ESTUDO DA DINÂMICA POPULACIONAL DE UM VÍRUS COMPUTACIONAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ESTUDO DA DINÂMICA POPULACIONAL DE UM VÍRUS COMPUTACIONAL"

Transcrição

1 ESTUDO DA DINÂMICA POPULACIONAL DE UM VÍRUS COMPUTACIONAL Aluno: João Henrique Carneiro Orientador: Carlos Frederico Palmeira Introdução Foi feito um estudo sobre dinâmica populacional a fim de buscar exemplos e aplicações de equações diferenciais ordinárias não lineares. Inspirando-se no modelo S.I.R., muito usado nos modelos epidemológicos, foi usado um derivado desse, o modelo S.A.I.R. Como de praxe, as equações diferenciais referentes a esse sistema não têm soluções analíticas. Foi feito então uma análise qualitativa do sistema. Utilizando a similaridade entre os modelos, permitindo assim o uso de métodos também similares, descobriu-se os pontos de equilíbrio e suas estabilidades. Com essa informação, foi possível descobrir peculiaridades do sistema, incluindo suas bifurcações. Em especial encontrou-se o número básico de reprodução. Pôde-se, então, fazer algumas conclusões sobre as ações que um administrador deve fazer para conter uma invasão. O modelo SIR Como inspiração, estuda-se primeiro o modelo SIR [1], mais simples e com muitas restrições. Seu modelo de componentes é o seguinte: O sistema de equações diferenciais é: onde β é a taxa de transmissão e ν é a taxa de remoção. As variáveis S, I e R são referências às populações suscetíveis, infectadas e removidas respectivamente. Algumas suposições são feitas: 1. A transmissão é feita de maneira direta. 2. Não há introdução ou remoção de indivíduos da população total. Para uma infecção de pouca duração essa afirmativa faz sentido. 3. Período zero de incubação. 4. Indivíduos removidos têm imunidade completa e permanente. Só essa parte da população tem imunidade.

2 5. A população inteira é homogênea. 6. Os parâmetros β e ν são constantes. Essa afirmação frequentemente não é verdadeira. A soma das equações (1), (2), e (3) obtem-se zero, implicando que S + I + R = N, uma constante. Pode-se então reduzir o sistema para duas EDO s utilizando a equação auxiliar R = N S I. Com as equações (1) e (2) é possível observar que o sistema se encontra em equilíbrio, se e somente se, a população infectada for nula. Uma breve análise a mais permite ao bom observador notar que há dois pontos de equilíbrio: Nota-se que o segundo ponto passa a existir quando I(0) = 0. Desconsiderando o caso degenerado onde não há infecção, o próximo passo é analisar o comportamento da população infectada. É conhecido que, para qualquer condição inicial, a infecção eventualmente se anula. Mas será que há oscilações em uma escala menor de tempo? Nota-se pela equação (2) que o decaimento de I depende da seguinte relação: Como S decai monotonamente sabe-se que S(0) > S(t) para qualquer t no domínio. Define-se então um número básico de reprodução como: o Se R 0 < 1, a equação (2) tem sinal negativo sempre, e assim I decai monotonamente a zero. o Se R 0 > 1 a equação (2) tem sinal positivo até chegar a um S * que satisfaz G < 0. Com isso I aumenta temporariamente, mas eventualmente decai a zero. o Se R 0 = 1, I decai a zero. O número básico de reprodução é um limiar para o comportamento do sistema. Felizmente, essa característica pode ser usada para criar estratégias a fim de prevenir uma epidemia, através de mudanças nas três constantes do R 0. Nota-se que é definido como uma epidemia quando há, em algum momento, aumento na população infectada. Essa definição é fundamentalmente diferente de uma endemia, onde a infecção nunca subside.

3 O modelo SAIR: O sistema de equações no modelo SAIR, discutido por Piqueira [2] é: Seu modelo de componentes ilustra bem as evoluções do modelo SIR em algo mais complexo e completo. Suas variáveis e constantes são listadas e descritas na tabela 1.1 abaixo. Tabela 1.1 Variáveis e Constantes S A I R N α β AI β SI σ IS σ RS δ μ Descrição da variável / constante Computadores suscetíveis a infecção pelo vírus. Computadores protegidos por antivírus. Computadores infectados pelo vírus. Computadores removidos devido à infecção ou não. Número de novos computadores inseridos na rede por unidade de tempo. Taxa de conversão de computadores susceptíveis em antidotais. Taxa de infecção de computadores antidotais devido a um virus desconhecido. Taxa de infecção de computadores suscetíveis. Taxa de recuperação de computadores infectados. Taxa de recuperação de computadores removidos. Taxa de remoção de computadores infectados. Taxa de mortalidade não devido à infecção. É possível fazer algumas suposições a fim de simplificar a análise do modelo. Por exemplo, é razoável considerar que o tempo útil de um virus é muito menor que o tempo necessário para que N e μ fizessem alguma mudança significativa na rede. Portanto, não há muita perda ao considerar essas constantes como nulas. Desta forma, o sistema fica:

4 Nota-se que com essa simplificação o sistema é similar ao modelo SIR no sentido que a soma das equações (5), (6), (7) e (8) é nula. Logo, existe uma constante T tal que, O sistema contem quatro pontos de equilíbrio, dois deles com infecção zero. Descobre-se esses pontos impondo I = 0 nas equações (9), (10) e (12). Assim, os dois pontos são: O próximo passo para conhecer as sutilezas do modelo é descobrir a estabilidade desses pontos. Existe uma boa aproximação, muitas vezes onde o erro é nulo para uma vizinhança pequena, usando métodos lineares discutidos por Strogatz [3]. A Jacobiana do sistema diferencial é: Logo, no primeiro ponto de equilíbrio tem-se, cujos autovalores são: O autovalor nulo corresponde ao autovetor (1; 0; 0; 0), ou seja a reta inteira S = t onde t é real. Observando os outros autovalores, chega-se à conclusão que o ponto fixo no mínimo não é um atrator nem uma órbita. A fim de evitar complicações por causa da variedade central,

5 cria-se uma região de segurança impondo I > ε, ε suficientemente grande para que de ponto de vista do ponto P(s; ε; 0; 0), a reta age como um ponto fixo repulsor. Analogamente com o segundo ponto de equilíbrio, tem-se a jacobiana correspondente: Cujos autovalores são: Novamente tem-se um autovalor nulo, correspondente ao autovetor (0; 1; 0; 0). Não é possível chegar nesse ponto em tempo finito, a menos que se trate do caso degenerado I(0) =0. Logo, não há problemas com a variedade central A = t. Porém, como esse ponto de equilíbrio é ideal, por ser completamente saudável, e a outra solução ideal repele, requere-se que seja um atrator. Para isso, tem-se a relação que pode ser definida como o número básico de reprodução: o Se R 0 < 1, o terceiro autovalor se torna negativo e por isso o ponto age como um atrator. o Se R 0 > 1, o terceiro autovalor se torna positivo e por isso o ponto age como uma sela. A variedade central nesse caso divide os comportamentos dessa sela. Pelo lado esquerdo, onde consiste a situação do modelo, repele. Pelo lado direito, atrai. O número básico de reprodução permite a criação de estratégias para um administrador seguir a fim de garantir a saúde de sua rede de computadores. É notável, e de certa maneira esperado, que o aumento no número de computadores significa um maior esforço para forçar R 0 a ser menor que um. Logo, existem quatro maneiras de aumentar a segurança e saúde do sistema. Primeiro, atualizar o programa antivirus dos programas, já que β AI faz referência à taxa de infecção por um novo vírus em computadores antidotais. Segundo e terceiro, aumentar a velocidade de recuperação e remoção de computadores infectados via remendas feitas pelo administrador. A quarta e última maneira de melhorar o sistema deverá ser feita por último quando for constatado que as outras não são suficientes. Consiste em diminuir o número de computadores na rede, ou seja, baixar a constante T até que haja alguma nova atualização do programa antivirus pronta para a defesa requerida. Foram feitas algumas simulações com diversos valores das contantes. O resultado foi uma confirmação parcial daquilo que a teoria prediz. Ou seja, existem dois comportamentos completamente distintos para os dois valores específicos de R 0. Nessas simulações foram usados como valores de constantes: T = 50, α = 0.1, β SI = 0.5, ζ IS = 0.5, δ = 0.5,

6 ζ RS = 0.5. A condição inicial, P(0.4T; 0.5T; 0.1T; 0). Com tais valores, para que R 0 fosse menor que um, β AI precisava ser menor que Mas os gráficos a seguir mostram que as variedades centrais dos pontos de equilíbrio geram erro considerável. Gráfico 1 : β AI = 0.01 Gráfico 2 : β AI = Gráfico 3 : β AI = Gráfico 4 : β AI = Nota-se no primeiro gráfico que o comportamento demonstrado é ideal para o administrador. Isto é, a infecção é rapidamente aniquilada via remoção de infectados e aumento no número de computadores antidotais. No gráfico seguinte, tem-se o caso catastrófico onde o sistema converge a uma solução endêmica com uma densidade muito baixa de computadores. Isso ocorre em β AI = 0.013, significamente menor do que esperado pela teoria linear.

7 Nos dois gráficos a seguir, é ilustrada a bifurcação que existe entre os dois valores indicados de β AI. Também mostram que quanto mais perto do valor da bifurcação, maior o tempo necessário para o sistema sair do seu estado dormente. Aliás, para β AI no seu valor de bifurcação, o sistema é constante para todo tempo. Conclusão O uso de modelos matemáticos, empregando a teoria da bifurcação nas equações diferenciais ordinárias não lineares, é muito útil e prático além de visar à implementação de sistemas mais seguros contra qualquer invasão de tipos parasíticos. Estudar um sistema mais complexo, utilizando também teorias estatísticas como complemento, poderia resultar em uma compreensão mais completa das sutilezas de um sistema desse tipo. Com um bom modelo a ser estudado, é possível traçar estratégias usando o número básico de reprodução a fim de obter um sistema robusto e bem protegido contra um vírus. Referências 1 WEISS, Howard. A Mathematical Introduction to Population Dynamics. 27 o Colóquio Brasileiro de Matemática. IMPA, p , PIQUEIRA, M., NAVARRO, B.F., MONTEIRO, L.H.A. Epidemiological models applied to viruses in computer networks. Journal of Computer Science 1, p , STROGATZ, Steven. Nonlinear dynamics and chaos: with applications to Physics, Biology, Chemistry, and Engineering. Cambridge: Perseus Books, Agradecimentos Bruna Barretto, Caroline Lagos.

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES

MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES MAT1154 ANÁLISE QUALITATIVA DE PONTOS DE EQUILÍBRIO DE SISTEMAS NÃO-LINEARES VERSÃO 1.0.2 Resumo. Este texto resume e complementa alguns assuntos dos Capítulo 9 do Boyce DiPrima. 1. Sistemas autônomos

Leia mais

Palavras-chave: Modelo de Lotka-Volterra, Lagarta do Cartucho do milho, Controle Biológico.

Palavras-chave: Modelo de Lotka-Volterra, Lagarta do Cartucho do milho, Controle Biológico. ISSN 177-9139 MODELAGEM MATEMÁTICA APLICADA AO CONTROLE BIOLÓGICO DE PRAGAS EM LAVOURAS DE MILHOS. Jéssica C. S. Bueno E-mail: jessica_bsaldivia@hotmail.com Universidade Federal de Pelotas, Departamento

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Análise matemática para avaliação de desempenho em ambientes Peer-to-Peer

Análise matemática para avaliação de desempenho em ambientes Peer-to-Peer Análise matemática para avaliação de desempenho em ambientes Peer-to-Peer Érico Santos Rocha 1, Janaina Lemos 1, Daniel Bertoglio 1, Rafael Ávila 1, Luis Paulo Luna de Oliveira 1 1 PIPCA - Programa de

Leia mais

A Sobrevivência do Vírus varicela-zoster

A Sobrevivência do Vírus varicela-zoster Biomatemática 19 (2009), 109 124 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP A Sobrevivência do Vírus varicela-zoster A. L. Vieira 1, 2 DMA UFV, 36.570-000, Viçosa/MG. L. T. Takahashi

Leia mais

Modelos Matemáticos em Epidemiologia

Modelos Matemáticos em Epidemiologia Modelos Matemáticos em Epidemiologia Algumas definições halgumas doenças contagiosas que acometem rapidamente a um grande segmento de uma população são chamadas de epidemias (do grego epi, sobre + demos,

Leia mais

Equações diferencias são equações que contém derivadas.

Equações diferencias são equações que contém derivadas. Equações diferencias são equações que contém derivadas. Os seguintes problemas são exemplos de fenômenos físicos que envolvem taxas de variação de alguma quantidade: Escoamento de fluidos Deslocamento

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM Decaimento radioativo Resultados experimentais mostram que elementos radioativos desintegram a uma taxa proporcional à quantidade presente do elemento. Se Q = Q(t) é a

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Universidade Federal de Ouro Preto Escola de Minas Departamento de Engenharia de Controle e Automação. Ronilson Rocha

Universidade Federal de Ouro Preto Escola de Minas Departamento de Engenharia de Controle e Automação. Ronilson Rocha Universidade Federal de Ouro Preto Escola de Minas Departamento de Engenharia de Controle e Automação PROJETO E CARACTERIZAÇÃO DE CIRCUITOS ELETRÔNICOS CAÓTICOS: O LADO NEGATIVO DO CIRCUITO DE CHUA Ronilson

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Glossário de Dinâmica Não-Linear

Glossário de Dinâmica Não-Linear Glossário de Dinâmica Não-Linear Dr. Fernando Portela Câmara, MD, PhD Coordenador do Depto. Informática da ABP (2004-2007) Atrator O estado no qual um sistema dinâmico eventualmente se estabiliza. Um atrator

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Um Modelo Matemático da Reinfecção da Rubéola

Um Modelo Matemático da Reinfecção da Rubéola TEMA Tend. Mat. Apl. Comput., 4, No. 3 (2003), 367-376. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Um Modelo Matemático da Reinfecção da Rubéola S.M. RAIMUNDO 1 2,

Leia mais

Risco de Transmissão da Dengue via Modelagem Numérica de Equações Diferenciais Estocásticas Clima-Dependentes

Risco de Transmissão da Dengue via Modelagem Numérica de Equações Diferenciais Estocásticas Clima-Dependentes Risco de Transmissão da Dengue via Modelagem Numérica de Equações Diferenciais Estocásticas Clima-Dependentes Mariana B. da Silva 1, Kaline J. S. do Nascimento 1, Kelly C. da S. Matos 1, Paulo S. Lucio

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária

Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária Ajuste dos Parâmetros de um Controlador PI em uma Coluna de Destilação Binária Marina Roberto Martins 1*, Fernando Palú 1 (1) Universidade Estadual do Oeste do Paraná, Curso de Engenharia Química. e-mail:

Leia mais

Modelo Epidemiológico SEIR de Transmissão da Dengue em Redes de Populações Acopladas 1

Modelo Epidemiológico SEIR de Transmissão da Dengue em Redes de Populações Acopladas 1 TEMA Tend. Mat. Apl. Comput., 5, No. (00), 55-6. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Modelo Epidemiológico SEIR de Transmissão da Dengue em Redes de Populações

Leia mais

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA

MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA MODELAGEM COM EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM E APLICAÇÕES À ECONOMIA PAULO, João Pedro Antunes de Universidade Estadual de Goiás UnU de Iporá jpadepaula@hotmail.com RESUMO Esta pesquisa foi feita

Leia mais

O USO DE VÍDEO E DO SOFTWARE MODELLUS PARA ANALISAR UM FENÔMENO BIOLÓGICO

O USO DE VÍDEO E DO SOFTWARE MODELLUS PARA ANALISAR UM FENÔMENO BIOLÓGICO O USO DE VÍDEO E DO SOFTWARE MODELLUS PARA ANALISAR UM FENÔMENO BIOLÓGICO Débora da Silva Soares 1 Universidade Estadual Paulista Julio de Mesquita Filho debbie_mat@yahoo.com.br Nilton Silveira Domingues

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

O caso estacionário em uma dimensão

O caso estacionário em uma dimensão O caso estacionário em uma dimensão A U L A 6 Meta da aula Aplicar o formalismo quântico no caso de o potencial ser independente do tempo. objetivos verificar que, no caso de o potencial ser independente

Leia mais

Modelo de Solow: Efeitos de Transição Dinâmica

Modelo de Solow: Efeitos de Transição Dinâmica Capítulo 4 Modelo de Solow: Efeitos de Transição Dinâmica No capítulo anterior vimos que, quando a economia atinge o seu equilíbrio de longo prazo, todas as variáveis endógenas passam a crescer a uma taxa

Leia mais

Uso da Computação Por Intervalos para Cálculo de Ponto Fixo de um Mapa Discreto

Uso da Computação Por Intervalos para Cálculo de Ponto Fixo de um Mapa Discreto Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Uso da Computação Por Intervalos para Cálculo de Ponto Fixo de um Mapa Discreto Heitor Magno Rodrigues Junior 1 Programa

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. Exercícios A U L A 10 Meta da aula Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. objetivo aplicar os conhecimentos adquiridos nas Aulas 4 a 9 por meio da

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

ESTUDOS DE MODELOS DISPERSIVOS DO MOSQUITO AEDES AEGYPTI

ESTUDOS DE MODELOS DISPERSIVOS DO MOSQUITO AEDES AEGYPTI SIMMEC / EMMCOMP 2014 XI Simpósio de Mecânica Computacional II Encontro Mineiro de Modelagem Computacional ESTUDOS DE MODELOS DISPERSIVOS DO MOSQUITO AEDES AEGYPTI William M. S. Yamashita wmsyamashita@hotmail.com

Leia mais

Introdução ao Método de Galerkin Estocástico

Introdução ao Método de Galerkin Estocástico Introdução ao Método de Galerkin Estocástico Americo Barbosa da Cunha Junior Departamento de Engenharia Mecânica Pontifícia Universidade Católica do Rio de Janeiro 1 Introdução A dinâmica de um sistema

Leia mais

4 Arquitetura básica de um analisador de elementos de redes

4 Arquitetura básica de um analisador de elementos de redes 4 Arquitetura básica de um analisador de elementos de redes Neste capítulo é apresentado o desenvolvimento de um dispositivo analisador de redes e de elementos de redes, utilizando tecnologia FPGA. Conforme

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

DINÂMICA NÃO-LINEAR E REAGENTE LIMITANTE: UM EXEMPLO DE BIFURCAÇÃO TRANSCRÍTICA

DINÂMICA NÃO-LINEAR E REAGENTE LIMITANTE: UM EXEMPLO DE BIFURCAÇÃO TRANSCRÍTICA http://dx.doi.org/10.5935/0100-4042.20140119 Quim. Nova, Vol. 37, No. 4, 748-752, 2014 DINÂMICA NÃO-LINEAR E REAGENTE LIMITANTE: UM EXEMPLO DE BIFURCAÇÃO TRANSCRÍTICA Educação Diego J. R. da Silva Departamento

Leia mais

Interpolação de Curvas de Nível por Difusão de Calor

Interpolação de Curvas de Nível por Difusão de Calor Interpolação de Curvas de Nível por Difusão de Calor ROBERTO DE BEAUCLAIR SEIXAS LUIZ HENRIQUE DE FIGUEIREDO CLAUDIO ANTONIO DA SILVA IMPA Instituto de Matemática Pura e Aplicada VISGRAF Laboratório de

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Conceitos de Confiabilidade Características da Distribuição Weibull

Conceitos de Confiabilidade Características da Distribuição Weibull Página 1 de 7 WebSite Softwares Treinamentos Consultorias Recursos ReliaSoft Empresa ReliaSoft > Reliability Hotwire > Edição 3 > Conceitos Básicos de Confiabilidade Reliability HotWire Edição 3, Maio

Leia mais

OS EFEITOS DA POLARIDADE DAS LIGAÇÕES NAS MOLÉCULAS ORGÂNICAS DOS HALOGENETOS DE ALQUILA

OS EFEITOS DA POLARIDADE DAS LIGAÇÕES NAS MOLÉCULAS ORGÂNICAS DOS HALOGENETOS DE ALQUILA OS EFEITOS DA POLARIDADE DAS LIGAÇÕES NAS MOLÉCULAS ORGÂNICAS DOS HALOGENETOS DE ALQUILA Natalia Soares Quinete Bolsista de Inic. Científica, Eng. Química, UFF Peter Rudolf Seidl Orientador, Químico industrial,

Leia mais

A Matemática do Impacto Ambiental

A Matemática do Impacto Ambiental III SEEMAT/UESB Vitória da Conquista, 16 de novembro de 2011 Poluição A atividade humana de uma forma geral vem aumentando muito o ingresso de poluentes em nosso meio, causando assim inúmeros problemas

Leia mais

Controlo Em Espaço de Estados. Exame

Controlo Em Espaço de Estados. Exame Mestrado Integrado em Engenharia Electrotécnica e de Computadores Controlo Em Espaço de Estados 4/5 Eame 9 de Junho de 5, 5h horas salas F, F Duração horas Não é permitida consulta nem uso de calculadoras

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

Um modelo para controle biológico de pragas associado ao uso de pesticidas

Um modelo para controle biológico de pragas associado ao uso de pesticidas Biomatemática 24 (214), 19 123 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Um modelo para controle biológico de pragas associado ao uso de pesticidas Adriane Frank 1, Diomar C.

Leia mais

Equilíbrio econômico de uma seguradora Francisco Galiza, Mestre em Economia (FGV)

Equilíbrio econômico de uma seguradora Francisco Galiza, Mestre em Economia (FGV) Equilíbrio econômico de uma seguradora Francisco Galiza, Mestre em Economia (FGV) O objetivo deste trabalho é estudar um modelo simples de comportamento e equilíbrio das seguradoras. Nesta discussão, são

Leia mais

MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural

MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural Universidade Federal de São João Del-Rei MG 6 a 8 de maio de 00 Associação Brasileira de Métodos Computacionais em Engenharia MDF: Conceitos Básicos e algumas Aplicações na Engenharia Estrutural L. R.

Leia mais

Curvas Padrões de Tratamento do HIV

Curvas Padrões de Tratamento do HIV Biomatemática 17 (2007), 55 64 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Curvas Padrões de Tratamento do HIV Rosana Motta Jafelice 1, Faculdade de Matemática, UFU, 38.408-100

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

2 Modelo para o Sistema de Controle de Estoque (Q, R)

2 Modelo para o Sistema de Controle de Estoque (Q, R) Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de

Leia mais

6 Conclusões e Trabalhos futuros 6.1. Conclusões

6 Conclusões e Trabalhos futuros 6.1. Conclusões 6 Conclusões e Trabalhos futuros 6.1. Conclusões Neste trabalho estudou-se o comportamento do sistema que foi denominado pendulo planar com a adição de uma roda de reação na haste do pendulo composta de

Leia mais

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF)

Métodos Estatísticos II 1 o. Semestre de 2010 ExercíciosProgramados1e2 VersãoparaoTutor Profa. Ana Maria Farias (UFF) Métodos Estatísticos II 1 o. Semestre de 010 ExercíciosProgramados1e VersãoparaoTutor Profa. Ana Maria Farias (UFF) Esses exercícios abrangem a matéria das primeiras semanas de aula (Aula 1) Os alunos

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

5 A Utilização da Técnica do Espaço Nulo e dos Atributos Baseados na Escolha de Coeficientes de Autocorrelações

5 A Utilização da Técnica do Espaço Nulo e dos Atributos Baseados na Escolha de Coeficientes de Autocorrelações 5 A Utilização da Técnica do Espaço Nulo e dos Atributos Baseados na Escolha de Coeficientes de Autocorrelações Este capítulo apresenta uma nova proposta que consiste em empregar os atributos baseados

Leia mais

Sistemas p-fuzzy modificados para o modelo do controle de pragas

Sistemas p-fuzzy modificados para o modelo do controle de pragas Biomatemática 22 (2012), 61 76 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Sistemas p-fuzzy modificados para o modelo do controle de pragas Thiago F. Ferreira 1, Rosana S. M.

Leia mais

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO

CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM CLÁSSICO E DE MONTE CARLO ENQUALAB-28 Congresso da Qualidade em Metrologia Rede Metrológica do Estado de São Paulo - REMESP 9 a 2 de junho de 28, São Paulo, Brasil CÁLCULO DE INCERTEZA EM ENSAIO DE TRAÇÃO COM OS MÉTODOS DE GUM

Leia mais

5910178 Fundamentos de Física e Matemática para Biologia-FFCLRP-USP Primeiro Semestre de 2007 Professor: Antônio C. Roque (DFM-FFCLRP-USP)

5910178 Fundamentos de Física e Matemática para Biologia-FFCLRP-USP Primeiro Semestre de 2007 Professor: Antônio C. Roque (DFM-FFCLRP-USP) 5910178 Fundamentos de Física e Matemática para Biologia-FFCLRP-USP Primeiro Semestre de 2007 Professor: Antônio C. Roque (DFM-FFCLRP-USP) Horário: Segundas e terças-feiras das 10:00 as 12:00 hs Sala do

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 O Método de Separação de Variáveis A ideia central desse método é supor que a solução

Leia mais

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS.

CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. 1 CADERNO DE ATIVIDADES UMA PROPOSTA METODOLÓGICA PARA O ESTUDO DAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS POR MÉTODOS NUMÉRICOS. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS

Leia mais

4. Metodologia. Capítulo 4 - Metodologia

4. Metodologia. Capítulo 4 - Metodologia Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

Movimento Harmônico Simples: Exemplos (continuação)

Movimento Harmônico Simples: Exemplos (continuação) Movimento Harmônico Simples: Exemplos (continuação) O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um ponto O e que

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

MODELAGEM MATEMÁTICA PARA SALA DE AULA: UMA EXPERIÊNCIA COM PROFESSORES DO ENSINO MÉDIO. Kécio Gonçalves Leite 1

MODELAGEM MATEMÁTICA PARA SALA DE AULA: UMA EXPERIÊNCIA COM PROFESSORES DO ENSINO MÉDIO. Kécio Gonçalves Leite 1 MODELAGEM MATEMÁTICA PARA SALA DE AULA: UMA EXPERIÊNCIA COM PROFESSORES DO ENSINO MÉDIO Kécio Gonçalves Leite 1 RESUMO: Trata-se do relato de uma experiência vivenciada junto a professores da rede estadual

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

O estudo de um indicador de comportamento do segurado brasileiro Francisco Galiza, Mestre em Economia (FGV)

O estudo de um indicador de comportamento do segurado brasileiro Francisco Galiza, Mestre em Economia (FGV) O estudo de um indicador de comportamento do segurado brasileiro Francisco Galiza, Mestre em Economia (FGV) Este artigo tem por objetivo analisar as taxas de aversão ao risco em alguns ramos do mercado

Leia mais

Pindyck & Rubinfeld, Capítulo 2, Oferta e Demanda :: EXERCÍCIOS

Pindyck & Rubinfeld, Capítulo 2, Oferta e Demanda :: EXERCÍCIOS Capítulo 2: O Básico sobre a Oferta e a Demanda Pindyck & Rubinfeld, Capítulo 2, Oferta e Demanda :: EXERCÍCIOS 1. Considere um mercado competitivo no qual as quantidades anuais demandadas e ofertadas

Leia mais

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior.

POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. POR QUE INVERTER O SINAL DA DESIGUALDADE EM UMA INEQUAÇÃO? GT 02 Educação matemática no ensino médio e ensino superior. Bruno Marques Collares, UFRGS, collares.bruno@hotmail.com Diego Fontoura Lima, UFRGS,

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representação de Sinais por

Leia mais

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto

Material Teórico - Módulo de Divisibilidade. MDC e MMC - Parte 1. Sexto Ano. Prof. Angelo Papa Neto Material Teórico - Módulo de Divisibilidade MDC e MMC - Parte 1 Sexto Ano Prof. Angelo Papa Neto 1 Máximo divisor comum Nesta aula, definiremos e estudaremos métodos para calcular o máximo divisor comum

Leia mais

objetivos A partícula livre Meta da aula Pré-requisitos

objetivos A partícula livre Meta da aula Pré-requisitos A partícula livre A U L A 7 Meta da aula Estudar o movimento de uma partícula quântica livre, ou seja, aquela que não sofre a ação de nenhuma força. objetivos resolver a equação de Schrödinger para a partícula

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA.

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Aulas anteriores Tipos de Sinais (degrau, rampa, exponencial, contínuos, discretos) Transformadas de Fourier e suas

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

3 Concurso de Rentabilidade

3 Concurso de Rentabilidade 3 Concurso de Rentabilidade 3.1.Motivação O capítulo anterior mostra que a motivação dos fundos de investimento é a maximização da expectativa que a população tem a respeito da rentabilidade de suas carteiras.

Leia mais

Trabalhando Matemática: percepções contemporâneas

Trabalhando Matemática: percepções contemporâneas CONSTRUINDO CONCEITOS SOBRE FAMÍLIA DE FUNÇÕES POLINOMIAL DO 1º GRAU COM USO DO WINPLOT Tecnologias da Informação e Comunicação e Educação Matemática (TICEM) GT 06 MARCOS ANTONIO HELENO DUARTE Secretaria

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte Espelhos esféricos são superfícies refletoras muito comuns e interessantes de se estudar. Eles são capazes de formar imagens maiores ou menores, inversas ou direitas, dependendo do tipo de espelho, suas

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

ANÁLISE DE CIRCUITOS RESISTIVO DC (03/12/2013)

ANÁLISE DE CIRCUITOS RESISTIVO DC (03/12/2013) Governo do Estado de Pernambuco Secretaria de Educação Secretaria Executiva de Educação Profissional Escola Técnica Estadual Professor Agamemnon Magalhães ETEPAM Aluno: Avaliação do Prof. (N5): ANÁLISE

Leia mais

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil

XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012-22 a 26 de outubro Rio de Janeiro - RJ - Brasil Luiz Gonzaga Fernandez Silva CPFL PIRATININGA Marcus Rodrigo Carvalho Daimon Engenharia

Leia mais

Admistração de Redes de Computadores (ARC)

Admistração de Redes de Computadores (ARC) Admistração de Redes de Computadores (ARC) Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina - Campus São José Prof. Glauco Cardozo glauco.cardozo@ifsc.edu.br RAID é a sigla para Redundant

Leia mais

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 *

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR 1 Graduando Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * 2 Pesquisador - Orientador 3 Curso de Matemática, Unidade Universitária

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao

Introdução ao Método dos Elementos Finitos Conceitos Iniciais Divisão do Domínio e Funções de Base Aplicação do Método dos Resíduos Ponderados ao Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Elétrica Programa de Educação Tutorial Autor: Bruno Pinho Meneses Orientadores: Janailson Rodrigues Lima Prof. Dr. Ricardo

Leia mais

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)

Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

ELETROSTÁTICA 214EE. Figura 1

ELETROSTÁTICA 214EE. Figura 1 1 T E O R I A 1. CARGA ELÉTRICA A carga elétrica é uma propriedade física inerente aos prótons e elétrons (os nêutrons não possuem esta propriedade) que confere a eles a capacidade de interação mútua.

Leia mais

NIVELAMENTO MATEMÁTICA 2012

NIVELAMENTO MATEMÁTICA 2012 NIVELAMENTO MATEMÁTICA 202 Monitor: Alexandre Rodrigues Loures Monitor: Alexandre Rodrigues Loures SUMÁRIO. LOGARITMOS... 3.. Mudança de base... 3.2. Propriedades dos logaritmos... 4 2. DERIVADAS... 4

Leia mais

OInstituto de Ciências Matemáticas de São Carlos (ICMSC), da

OInstituto de Ciências Matemáticas de São Carlos (ICMSC), da Instituto de Ciências Matemáticas de São Carlos HILDELBRANDO MUNHOZ OInstituto de Ciências Matemáticas de São Carlos (ICMSC), da Universidade de São Paulo, teve sua origem como Departamento de Matemática

Leia mais

Capítulo 3 Sistemas de Controle com Realimentação

Capítulo 3 Sistemas de Controle com Realimentação Capítulo 3 Sistemas de Controle com Realimentação Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Sistemas de Controle com

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO UNIVERSIDADE FEDERAL DE PERNAMBUCO Mestrado em Ciência da Computação CENTRO DE INFORMÁTICA Análise comparativa entre os diferentes tipos De protocolos para transmissão de dados Grupo: Professora: Disciplina:

Leia mais

Inteligência de Enxame: ACO

Inteligência de Enxame: ACO Inteligência de Enxame: ACO! Otimização colônia de formigas é uma meta-heurística: «baseada em população «inspirada no comportamento forrageiro das formigas.! Muitas espécies de formigas são quase cegas.!

Leia mais

Conforme explicado em 2.4.3, o sinal de voz x(n) às vezes é alterado com a adição de ruído r(n), resultando num sinal corrompido y(n).

Conforme explicado em 2.4.3, o sinal de voz x(n) às vezes é alterado com a adição de ruído r(n), resultando num sinal corrompido y(n). 4 Wavelet Denoising O capítulo 3 abordou a questão do ruído durante a extração dos atributos as técnicas do SSCH e do PNCC, por exemplo, extraem com mais robustez a informação da voz a partir de um sinal

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais