Introdução à derivada e ao cálculo diferencial.

Tamanho: px
Começar a partir da página:

Download "Introdução à derivada e ao cálculo diferencial."

Transcrição

1 Introdução à derivada e ao cálculo diferencial. Notas: Rodrigo Ramos 1 o. sem Versão 1.2. Obs: Esse é um texto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas que são pedidas ao longo do texto. Trata-se do conteúdo de nossa aula introdutória sobre derivadas, que por se tratar de um conceito sofisticado (no Brasil estudado regularmente apenas no ensino superior) apresento por completo as nota de aula. Muitos textos e videoaulas também estão disponíveis na rede sobre o assunto (tem o link de um em em Material Extra, itens 3 e 4.). Considere a função (parábola, ou função de segundo grau) y(x) ( y calculado em x ): y = x 2, representada no gráfico 1 abaixo (esquerda). Gráfico 1 O objetivo da matemática apresentada abaixo será calcular a inclinação da reta tangente à curva em um ponto considerado. No gráfico 1 à direita representamos a reta tangente no ponto x = 1. Essa reta toca a curva em apenas um ponto, neste caso no ponto x=1, y=1. Caso encontre erros ou coisas do tipo, por favor me avise. rodrigo.ramos.dr@gmail.com, ou pessoalmente. Versão 1.2: pequenas correções, palavras graf.6, gráfico do começo da seção 2.

2 Perceba que como temos uma curva (parábola), a inclinação será diferente para diferentes valores de x, o que faz necessário que avancemos com cuidado. Esse procedimento vai servir futuramente para calcular inclinações de quaisquer curvas. Essa inclinação (local) da curva recebe o nome técnico de derivada, ou taxa de variação (local ou instantânea). Economistas usam, ainda, o termo: (taxa de) variação marginal. Exercício: Calcule a inclinação da reta vermelha desenhada acima, utilizando o gráfico. 1 Calculando a inclinação por aproximações no ponto correspondente a x=1 Considere a reta que liga passa por dois pontos pontos da parábola, conforme o gráfico 2. A inclinação desta reta (chamada reta secante ) é calculada por: a = Gráfico 2 Vamos calcular aproximações para a inclinação (da reta tangente) no ponto x = 1, para o qual a curva tem altura y valendo y = 1 2 = 1. Considere a reta que liga os pontos (1; 1) e (2; 4) da parábola, representada em vermelho no gráfico 3 da esquerda, a inclinação dessa reta é calculada por: = 3 1 = 3 A inclinação calculada não corresponde à inclinação local no ponto x=1, mas sim à inclinação média entre os dois pontos considerados. Se, agora, tomamos a reta que liga os pontos (1; 1) e (1; 1, 5) (o ponto seguinte, portanto, está mais próximo do primeiro ponto), temos o caso da direita no gráfico 3. No detalhe vemos um zoom na região entre x=1 e x=1,5, que foca na diferença entre a reta vermelha e a parábola preta.

3 Gráfico 3 Se representamos a reta tangente que queremos calcular (gráfico 1, a direita), junto com essas duas primeiras aproximações do gráfico 3 vemos que a reta entre 1 e 1,5 se aproxima mais da reta tangente. Veja no gráfico 4. Gráfico 4 IDÉIA CHAVE: quanto mais aproximarmos o ponto seguinte do primeiro ponto (onde desejamos calcular a inclinação local), mais a inclinação calculada tende a se aproximar da inclinação da reta tangente. Para testar essa idéia, vamos considerar então pontos progressivamente mais próximos do primeiro ponto, x=1, y=1. Os pontos seguintes que consideraremos serão: x =1,1; x=1,01 e x=1,001.

4 Cada caso é representado no gráfico 5 abaixo. Cada um é representado em um zoom. No primeiro caso (acima, dentro da caixa), consideramos o ponto seguinte usando x=1,1, no detalhe um zoom. Gráfico 5 Os gráficos de baixo correspondem à x=1,01 e x=1,001. Perceba que a parábola em escalas cada vez menores (correspondentes aos casos em que ligamos os pontos de x=1,01 e x=1,001) se parece cada vez mais com uma reta. Veja que os gráficos são praticamente iguais visualmente, e não é possível sequer distinguir a reta vermelha da parábola preta (sim, tem essas duas coisas em ambos gráficos, mas que estão praticamente superpostas). No gráfico 6 representamos a reta tangente ideal que queremos obter, e também a reta secante usando para o ponto seguinte x=1,01, e a reta em que usamos o ponto seguinte com x=1,5. Veja como a aproximação da tangente pela reta usando x=1 e x=1,01 já está muito boa visualmente.

5 Gráfico 6 Agora temos um caminho pra aproximar o valor da tangente usando pontos cada vez mais próximos. Então vamos calcular (como se não houvesse amanhã) a inclinação de cada uma das retas (secantes) vermelhas dos gráficos 3 e 5. Cada ponto é calculado lembrando que essa curva é descrita por y = x 2, então: y primeiro = x 2 primeiro, e y seguinte = x 2 seguinte. Note que o ponto x primeiro e y primeiro sempre vai ser (1; 1), porque, conforme planejamos, queremos calcular a inclinação da reta tangente à curva no ponto correspondente a x=1. Na tabela abaixo calculamos a inclinação em cada situação, ou seja, para cada par de pontos acima descritos. x primeiro y primeiro x seguinte y seguinte , ,5 1,25 2, ,1 1,21 0,1 0,21 2, ,01 1,0201 0,01 0,0201 2, ,001 1, ,001 0, ,001 Tabela 1 Exercício: confira os números da tabela. Pela tendência dos pontos com menores esperamos que:

6 Para = 0, 0001 tenhamos a inclinação = 2, Não é? Note ainda que ao diminuir cada vez mais e mais o valor de, ou seja considerar o ponto seguinte cada vez mais próximo do ponto inicial, então teremos esse dígito 1 no final do número irá cada vez mais para adiante, na direção de valores cada vez menores... Na situação tomamos valores de arbitrariamente pequeno, o que representamos por: 0 (lemos: no limite em que delta x tende à zero ), escrevemos simbolicamente: lim 0 Ou seja: a inclinação da tangente em x = 1 é 2. = 2 x=1 O que fizemos foi aproximar sucessivamente (numericamente) a inclinação da tangente no ponto x = 1. Veja que não faria sentido dizer de saída que vamos tomar a inclinação entre o primeiro ponto e ele mesmo, afinal isso levaria à relação sem sentido: = 0 0 Entretanto na medida em que vamos aos poucos, aproximando o ponto seguinte do primeiro ponto considerado, vemos que quanto mais próximos mais o valor se aproxima do número 2. Por isso dizemos: no limite em que delta tende a zero (ou seja no limite em que os dois pontos se tornam o mesmo) então a inclinação vai a 2, justamente o caso da reta tangente, que toca a parábola apenas no ponto x=1, y=1. Perguntas que devem estar passando por sua cabeça: Pergunta 1: Então eu vou sempre precisar fazer esse monte de conta? Resposta 1: Não. Mas mesmo que tivesse (que é o que um computador faz) você não precisaria fazer todas as contas, bastaria pegar dois pontos que estejam bem próximos um do outro. exemplo calcula a inclinação considerando os pontos (1; 1) e (1,001; 1,002001). Mas tenha claro que o resultado, = 2, 001, é aproximado (com uma precisão de 1 parte em 2000, ou seja 0,05%, o que não é nada mal). Pergunta 2: Eu vejo esse número 2, e vejo que a função é y = x 2, esse número 2... aparece sugestivamente... não tem uma fórmula? Resposta 2: Sim há uma fórmula, que vamos ver a seguir. Existe uma maneira simbólica de tratar do cálculo de inclinações (derivadas). Em outras palavras: se você tem uma fórmula para y em relação a x, então você deve ter uma fórmula para as inclinações de y em relação a x. Mas para generalizarmos o resultado em uma regra (simbólica), vamos entender o que se passa. Por 2 O motivo Para entender o motivo, basta que usemos a linguagem das funções. Considere o caso entre os dois pontos arbitrários abaixo representada.

7 Agora, vamos realizar a conta em termos desse esquema simbólico, e realizar a álgebra. Lembrese que y = x 2, ou seja: y(x) = x 2. Dessa forma o ponto seguinte é calculado em x +, ou seja: y(x + ) = (x + ) 2. A inclinação dessa reta que liga esses dois pontos: y(x + ) y(x) = = (x + )2 x 2 = x () 2 x ()2 = = 2x + Veja que você pode calcular então a inclinação para cada valor de considerado na tabela anterior. O ponto inicial aqui sempre vai receber o valor x = 1 para aquele caso. Fazendo isso: x = 2x = 3 1 0, ,5 = 2,5 1 0, ,1 = 2,1 1 0, ,01 = 2,01 1 0, ,001 =2,001 Tabela 2

8 Compare os valores de da tabela 1 (calculada na mão ) com os valores de da tabela 2 (calculados pela fórmula desenvolvida acima). 3 Generalizando simbolicamente Na seção anterior chegamos ao motivo pelo qual a conta com cada vez menor faz sentido. Vemos que o fica também cada vez menor, já que o triângulo que define e inclinação diminui nas duas direções x e y também fica menor, se aproximando de uma proporção definitiva, gradualmente próxima do número 2. Veja que na conta da seção anterior, o cancelamento do no denominador, é o pulo do gato. Repetindo essa passagem aqui: 2 + ()2 = (1) = 2x + (2) De maneira que ao abrirmos a conta, conseguimos o cancelamento entre o fator que faz o ficar pequeno junto com o. Mas, já que houve esse cancelamento... agora você pode operar substituindo = 0, porque não vai mais aparecer a expressão 0/0, ou seja: Que para o ponto x = 1 daria: lim 0 = lim 2x + 0 = 2x lim 0 = 2 1 = 2 Ou seja, como induzimos anteriormente por meio dos números: A inclinação da reta tangente em x = 1 é 2. Interessante não é? De maneira que o símbolo lim serve para dizer: substitua = 0, 0 apenas depois que você cancelar todos os fatores comuns entre o denominador e o numerador. Mas e qual seria a inclinação da curva no ponto x = 2? Note que a conta, representada simbolicamente, independe do ponto x considerado. Ou seja,

9 continua valendo: lim = 2x, bastando substituir x pelo número 2, para calcular a inclinação 0 em x = 2. Portanto, lim = 2 2 = 4. Ou seja, a inclinação (ou derivada) no ponto da curva correspondente a x = 2, é 0 4. Perceba que para cada valor de x, então é possível calcular a inclinação da reta (ou derivada), o que significa que a inclinação também é uma função. Essa função derivada representamos por: lim 0 = dx O uso do símbolo d remete ao fato de que a variação é muito pequena. d tem o nome diferencial, trata-se da junção das palavras: diferença ( é variação, ou diferença entre o final e o inicial ), e infinitesimal (ou infinitamente pequeno, ou seja tendendo a zero). Note, ainda, que esta disciplina se chama: Fundamentos do Cálculo Diferencial, de modo que essa matemática aqui desenvolvida (Cálculo Diferencial) é um dos objetivos centrais deste curso, junto com os fundamentos (teoria das funções). De modo que descobrir as inclinações de uma curva equivale a dizer: Calcule dx. Agora, vamos às generalizações, que vão tornar sua vida bem mais simples do que ter que fazer essas contas todas para calcular uma simples inclinação... vimos que: Se y = x 2, temos dx = 2x. Veja que o número 2 estava como expoente de x, ele desce para multiplicar na frente do número e no expoente aparece o número 1. Esse mecanismo sempre se repetiria... Se fizéssemos a mesma conta de antes para y = 3x 2, obteríamos: = 6x, veja que a mesma dx idéia do exponente caindo e cedendo lugar ao expoente inteiro anterior aparece. E se fizéssemos a mesma conta (longa) para y = x 3, então: dx = 3x2. Novamente, a mesma idéia aparece. Isso leva à uma regra, chamada regra do tombo : Se y = Ax n, então: dx = A nxn 1 Regra do Tombo tombo porque é como se o expoente n tombasse, dando lugar ao expoente inteiro imediatamente anterior (n 1). De maneira que você, de posse desta regra, não precisa recorrer à operação numérica (das tabelas do começo), nem à expansão algébrica. Agora, algo que já sabíamos calcular:

10 1) A inclinação da reta. Considere a reta: y = 2x. Qual a derivada? Resposta, pela regra do tombo: dx = 2 1x(1 1) = 2x 0 = 2 Note: É justamente o que já calculávamos com o nome de inclinação da reta, e chamávamos de a na equação y = ax. Como a inclinação da reta é constante, veja que não depende de x essa derivada. Além disso, veja que como é sempre igual (por conta da reta ter as variações sempre proporcionais) isso inclui o limite em que 0, justificando o resultado. 2) E a função constante, y = 2? Quanto dá a inclinação desta reta? Resposta: dx = 0. Pois = 0, para qualquer escolha de, logo sempre vai ser zero. Mas sabemos que para y = ax + b, a inclinação é: dx = a. Esse último resultado sugere que se você tiver uma função que é a soma (ou subtração) de duas funções, a derivada pode ser obtida pela derivada de cada uma delas, ou seja, a derivada termo a termo (essa demonstração pode ser feita rigorosamente, algo que deixo à cargo dos mais curiosos). Se y = f(x) + g(x) Então: dx = df dx + dg dx De modo que se a função for y = 2x x 2, por exemplo: dx = 2 2x. No gráfico abaixo represento o gráfico da função y = x 2, e de sua derivada, dx À esquerda é representada a função y = 2x x 2, e também da sua derivada dx = 2x (embaixo). = 2 2x, abaixo.

11 Gráfico 7 Responda: 1) Com sua mão avalie o comportamento das tangentes dos gráficos de cima (inclinação e sinal) e compare com os valores apresentados nos gráficos de baixo (que vêm do cálculo com a regra do tombo). 2) o que acontece com a valor da derivada em um ponto de máximo ou de mínimo dessas funções? 4 É isso... Assim, para calcular as inclinações de funções de qualquer grau (retas, parábolas, cúbicas, quárticas...) diretamente basta aplicar a regra do tombo e obter a expressão para, e substituir o valor de x do dx ponto que você quer calcular a inclinação. A regra do tombo funciona ainda, por exemplo, para qualquer expoente x α (mesmo sendo α uma fração, um número irracional ou mesmo um número negativo). Mas não confunda um truque (regra do tombo) com regra geral. Mas atenção: outras funções não seguem a regra do tombo. Por exemplo: y = 2 x, o resultado não é obtido com essa regra, porque a função é diferente (chamada exponencial).

12 Na medida em que formos explorando outras funções iremos expandindo nosso vocabulário de regras de obter derivadas, mas todas elas vão seguir, sempre, a definição: dx = lim 0 E seu significado sempre será a inclinação (local) da função no ponto x. Ou, equivalentemente: a inclinação da tangente à curva no ponto x. Exercícios finais a) Calcule a inclinação com números (fazendo conta como a da última linha da tabela 1) usando = 0, 001 e x = 1, para as funções: a) y = 3x 2 ; b) y = x 3 ; b) Calcule usando a regra do tombo a derivada, dx, das funções a) y = 3x2 ; b) y = x 3, e compare com o resultado anterior em x = 1. c) Calcule (usando a regra do tombo) dx para: a) y = x2 +3x; b) y = 3x 6x 2 ; c) y = 4x 3 2x 2 +x+5. O resultado será dado em termos de x. d) Calcule pela aproximação numérica (como no primeiro exercício acima) a derivada para y = 2 x, em x = 1 com = 0, 001. Veja que este resultado é diferente de x2 x 1 com x = 1. (Ou seja, a regra do tombo não funciona com a função y = 2 x ) e) Invente uma função como essas anteriores. Calcule sua derivada. Faça os gráficos (da função e da derivada) no papel, usando um aplicativo qualquer. Faça o gráfico tanto da função, quanto de sua derivada. *) Sugestões: Android Grapher; ios Quick Graph; PC (c/ internet) f) (desafio opcional) Calcule a inclinação usando o cálculo completo dx = lim fizemos na seção anterior) para as funções: a) y = 3x 2, b) y = x 3. 0, (ou seja como g) (ultra desafio opcional, pra quem gosta bastante de matemática) pesquise sobre binômio de Newton (ou, ainda, triângulo de Pascal ) e descubra como demonstrar que se y = Ax n, então dx = Anxn 1.

Mais derivadas. 1 Derivada de logaritmos. Notas: Rodrigo Ramos. 1 o. sem Versão 1.0

Mais derivadas. 1 Derivada de logaritmos. Notas: Rodrigo Ramos. 1 o. sem Versão 1.0 Mais derivadas Notas: Rodrigo Ramos o. sem. 205 Versão.0 Obs: Esse é um teto de matemática, você deve acompanhá-lo com atenção, com lápis e papel, e ir fazendo as coisas que são pedidas ao longo do teto.

Leia mais

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral)

Curso: Análise e Desenvolvimento de Sistemas. (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Curso: Análise e Desenvolvimento de Sistemas Disciplina Sistemas de Controle e Modelagem (Material de Nivelamentos,Conceitos de Limite, Diferencial e Integral) Prof. Wagner Santos C. de Jesus wsantoscj@gmail.com

Leia mais

Material Básico: Calculo A, Diva Fleming

Material Básico: Calculo A, Diva Fleming 1 Limites Material Básico: Calculo A, Diva Fleming O conceito de Limite é importante na construção de muitos outros conceitos no cálculo diferencial e integral, por exemplo, as noções de derivada e de

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.

Material Teórico - Módulo de Função Exponencial. Primeiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de Função Exponencial Gráfico da Função Exponencial Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 0 de dezembro de 018 1 Funções convexas

Leia mais

Área e Teorema Fundamental do Cálculo

Área e Teorema Fundamental do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área e Teorema Fundamental

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 1)

Tópico 3. Limites e continuidade de uma função (Parte 1) Tópico 3. Limites e continuidade de uma função (Parte 1) O Cálculo Diferencial e Integral, também chamado de Cálculo Infinitesimal, ou simplesmente Cálculo, é um ramo importante da matemática, desenvolvido

Leia mais

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Diferencial e Integral I Faculdade de Engenaria, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Definição e propriedades; Obtendo limites; Limites laterais. 1) Introdução

Leia mais

0.1 Tutorial sobre Polinômio de Taylor

0.1 Tutorial sobre Polinômio de Taylor Métodos numéricos e equações diferenciais ordinárias Solução da lista 02 Tutorial sobre Pol de Taylor tarcisio@member.ams.org T. Praciano-Pereira Dep. de Matemática Univ. Estadual Vale do Acaraú 4 de fevereiro

Leia mais

Bons estudos e um ótimo semestre a todos!

Bons estudos e um ótimo semestre a todos! Cálculo 206.2 Caro aluno, O Dáskalos tem como objetivo proporcionar aos universitários um complemento de ensino de qualidade, por meio de aulas particulares, apostilas e aulões. Tendo isso em vista, a

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares

Leia mais

parciais primeira parte

parciais primeira parte MÓDULO - AULA 3 Aula 3 Técnicas de integração frações parciais primeira parte Objetivo Aprender a técnica de integração conhecida como frações parciais. Introdução A técnica que você aprenderá agora lhe

Leia mais

Universidade de Brasília Departamento de Matemática

Universidade de Brasília Departamento de Matemática Universidade de Brasília Departamento de Matemática Cálculo 1 Taxa de Variação A duração do efeito de alguns fármacos está relacionada à sua meia-vida, tempo necessário para que a quantidade original do

Leia mais

DERIVADA. Aula 02 Matemática I Agronomia Prof. Danilene Donin Berticelli

DERIVADA. Aula 02 Matemática I Agronomia Prof. Danilene Donin Berticelli DERIVADA Aula 02 Matemática I Agronomia Prof. Danilene Donin Berticelli No instante que o cavalo atravessou a reta de chegada, ele estava correndo a 42 mph. Como pode ser provada tal afirmação? Uma fotografia

Leia mais

Derivadas 1

Derivadas 1 www.matematicaemexercicios.com Derivadas 1 Índice AULA 1 Introdução 3 AULA 2 Derivadas fundamentais 5 AULA 3 Derivada do produto e do quociente de funções 7 AULA 4 Regra da cadeia 9 www.matematicaemexercicios.com

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3).

A Regra da Cadeia. V(h) = 3h 9 h 2, h (0,3). Universidade de Brasília Departamento de Matemática Cálculo 1 A Regra da Cadeia Suponha que, a partir de uma lona de plástico com 6 metros de comprimento e 3 de largura, desejamos construir uma barraca

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:

ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Cálculo Diferencial Em vários ramos da ciência, é necessário algumas vezes utilizar as ferramentas básicas do cálculo, inventadas

Leia mais

Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim

Aula 11. Considere a função de duas variáveis f(x, y). Escrevemos: lim Aula 11 Funções de 2 variáveis: Limites e Continuidade Considere a função de duas variáveis f(x, y). Escrevemos: f(x, y) = L (x,y) (a,b) quando temos que, se (x, y) (a, b) então f(x, y) L, isto é, se (x,

Leia mais

2.1 Visualizando - Visualize um gráfico com uma função linear, y = ax + b - Neste caso, a taxa de crescimento é o valor de a, já que sabemos que:

2.1 Visualizando - Visualize um gráfico com uma função linear, y = ax + b - Neste caso, a taxa de crescimento é o valor de a, já que sabemos que: 1. O que é uma taxa? Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Em poucas palavras, podemos descrever uma

Leia mais

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis

Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites. José Natanael Reis Limites Uma teoria abordando os principais tópicos sobre a teoria dos limites Este trabalho tem como foco, uma abordagem sobre a teoria dos limites. Cujo objetivo é o método para avaliação da disciplina

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

Noções Elementares Sobre Derivadas

Noções Elementares Sobre Derivadas Noções Elementares Sobre Derivadas da Silva, M.Ilsangela Departamento de Matemática Universidade Estadual Vale do Acaraú 7 de dezembro de 2007 milsangela@gmail.com pré-prints do Curso de Matemática de

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo.

PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/2016 FOLHA 04 Após esta aula, a lista Equações Horáriaspode ser feita por completo. PROF. DANILO MATERIAL COMPLEMENTAR TURMA ENG/TOP 11/03/016 FOLHA 04 Após esta aula, a lista "Equações Horárias"pode ser feita por completo. Um corpo move ao longo de uma reta obedecendo a função horária

Leia mais

LIMITE, DERIVADAS E INTEGRAIS

LIMITE, DERIVADAS E INTEGRAIS Definição LIMITE, DERIVADAS e INTEGRAIS Dada a função y = f(x), definida no intervalo real (a, b), dizemos que esta função f possui um limite finito L quando x tende para um valor x 0, se para cada número

Leia mais

CÁLCULO I. Apresentar os problemas clássicos da tangente e da área;

CÁLCULO I. Apresentar os problemas clássicos da tangente e da área; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Uma Breve Introdução aos Problemas do Cálculo. Objetivos da Aula Apresentar os problemas clássicos da tangente e da área; Comentar intuitivamente

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 10 DERIVADAS Dada a função y = f(x), definida no intervalo real (a, b), dizemos que esta função f possui um limite finito L quando x tende para um valor x 0, se para cada número

Leia mais

1.1 DERIVADA COMO RETA TANGENTE E TAXA DE VARIAÇÃO

1.1 DERIVADA COMO RETA TANGENTE E TAXA DE VARIAÇÃO 1 PLANO DE AULA II - DERIVADAS Essa aula tem como principal objetivo, introduzir o conceito de derivadas, de uma maneira rápida, para que, quando o professor fazer uso dos softwares na resolução de problemas

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço 1. Introdução Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Agora que já entendemos o que é uma derivada, podemos

Leia mais

O limite de uma função

O limite de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 O ite de uma função Se s(t) denota a posição de um carro no instante t > 0, então a velocidade instantânea v(t) pode ser obtida calculando-se

Leia mais

Derivadas e Taxas de Variação. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas e Taxas de Variação. Copyright Cengage Learning. Todos os direitos reservados. Derivadas e Taxas de Variação Copyright Cengage Learning. Todos os direitos reservados. 1 Derivadas e Taxas de Variação O problema de encontrar a reta tangente a uma curva e o problema para encontrar a

Leia mais

Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária

Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Guia de Atividades usando o método de Euler para encontrar a solução de uma Equação Diferencial Ordinária Para algumas situações-problema, cuja formulação matemática envolve equações diferenciais, é possível

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Usando o estudo de ites apresentaremos o conceito de derivada de uma função real

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Cálculo. Artur Rodrigues. Como definido no ultimo material, podemos considerar a derivada como a seguinte expressão:

Cálculo. Artur Rodrigues. Como definido no ultimo material, podemos considerar a derivada como a seguinte expressão: Cálculo Artur Rodrigues Como definido no ultimo material, podemos considerar a derivada como a seguinte expressão: = lim x 0 f (x+ x) f (x) x Essa é a definição formal de derivada e usando-a você poderá

Leia mais

MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha

MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula

Leia mais

A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c

Leia mais

DCC008 - Cálculo Numérico

DCC008 - Cálculo Numérico DCC008 - Cálculo Numérico Polinômios de Taylor Bernardo Martins Rocha Departamento de Ciência da Computação Universidade Federal de Juiz de Fora bernardomartinsrocha@ice.ufjf.br Conteúdo Introdução Definição

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.2 Limites e Continuidade Copyright Cengage Learning. Todos os direitos reservados. Limites e Continuidade Vamos comparar

Leia mais

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo

Da figura, sendo a reta contendo e B tangente à curva no ponto tem-se: é a distância orientada PQ do ponto P ao ponto Q; enquanto que pois o triângulo CÁLCULO DIFERENCIAL INTEGRAL AULA 09: INTEGRAL INDEFINIDA E APLICAÇÕES TÓPICO 01: INTEGRAL INDEFINIDA E FÓRMULAS DE INTEGRAÇÃO Como foi visto no tópico 2 da aula 4 a derivada de uma função f representa

Leia mais

BANCO DE DADOS DO PROFESSOR PAULO ROBERTO TEORIA DE LIMITES E DERIVADAS

BANCO DE DADOS DO PROFESSOR PAULO ROBERTO TEORIA DE LIMITES E DERIVADAS LIMITES BANCO DE DADOS DO PROFESSOR PAULO ROBERTO A Teoria dos Limites, tópico introdutório e fundamental da Matemática Superior, será vista aqui, de uma forma simplificada, sem aprofundamentos, até porque,

Leia mais

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados.

2 Limites e Derivadas. Copyright Cengage Learning. Todos os direitos reservados. 2 Limites e Derivadas Copyright Cengage Learning. Todos os direitos reservados. 2.2 O Limite de uma Função Copyright Cengage Learning. Todos os direitos reservados. O Limite de uma Função Para encontrar

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x Integral definida Cálculo de área Teorema Fundamental do cálculo A integral definida origina-se do problema para determinação de áreas. Historicamente, como descrito na anteriormente, constitui-se no método

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

TEOREMA DE PITÁGORAS AULA ESCRITA

TEOREMA DE PITÁGORAS AULA ESCRITA TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

1 PLANO DE AULA III - INTEGRAL 1.1 AULA SOBRE INTEGRAL DEFINIDA

1 PLANO DE AULA III - INTEGRAL 1.1 AULA SOBRE INTEGRAL DEFINIDA 1 PLANO DE AULA III - INTEGRAL Para concluir as aulas sobre ideia intuitiva e conceitos iniciais do Cálculo, abordamos nesse plano de aula a integral definida. 1.1 AULA SOBRE INTEGRAL DEFINIDA Propomos

Leia mais

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

Aula 4 Derivadas _ 1ª Parte

Aula 4 Derivadas _ 1ª Parte 1 CÁLCULO DIFERENCIAL E INTEGRAL I Aula 4 Derivadas _ 1ª Parte Professor Luciano Nóbrega UNIDADE 1 DERIVADA CONHECIMENTOS PRÉVIOS 2 y y 0 INCLINAÇÃO DA RETA A inclinação de uma reta ou, em outras palavras,

Leia mais

1 Completando Quadrados

1 Completando Quadrados UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Completamento de quadrados, Função e Equação quadrática, Função Inversa.

Leia mais

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c

CÁLCULO I. Estabelecer a relação entre continuidade e derivabilidade; Apresentar a derivada das funções elementares. f f(x + h) f(x) c c CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 11: Derivada de uma função. Continuidade e Derivabilidade. Derivada das Funções Elementares. Objetivos da Aula Denir

Leia mais

Área de uma Superfície de Revolução

Área de uma Superfície de Revolução UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Área de uma Superfície

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem.

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Probabilidade A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Experimento Aleatório É aquele experimento que quando repetido em iguais

Leia mais

17.1 multiplicidade de um ponto da curva

17.1 multiplicidade de um ponto da curva Aula 17 multiplicidades de interseção (Anterior: C é fecho algébrico de R ) Voltamos ao estudo de curvas planas O assunto agora diz respeito à compreensão das multiplicidades O exemplo modelo bem conhecido

Leia mais

A reta numérica. Praciano-Pereira, T

A reta numérica. Praciano-Pereira, T A reta numérica Praciano-Pereira, T Sobral Matemática 3 de fevereiro de 205 Textos da Sobral Matemática Editor Tarcisio Praciano-Pereira, tarcisio@member.ams.org - reta numérica Se diz duma reta na qual

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

A derivada de uma função

A derivada de uma função Universidade de Brasília Departamento de Matemática Cálculo 1 A derivada de uma função Supona que a função f está definida em todo um intervalo aberto contendo o ponto a R. Dizemos que f é derivável no

Leia mais

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).

SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez). SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para

Leia mais

DERIVADAS. Duane Damaceno 1 de julho de Taxa de variação 2

DERIVADAS. Duane Damaceno 1 de julho de Taxa de variação 2 DERIVADAS Duane Damaceno 1 de julho de 2015 Sumário 1 Taxa de variação 2 2 O que são derivadas? 2 2.1 Limite: a definição de derivada..................................... 3 2.2 Exemplos.................................................

Leia mais

Apresentação do Cálculo

Apresentação do Cálculo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Apresentação do Cálculo

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 ESTUDO DA CIRCUNFERÊNCIA DEFINIÇÃO... EQUAÇÃO REDUZIDA... EQUAÇÃO GERAL DA CIRCUNFERÊNCIA... 3 RECONHECIMENTO... 3 POSIÇÃO RELATIVA ENTRE PONTO E CIRCUNFERÊNCIA... 1 POSIÇÃO RELATIVA ENTRE RETA E CIRCUNFERÊNCIA... 17 PROBLEMAS

Leia mais

ANOTAÇÕES DE AULA : DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS E DERIVADAS DE ORDEM SUPERIOR

ANOTAÇÕES DE AULA : DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS E DERIVADAS DE ORDEM SUPERIOR UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA INSTITUTO CIBER ESPACIAL MEDICINA VETERINARIA PROFº JOÃO SANTANNA ANOTAÇÕES DE AULA : DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS E DERIVADAS DE ORDEM SUPERIOR Derivadas

Leia mais

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa.

Giovanna ganhou reais de seu pai pra fazer. sua festa de 15 anos. Ao receber o dinheiro, no. entanto, resolveu abri mão da festa. LOGARITMOS QUAL É O TEMPO? Giovanna ganhou 1 000 reais de seu pai pra fazer sua festa de 15 anos. Ao receber o dinheiro, no entanto, resolveu abri mão da festa. É que ela queria comprar um computador.

Leia mais

f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x).

f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x). P4 de MAT1104 2008.2 1ª parte, sem maple. 1.Seja f(x)= int(sqrt(1+t^4)/t,t=1..x^2). a) calcule a derivada de f(x). f(x)=g(h(x)), logo sua derivada é g (h(x)).h (x), sendo h(x)=x^2 e g(x)= int(sqrt(1+t^4)/t,t=1..x).

Leia mais

BIE Ecologia de Populações

BIE Ecologia de Populações s - Ecologia de Populações Roberto André Kraenkel http://www.ift.unesp.br/users/kraenkel Apontamentos de Diferencial e Integral Parte I Sumário 1 s Sumário 1 2 s Sumário 1 2 3 s Sumário s 1 2 3 4 s Sumário

Leia mais

Para entender um segmento de reta, vou mostrar a RETA, SEMI-RETA e SEGMENTO.

Para entender um segmento de reta, vou mostrar a RETA, SEMI-RETA e SEGMENTO. SEGMENTOS PROPORCINAIS SEGMENTOS PROPORCINAIS Para entender um segmento de reta, vou mostrar a RETA, SEMI-RETA e SEGMENTO. A B Esta é a representação de uma reta, em uma reta temos infinitos pontos é como

Leia mais

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO

CCI-22 FORMALIZAÇÃO CCI-22 MODOS DE SE OBTER P N (X) Prof. Paulo André CCI - 22 MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO CCI - MATEMÁTICA COMPUTACIONAL INTERPOLAÇÃO Prof. Paulo André ttp://www.comp.ita.br/~pauloac pauloac@ita.br Sala 0 Prédio da Computação -Gregory DEFINIÇÃO Em matemática computacional, interpolar significa

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA DÉCIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, apresentaremos o Teorema do Valor Médio e algumas de suas conseqüências como: determinar os intervalos de

Leia mais

Notação e fórmula. O teorema do binômio de Newton se escreve como segue: são chamados coeficientes binomiais e são definidos como:

Notação e fórmula. O teorema do binômio de Newton se escreve como segue: são chamados coeficientes binomiais e são definidos como: Introdução Em matemática, binômio de Newton permite escrever na forma canônica o polinómio correspondente à potência de um binómio. O nome é dado em homenagem ao físico e matemático Isaac Newton. Entretanto

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Taxas de Variação: Velocidade e Funções Marginais

Taxas de Variação: Velocidade e Funções Marginais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas de Variação:

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

Antiderivadas e Integrais Indefinidas

Antiderivadas e Integrais Indefinidas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Antiderivadas e Integrais

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli

INTEGRAL DEFINIDA APLICAÇÕES. Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli INTEGRAL DEFINIDA APLICAÇÕES Aula 05 Matemática II Agronomia Prof. Danilene Donin Berticelli Variação Total Em certas aplicações práticas, conhecemos a taxa de variação Q (x) de uma grandeza Q(x) e estamos

Leia mais

Aplicações de. Integração

Aplicações de. Integração Aplicações de Capítulo 6 Integração APLICAÇÕES DE INTEGRAÇÃO Neste capítulo exploraremos algumas das aplicações da integral definida, utilizando-a para calcular áreas entre curvas, volumes de sólidos e

Leia mais

Nas P1s caem os conceitos de limites, continuidade, derivadas e suas aplicações. Então vamos começar falando de limites.

Nas P1s caem os conceitos de limites, continuidade, derivadas e suas aplicações. Então vamos começar falando de limites. Limites INTRODUÇÃO Fala, galera! Vamos começar a agora o tão temido, aquela matéria cabulosa em que todos reprovam. Cara, RELAXA! Felizmente nem é assim. Dedique parte de seu tempo para os estudos, pois

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima:

Cálculo Numérico. que é denominado erro relativo. Temos então para os dados acima: Cálculo Numérico 1 Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo.

Leia mais