξ f x dx = e ixξ f x dx e ixξ e ixξ f x dx = i sen xξ f x dx Como sen xξ f x dx R, concluímos que F f ξ é um imaginário puro Exercício 5 D 6, ex6 Seja f : [, [ C uma função em L R Dena i A transformada cosseno de Fourier ii A transformada seno de Fourier F c f ξ = F s f ξ = Mostre que se estendermos f como um função par, temos cos xξ f x dx sen xξ f x dx F c f = F f Mostre que se estendermos f como uma função ímpar, temos Se f é a extensão par de f, então F f ξ = F s f = i F f ˆ e ixξ f x dx = e ixξ f x dx + e ixξ f x dx = e ixξ f x dx = e ixξ f x dx + e ixξ f x dx = e ixξ f x dx + e ixξ f x dx = e ixξ + e ixξ f x dx = cos xξ f x dx = F c f ξ Se f é a extensão ímpar de f, então ˆ F f ξ = e ixξ f x dx = e ixξ f x dx + e ixξ f x dx = e ixξ f x dx + e ixξ f x dx = e ixξ f x dx e ixξ f x dx = e ixξ e ixξ f x dx = i sen xξ f x dx = if s f ξ Exercício 6 D 6, ex7 Seja F a transformada de Fourier Mostre que: i F f x ξ = F f ξ ii F f x ξ = F f ξ iii F f x a ξ = af f aξ, a > iv F f x b ξ = e ibξ F f ξ, b R v F f x e icx ξ = F f ξ + c, c R i ii iii F F f ξ = F e ix ξ f x dx = e ixξ f x dx = e ixξ f x dx = F f x ξ f x ξ = e ixξ f xdx = e ixξ f x dx = e ix ξ f x dx = F f ξ x f ξ = e i x a ξ f x dx = e i x a ξ f a x a a a a dx = e iyξ f ay ady = af f aξ

3 LISTA DE EXERCÍCIOS 3 - TÓPICOS DE MATEMÁTICA APLICADA MAP 33 3 iv F f x b ξ = v F f x e icx ξ = e ixξ f x b dx = e ixξ icx f x dx = e iy+bξ f y dy = e ibξ e iyξ f y dy = e ibξ F f ξ e ixξ+c f x dx = F f ξ + c Exercício 7 D 6, ex8 Calcule a transformada de Fourier das funções abaixo: i e x 3 ii e x+ iii f tal que f =, f x =, se x e f é uma função seccionalmente linear o gráco de f será um triângulo com centro em Respostas: i e 3iξ e ξ ii Vemos que iii Vemos que e ixξ e x+ dx = e iy ξ e 4y dy = e i ξ e ixξ f x dx = ˆ e ixξ x dx + e ixξ e 4x+ dx = π e iyξ e 4y dy = ˆ 3 4 ei ξ ξ 6 e ixξ 3 x dx Exercício 8 D 6, ex9 Calcule a transformada de Fourier das funções abaixo: i e a x coscx ii e ax sencx Respostas: i a a + a +ξ c a +ξ+c ii i π a ξ c e 4a π a ξ+c e 4a Exercício 9 D 33, ex [ Mostre que ] i F f x cos cx = ˆf ξ c + ˆf ξ + c [ ] ii F f x sen cx = i ˆf ξ c ˆf ξ + c i ii F f x cos cx = [ˆ e ixξ c f x dx + F f x sen cx = [ˆ i e ixξ c f x dx e ixξ cos cx f x dx = e ixξ eicx + e icx f x dx = ] e ixξ+c f x dx = [ ] ˆf ξ c + ˆf ξ + c e ixξ sen cx f x dx = e ixξ eicx e icx f x dx = i ] e ixξ+c f x dx = [ ] ˆf ξ c ˆf ξ + c i Exercício D 35, ex3 Seja f : R C uma função linear tal que f e f pertencem a L R e tal que lim x ± f x = Mostre que F f ξ = iξf f ξ Dica: Integre por partes Basta observar que F f ξ = e ixξ f x dx = e ixξ f x iξ e ixξ f x dx = iξf f ξ d e ixξ f x dx = dx

4 LISTA DE EXERCÍCIOS 3 - TÓPICOS DE MATEMÁTICA APLICADA MAP 33 4 Exercício D 35, ex34 Seja f : R C uma função de classe L R tal que f x dx = Mostre que ˆ x F f t dt ξ = F f ξ iξ ˆ x F f t dt ξ = e ixξ ˆ x f t dt iξ e ixξ ˆ x ˆ x f t dt dx = e ixξ f t dt dx = e ixξ iξ f x dx = e ixξ f x dx = F f ξ iξ iξ Exercício D 35, ex37 Mostre que se f L R for contínua, então i F F f x = πf x ii F 4 f x = π f x Exercício 3 D 35, ex36 Ache um exemplo de função f : R C que seja L R de classe C, ou seja, innitamente diferenciável, mas que F f não seja diferenciável em todos os pontos Dica: Pense nos exemplos dados em sala de aula Resposta: Um possível exemplo é f x = +x, em que ˆf ξ = πe ξ não é diferenciável em ξ = Exercício 4 F 7, ex4 Seja fx = e x e gx = e x Calcule f g Dica: Complete quadrados e use que dx = e x π f g x = e x +xt t t dt = e 3 x 3 f x t g t dt = e x 3t +xt dt = [ ˆ e x 3 t 3 x 9 x] dt = e 3 x e 3s 3ds = e 3 x 3 e x t e t dt = e x 3t 3 xt dt = e 3t 3 x dt = e w dw = Exercício 5 F 7, ex5 Seja f t x = 4πt e x 4t Mostre que ft f s = f t+s Feito em sala de aula Exercício 6 F 4, ex Seja f : R C a função dada por {, se x f x =, se x > π 3 e 3 x e i Calcule f f e f f f ii Seja f ɛ x = ɛ f x ɛ e gx = x 3 x Calcule f ɛ g e mostre que lim ɛ f ɛ g = g diretamente Solução: i x +, x f f x = x, x, de outra forma f f f x = x + 3, 3 x 3 x, x 3 x, x 3, de outra forma ii f ɛ g x = x 3 + 8ɛ x

5 LISTA DE EXERCÍCIOS 3 - TÓPICOS DE MATEMÁTICA APLICADA MAP 33 5 Exercício 7 F 74, ex Calcule as seguintes transformadas de Fourier seno e cosseno: i F s e ii F c e iii F c + x e iv F s xe ξ i ii iii iv ξ +k k ξ +k +ξ é a solução para k = ξ +ξ Exercício 8 F 74, ex Resolva a equação do calor para t t, x = k u t, x, x R, t > u, x = fx, x R f x = { T, x a, x > a { û t t, ξ = kξ û t, ξ, ξ R, t > û, ξ = ˆfξ, ξ R û t, ξ = ˆf ξ e kξt u t, x = F ˆf ξ e kξ t = F ˆf ξ F e kξ t = ˆ e x y 4kt f y dy = ˆ T T e x y 4kt f y dy Exercício 9 D 43, ex5 Use a transformada de Fourier para resolver o problema: t t, x = k u t, x + g t, x, x R, t > u, x = fx, x R Vamos achar a solução de t t, x = k u t, x + g t, x, x R, t > u, x =, x R { û t t, ξ = kξ û t, ξ + ĝ t, ξ, ξ R, t > û, ξ =, ξ R u t, x = F û t, ξ = e kξ t sĝ s, ξ ds = F e kξ t s F ĝ s, ξ ds = e kξ t sĝ s, ξ ds Logo a solução nal usando princípio da superposição é u t, x = ˆ 4πk t s F e kξ t sĝ s, ξ ds = ˆ 4πk t s e x y 4kt s g s, y dy ds + e x y 4kt s g s, y dy ds e x y 4kt f y dy

6 LISTA DE EXERCÍCIOS 3 - TÓPICOS DE MATEMÁTICA APLICADA MAP 33 6 Exercício D 43, ex6 Use a transformada de Fourier para resolver o problema: t t, x = k u t, x + bu t, x, x R, t > u, x = fx, x R { û t t, ξ = kξ û t, ξ + bû t, ξ, ξ R, t > û, ξ = ˆfξ, ξ R û t, ξ = ˆf ξ e kξ +bt u t, x = F ˆf ξ e kξ t e bt = e bt F ˆf ξ F e kξ t = ebt Exercício D 43, ex7 Use a transformada de Fourier para resolver o problema: { u t t, x = c u t, x + h t, x, x R, t > u, x = u t, x =, x R { û t t, ξ = c ξ û t, ξ + ĥ t, ξ, ξ R, t > û, ξ = û t, ξ =, ξ R û t, ξ = u t, x = F sen cξ t s cξ em que χ a x = sen cξ t s F cξ {, se x a, se x > a F ĥ s, ξ sen cξ t s ĥ s, ξ ds cξ ĥ s, ξ ds = ds = sen cξ t s F cξ e x y 4kt f y dy ĥ s, ξ ds = c χ ct s x y h s, y dy ds,

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier

AULA DE APOIO - 1 FÍSICA MATEMÁTICA I. A transformada de Fourier AULA DE APOIO - 1 FÍSICA MATEMÁTICA I A transformada de Fourier Assuntos da aula 1 Visão geral Motivações Linearidade e limitação uniforme 2 3 Translações, modulações, continuidade e etc. Física-Matemática.

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA. MATEMÁTICA APLICADA 1 o SEMESTRE 2016/2017 3 de janeiro de 7 Instruções: INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA o SEMESTRE 6/7 Resolução do o Teste Duração: hm É obrigatória

Leia mais

Exercicios Resolvidos - Transformada de Fourier. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG

Exercicios Resolvidos - Transformada de Fourier. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Exercicios Resolvidos - Transformada de Fourier Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Transformada de Fourier Exercício. Neste exercício mostraremos a propriedade da tabela de

Leia mais

A (u + iv) = (a + ib) (u + iv) = (au bv) + i (av + bu).

A (u + iv) = (a + ib) (u + iv) = (au bv) + i (av + bu). DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS 4 EDO II - MAP 036 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/EDO Os exercícios a seguir foram selecionados dos livros dos autores Claus Doering-Artur Lopes e Jorge

Leia mais

Exercício 2. (F. 10.1, ex.2.1) Ache a função de Green do problema abaixo: v 0 (0) = 1

Exercício 2. (F. 10.1, ex.2.1) Ache a função de Green do problema abaixo: v 0 (0) = 1 LISTA DE EXERCÍCIOS 4 - TÓPICOS DE MATEMÁTICA APLICADA MAP 33 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/TMA Os eercícios a seguir foram selecionaos o livro o G Follan e as notas e João Barata F X, ey

Leia mais

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes:

Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: Aula 5 Equação Diferencial de Segunda Ordem Linear e Coeficientes constantes: caso não Homogêneo Vamos estudar as equações da forma: ay + by + cy = G(x), onde G(x) é uma função polinomial, exponencial,

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

LISTA DE EXERCÍCIOS 1 - MATEMÁTICA 3 (CCM0213)

LISTA DE EXERCÍCIOS 1 - MATEMÁTICA 3 (CCM0213) LISTA DE EXERCÍCIOS - MATEMÁTICA 3 (CCM3) PROF: PEDRO T. P. LOPES WWW.IME.USP.BR/ PPLOPES/MATEMATICA3 Os exercícios a seguir foram selecionados do livro do Apostol e do Domingues Callioli Costa. Exercício.

Leia mais

Sequências e Séries. Capítulo Exercícios

Sequências e Séries. Capítulo Exercícios Capítulo Sequências e Séries Exercícios Encontre uma fórmula para o termo geral da sequência a n } n= assumindo que o padrão dos primeiros termos continua (a), 4, 8, 6, } (b), 4, 6, 8, } (c), 7,, 7, }

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

Notas breves sobre números complexos e aplicações

Notas breves sobre números complexos e aplicações Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em. Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série

Leia mais

Transformada de Fourier. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Transformada de Fourier. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Transformada de Fourier Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de abril de 207 2 Sumário Definição e Propriedades 3 Exercícios........................................

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

Corda Elástica Presa Somente em uma das Extremidades

Corda Elástica Presa Somente em uma das Extremidades Corda Elástica Presa Somente em uma das Extremidades Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi 5 de outubro de 2010 2 Vamos determinar

Leia mais

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total 1 a Prova de MAT036 - Geometria Diferencial I IME - 9/09/016 Nome:................................................... Q N Assinatura:............................................... 1 RG:......................................................

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos CÁLCULO L NOTAS DA DÉCIMA OITAVA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos a noção de integral indefinidada. Também discutiremos a primeira técnica de integração: mudança

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 6 SÉRIES DE FOURIER E MÉTODO DE SEPARAÇÃO DAS VARIÁVEIS 1 Determine o desenvolvimento em série

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

Caderno de Exercícios

Caderno de Exercícios Caderno de Exercícios Orlando Ferreira Soares Índice Caracterização de Sinais... Caracterização de Sistemas...0 Sistemas LIT - Convolução...5 Série de Fourier para Sinais Periódicos Contínuos...0 Transformada

Leia mais

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos

Esmeralda Sousa Dias. (a) (b) (c) Figura 1: Ajuste de curvas a um conjunto de pontos Mínimos quadrados Esmeralda Sousa Dias É frequente ser necessário determinar uma curva bem ajustada a um conjunto de dados obtidos experimentalmente. Por exemplo, suponha que como resultado de uma certa

Leia mais

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4

CAPÍTULO 9. Exercícios se. 01 e. Seja f( x) Temos. 1 n n n n n n. n n. A série de Fourier da função dada é: cos. nx 4 CAPÍTULO 9 Exercícios 9.. Ï0, x e. Seja f( x) Ìx, se x0 Ó, se 0x Temos È 0 f x dx x dx dx ( ) Í ( ) Î 0 È 0 ù an f x dx x dx dx ( ) cos Í Î ( ) cos cos ú 0 û n n n an È cos sen ù Ê cos ˆ ÎÍ n ûú Ë È 0

Leia mais

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9

Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para. em p = 9 Exercícios - Limite e Continuidade-1 Exercício 1 Dê o valor, caso exista, que a função deveria assumir no ponto dado para ser contínua: (a) f(x) = x2 16 x 4 (b) f(x) = x3 x x em p = 4 em p = 0 (c) f(x)

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L NOTAS DA NONA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos as funções logaritmo e exponencial e calcularemos as suas derivadas. Também estabeleceremos algumas propriedades

Leia mais

1 [30] A figura ao lado mostra o zoom da discretização de uma função

1 [30] A figura ao lado mostra o zoom da discretização de uma função TT9 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P, 3 mar 22 Prof. Nelson Luís Dias NOME: GABARITO Assinatura: 3] A figura ao lado mostra o zoom da discretização

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais

COMPLEMENTOS DE MATEMÁTICA MÓDULO 1. Equações Diferenciais com Derivadas Parciais Complementos de Matemática 1 COMPLEMENTOS DE MATEMÁTICA MÓDULO 1 Séries de Fourier Equações Diferenciais com Derivadas Parciais Complementos de Matemática 2 Jean Baptiste Joseph Fourier (1768-1830) viveu

Leia mais

1 [35] (O jogo dos 7 erros.) Considere a equação de advecção-difusão unidimensional

1 [35] (O jogo dos 7 erros.) Considere a equação de advecção-difusão unidimensional TT1 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P1, 23 nov 212 Prof. Nelson uís Dias NOME: GABARITO Assinatura: 1 [35] (O jogo dos 7 erros.) Considere

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos

Objetivos. Exemplo 18.1 Para integrar. u = 1 + x 2 du = 2x dx. Esta substituição nos leva à integral simples. 2x dx fazemos MÓDULO - AULA 8 Aula 8 Técnicas de Integração Substituição Simples - Continuação Objetivos Nesta aula você aprenderá a usar a substituição simples em alguns casos especiais; Aprenderá a fazer mudança de

Leia mais

Equações e Funções Trigonométricas

Equações e Funções Trigonométricas CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2013.2 Equações e Funções Trigonométricas Isabelle da Silva Araujo - Engenharia de Produção Equações Trigonométricas Equações trigonométricas são aquelas

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Disciplina: Cálculo Diferencial e Integral IV Unidades: Escola Politécnica e Escola de Quimica Código: MAC 48 a

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Resolução do exame Cálculo Diferencial e Integral I Versão B Data: 8/ / 8 Grupo I - (a) x 3 + x x = x(x + x ) = x(x + )(x ) Cálculo auxiliar: x + x = x = ± + 8 = ou x + + x + + + + + x + + + + x(x+)(x

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III, IV e V GRUPO I (60 PONTOS)

Separe em grupos de folhas diferentes as resoluções dos grupos I e II das resoluções dos grupos III, IV e V GRUPO I (60 PONTOS) Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I Exame - versão A Duração: 8 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos Qualquer dúvida ou questão relativa

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015

Análise Complexa e Equações Diferenciais 1 ō Semestre 2014/2015 Análise Complexa e Equações Diferenciais ō Semestre /205 (Curso: ō Teste MEAer de Novembro de, 9h. Considere a função u: R 2 R definida pela expressão onde a, b são parâmetros reais. u(x, y = ax 3 + bxy

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ).

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração. φ(x k ) ψ(x k ). MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Interpolação e Integração : Sejam x =, x =, x 2 = 2 e x 3 = 3. (a) Determine os polinômios de Lagrange L i (x) correspondentes a estes pontos

Leia mais

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados.

Equações Diferenciais de Segunda Ordem. Copyright Cengage Learning. Todos os direitos reservados. 17 Equações Diferenciais de Segunda Ordem Copyright Cengage Learning. Todos os direitos reservados. 17.2 Equações Lineares Não Homogêneas Copyright Cengage Learning. Todos os direitos reservados. Equações

Leia mais

MAT Aula 24/ Quarta 04/06/2014. Sylvain Bonnot (IME-USP)

MAT Aula 24/ Quarta 04/06/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 24/ Quarta 04/06/2014 Sylvain Bonnot (IME-USP) 2014 1 Volumes Ideia: cortar o objeto em cilindros de base A(x) e altura dx, e depois fazer a soma b A(x)dx, onde A(x) é a área da secção transversal.

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP)

MAT Aula 12/ 23/04/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 12/ 23/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Hoje: correção da prova + derivadas. 3 Derivadas: definição de f (a) e equação

Leia mais

(x 1) 2 (x 2) dx 42. x5 + x + 1

(x 1) 2 (x 2) dx 42. x5 + x + 1 I - Integrais Indefinidas ā Lista de Cálculo I - POLI - 00 Calcule as integrais indefinidas abaixo. Para a verificação das resposta lembre-se que f(x)dx = F (x), k IR F (x) = f(x), x D f.. x7 + x + x dx.

Leia mais

ME-310 Probabilidade II Lista 2

ME-310 Probabilidade II Lista 2 ME-3 Probabilidade II Lista 2. Uma máquina funciona enquanto pelo menos 3 das 5 turbinas funcionam. Se cada turbina funciona um tempo aleatório com densidade xe x, x >, independentemente das outras, calcule

Leia mais

PROBLEMAS DE OLIMPÍADA UNIVERSITÁRIA

PROBLEMAS DE OLIMPÍADA UNIVERSITÁRIA PROBLEMAS DE OLIMPÍADA UNIVERSITÁRIA CÁLCULO. Problemas da OBMU nos últimos anos Problema (OBMU-26 - Segunda Fase, Problema ). Seja {a n } uma sequência de número reais tal que n an n converge. Prove que

Leia mais

Teoria das Comunicações Prof. André Noll Barreto Prova /02

Teoria das Comunicações Prof. André Noll Barreto Prova /02 eoria das Comunicações Prova 1-1/ Aluno: Matrícula: Instruções A prova terá a duração de h3 A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas de aula, todas as fórmulas necessárias

Leia mais

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação

AT3-1 - Unidade 3. Derivadas e Aplicações 1. Cálculo Diferencial e Integral. UAB - UFSCar. Bacharelado em Sistemas de Informação AT3-1 - Unidade 3 1 Cálculo Diferencial e Integral Bacharelado em Sistemas de Informação UAB - UFSCar 1 Versão com 34 páginas 1 / 34 Tópicos de AT3-1 1 Uma noção intuitiva Caracterização da derivada Regras

Leia mais

SEGUNDA PROVA DE EDB - TURMA M

SEGUNDA PROVA DE EDB - TURMA M SEGUNDA PROVA DE EDB - TURMA M Prof. MARCELO MARCHESIN -/1/7 (13:-1: DPTO. DE MATEMÁTICA, UFMG. RESOLUÇÃO E CRITÉRIOS 1. (11, ptos Sabendo-se que u n (x, y = c n senh( nπx nπy b sen( b para n = 1,,...

Leia mais

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais:

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais: UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0021 7 a Lista de exercícios

Leia mais

u(0; y) = u(1; y) = u(x; 0) = 0 8 x ; se 0 x < x ; se

u(0; y) = u(1; y) = u(x; 0) = 0 8 x ; se 0 x < x ; se Instituto Tecnológico de Aeronáutica / Departamento de Matemática / o. Fund / 009. LISTA NEGRA DE MAT-4 (Apenas para auxiliar nos estudos para o exame). (i) Em cada um dos casos (edp hiperbólica, parabólica

Leia mais

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3

x 2 + (x 2 5) 2, x 0, (1) 5 + y + y 2, y 5. (2) e é positiva em ( 2 3 , + ), logo x = 3 Página 1 de 4 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC 118 Gabarito segunda prova - Escola Politécnica / Escola de Química - 13/06/2017 Questão 1: (2 pontos) Determinar

Leia mais

Algumas Regras para Diferenciação

Algumas Regras para Diferenciação UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Algumas Regras para

Leia mais

Material Didático de Apoio INTRODUÇÃO AO ESTUDO DOS LIMITES

Material Didático de Apoio INTRODUÇÃO AO ESTUDO DOS LIMITES Material Didático de Apoio INTRODUÇÃO AO ESTUDO DOS LIMITES 1.1 INTRODUÇÃO O limite observa o comportamento de uma função f(x)quando x tende a a. Considere a função f(x) = x + 4. Se montarmos uma tabela

Leia mais

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo II Aula 27 e 28, Segunda 03/11/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo 1 Derivadas parciais: seja f : R 2 R, a derivada parcial f x (a, b) é o limite (quando existe) lim h 0 f (a

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x;

CÁLCULO I. 1 A Função Logarítmica Natural. Objetivos da Aula. Aula n o 22: A Função Logaritmo Natural. Denir a função f(x) = ln x; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 22: A Função Logaritmo Natural Objetivos da Aula Denir a função f(x) = ln x; Calcular limites, derivadas e integral envolvendo a função

Leia mais

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL:

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL: 5. EDO DE PRIMEIRA ORDEM SÉRIES & EDO - 2017.2 5.1. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas

Leia mais

Física Experimental IV FAP214

Física Experimental IV FAP214 Física Experimental IV FAP214 Notas de aula: www.fap.if.usp.br/~hbarbosa LabFlex: www.dfn.if.usp.br/curso/labflex Aula 2, Experiência 1 Circuitos CA e Caos Prof. Henrique Barbosa hbarbosa@if.usp.br Ramal:

Leia mais

SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira

SEL Processamento Digital de Imagens Médicas. Aula 4 Transformada de Fourier. Prof. Dr. Marcelo Andrade da Costa Vieira SEL 0449 - Processamento Digital de Imagens Médicas Aula 4 Transformada de Fourier Prof. Dr. Marcelo Andrade da Costa Vieira mvieira@sc.usp.br Jean Baptiste Joseph Fourier 2 Exemplo: Função Degrau 3 Exemplo:

Leia mais

Análise Matemática IV

Análise Matemática IV . Análise Matemática IV o Exame - 9 de Janeiro de 006 LEA, LEC, LEEC, LEFT, LEN e LMAC Resolução y 4y + 4y = e t (D ) y = e t (D ) 3 y = 0 y = c e t + c te t + c 3 t e t, c, c, c 3 R. Substituindo estas

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de

Leia mais

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais:

1. Resolva as equações diferenciais: 2. Resolver os seguintes Problemas dos Valores Iniciais: Universidade do Estado de Mato Grosso - Campus de Sinop Cálculo Diferencial e Integral III - FACET Lista 6 Profª Ma. Polyanna Possani da Costa Petry 1. Resolva as equações diferenciais: a) y + 2y = 2e

Leia mais

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2.

Lista Determine o volume do sólido contido no primeiro octante limitado pelo cilindro z = 9 y 2 e pelo plano x = 2. UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II (Turma B) Prof. José Carlos Eidam Lista 3 Integrais múltiplas. Calcule as seguintes integrais duplas: (a) R (2y 2 3x

Leia mais

NONA LISTA DE EXERCÍCIOS Cálculo III. MATEMÁTICA DCET UESC Humberto José Bortolossi Derivadas Parciais

NONA LISTA DE EXERCÍCIOS Cálculo III. MATEMÁTICA DCET UESC Humberto José Bortolossi  Derivadas Parciais NONA LISTA DE EXERCÍCIOS Cálculo III MATEMÁTICA DCET UESC Humberto José Bortolossi http://www.arbelos.kit.net Derivadas Parciais (Entregar os exercícios [02] (a), [03], [07], [14] e [30] até o dia 14/07/2003)

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Equações Diferenciais Ordinárias 1 Exercícios 1.1 EDO de Variáveis Separáveis Diz-se que uma equação diferencial ordinária (EDO)

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier

Leia mais

Análise Matemática II TESTE/EXAME

Análise Matemática II TESTE/EXAME Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas

Leia mais

TRANSFORMADA DE FOURIER. Larissa Driemeier

TRANSFORMADA DE FOURIER. Larissa Driemeier TRANSFORMADA DE FOURIER Larissa Driemeier TESTE 7hs30 às 8hs00 Este não é um sinal periódico. Queremos calcular seu espectro usando análise de Fourier, mas aprendemos que o sinal deve ser periódico. O

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados 1: Usando o método dos mínimos quadrados de maneira conveniente, aproxime os pontos da tabela abaixo por uma

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D

MAT 3210 Cálculo Diferencial e Integral II. Prova 1 D MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 14 de Outubro de 2011 Prova 1 D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as

Leia mais

Aula 12 - Controle por Modos Deslizantes 1

Aula 12 - Controle por Modos Deslizantes 1 Instituto Tecnológico de Aeronáutica 1/ 23 Instituto Tecnológico de Aeronáutica Divisão de Engenharia Eletrônica Departamento de Sistemas e Controle São José dos Campos, São Paulo, Brasil Aula 12-1 EE-209:

Leia mais

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I

FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I FFCLRP-USP Regra de L Hospital e Lista - CALCULO DIFERENCIAL E INTEGRAL I Professor Dr. Jair Silvério dos Santos 1 Teorema de Michel Rolle Teorema 0.1. (Rolle) Se f : [a;b] R for uma função contínua em

Leia mais

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1))

GABARITO DA 2 a PROVA - CÁLCULO IV 1 0 PERÍODO a Questão:(valor 2.0) (a) O gráfico de f é esboçado na Figura 1. (b) Temos que: + [x]2 1 ((1)) GABARITO DA a PROVA - CÁLCULO IV 0 PERÍODO 009 a Questão:(valor.0) (a) O gráfico de f é esboçado na Figura. (b) Cálculo de a 0. Temos que: a 0 = f (x)dx = a 0 = { dx + } dx = a 0 = { } [x] + [x] = a 0

Leia mais

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas

MAT146 - Cálculo I - Derivada das Inversas Trigonométricas MAT46 - Cálculo I - Derivada das Inversas Trigonométricas Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Vimos anteriormente que as funções trigonométricas não são inversíveis, mas

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

Substituição Simples.

Substituição Simples. MÓDULO - AULA 17 Aula 17 Técnicas de Integração Substituição Simples. Objetivo Mostrar como usar a técnica de integração chamada substituição simples. Motivação - O Teorema Fundamental, mais uma vez...

Leia mais

Lista 9 - Bases Matemáticas

Lista 9 - Bases Matemáticas Lista 9 - Bases Matemáticas Limites - Parte Definição de Limites Verifique se é verdadeiro ou falso: a) x 2 < 0 f (x) 5 < 0, onde 2x + b) x 2 < 0 2 f (x) 5 < 0, onde 2x + c) x < 0 f (x) 3 < 0, onde 4x

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA DE MAIO DE 2017 ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS AULA TEÓRICA 3 7 DE MAIO DE 27 A = 2 2 2 A matriz tem como valor próprio λ = 2 (triplo. Para os vectores próprios: { z = y + z = v = A matriz não é diagonalizável,

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Faça os exercícios 15 a 18 da seção 2.5 de [L.C. Evans, Partial Differential Equations ]. Equação da Onda 1-Dimensional

Faça os exercícios 15 a 18 da seção 2.5 de [L.C. Evans, Partial Differential Equations ]. Equação da Onda 1-Dimensional 3 a LISTA DE EXERCÍCIOS DO CURSO DE EDP, AGO.-NOV. 7 Faça os exercícios 15 a 18 da seção.5 de [L.C. Evans, Partial Differential Equations ]. Equação da Onda 1-Dimensional A equação mais simples de todas

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

Matemática Aplicada à Tecnologia

Matemática Aplicada à Tecnologia Provas e listas: Matemática Aplicada à Tecnologia Período 2015.2 Sérgio de Albuquerque Souza 4 de maio de 2016 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departamento de Matemática http://www.mat.ufpb.br/sergio

Leia mais

Colectânea de Exercícios, Testes e Exames de Matemática, para Economia e Gestão

Colectânea de Exercícios, Testes e Exames de Matemática, para Economia e Gestão Colectânea de Exercícios, Testes e Exames de Matemática, para Economia e Gestão Bruno Maia bmaia@ual.pt a edição 4 A colectânea encontra-se protegida por direitos de autor. Todos os direitos de autor ou

Leia mais