Enunciados Quantificados Equivalentes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Enunciados Quantificados Equivalentes"

Transcrição

1 Lógica para Ciência da Computação I Lógica Matemática Texto 15 Enunciados Quantificados Equivalentes Sumário 1 Equivalência de enunciados quantificados Observações Exercícios resolvidos Neste texto, continuamos com o estudo da noção de equivalência de enunciados, aplicando os conceitos e resultados já estudados na resolução (parcial) do problema da equivalência de enunciados quantificados. Após estudarmos este texto, vamos ser capazes de: entender a noção de equivalência de enunciados construídos por aplicações de conectivos e quantificadores; entender como podemos aplicar a noção de interpretação para decidir quando dois enunciados simbolizados são equivalentes ou não; justificar que dois enunciados não equivalentes não são, de fato, equivalentes. Dada a complexidade do problema, um método para a justificativa da equivalência de enunciados construídos por aplicações de conectivos e quantificadores será apenas esboçado. Este texto sobre equivalência de enunciados quantificados corresponde ao Texto 6B, sobre a equivalência de enunciados que só possuem ocorrências de conectivos. 1

2 1 Equivalência de enunciados quantificados De maneira análoga ao que acontece com enunciados formados por meio de conectivos, dependendo de como entendemos o significado de um enunciado quantificado, ele pode ser simbolizado de mais de uma maneira. Exemplo 1 O enunciado pode ser interpretado como ninguém é feliz (1) todos são infelizes se admitimos que ser infeliz é a negação de ser feliz. Neste caso, (1) pode ser simbolizado diretamente como x[f(x)] ou indiretamente como de acordo com a legenda x[ f(x)] f(x) : x é feliz Do que foi dito acima, surge, então, a questão de decidir se dois enunciados quantificados, simbolizados de maneira distinta, expressam ou não o mesmo conteúdo. Vamos ver agora que, para os enunciados que só possuem uma ocorrência de quantificador, esta questão pode ser resolvida com o uso de interpretações. Equivalências A definição de quando dois enunciados são equivalentes é a mesma, para qualquer tipo de enunciado. Sejam ϕ e ψ enunciados simbolizados. Dizemos que ϕ e ψ são equivalentes se, para cada interpretação para ϕ e ψ, os valores de ϕ e ψ são iguais. O que muda, dos conectivos para os quantificadores, é que, no caso dos enunciados quantificados, a noção de interpretação é um pouco mais elaborada. Exemplo 2 Para interpretar os enunciados devemos determinar: x[f(x)], x[ f(x)] 2

3 1. um domínio de quantificação, D, para os quantificadores que ocorrem nos enunciados; 2. uma propriedade sobre elementos de D para ser o significado de f. Na interpretação original para os enunciados, dada no Exemplo 1, o domínio D consiste de todas as pessoas e f é a propriedade ser feliz. Mas, além desta, podemos definir muitas outras interpretações para x[f(x)] e x[ f(x)]. Por exemplo, D pode consistir de todos os animais e f ser a propriedade ser bípede; D pode consistir de todos os números reais e f ser a propriedade ser irracional; etc. Assim, de maneira geral, temos: Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1, p 2,..., p n. Dizemos que ϕ e ψ são equivalentes se, para qualquer interpretação conjunta para ϕ e ψ ou seja, qualquer domínio de avaliação D, associado simultaneamente a todos os quantificadores e quaisquer significados para as propriedades p 1, p 2,..., p n em D temos que o valor de ϕ é igual ao valor de ψ. O que queremos resolver é o problema da equivalência de enunciados, isto é, o problema de dados dois enunciados, classificá-los como equivalentes ou não. Vamos ver, agora, como podemos utilizar o critério acima para mostrar que certos enunciados bem simples são equivalentes. Exemplo 3 (a) Como suspeitamos, os enunciados x[f(x)], x[ f(x)] são equivalentes. De fato, considere um domínio de avaliação D qualquer e uma propriedade qualquer, representada por f, em D. De acordo com as regras de avaliação do, do e do, temos que: x[f(x)] é V x[f(x)] é F 3

4 o enunciado f(x) é F para todos os valores que a variável x pode assumir em D para todos os valores que a variável x pode assumir em D, o enunciado f(x) é F para todos os valores que a variável x pode assumir em D, o enunciado f(x) é V x[ f(x)] é V. Assim, x[f(x)] é V x[ f(x)] é V e, daí, x[f(x)] é F se, e somente se, x[ f(x)] é F. Ou seja, x[f(x)] e x[ f(x)] têm os mesmos valores nas mesmas interpretações. (b) De maneira similar, podemos garantir que os enunciados x[f(x)], x[ f(x)] são equivalentes. De fato, considere um domínio de avaliação D qualquer e uma propriedade qualquer, representada por f, em D. De acordo com as regras de avaliação do, do e do, temos que: x[f(x)] é V x[f(x)] é F o enunciado f(x) é F para ao menos um dos valores que a variável x pode assumir em D para ao menos um dos valores que a variável x pode assumir em D, o enunciado f(x) é F 4

5 para ao menos um dos valores que a variável x pode assumir em D, o enunciado f(x) é V x[ f(x)] é V. Assim, x[f(x)] é V x[ f(x)] é V e, daí, x[f(x)] é F se, e somente se, x[ f(x)] é F. Ou seja, x[f(x)] e x[ f(x)] têm os mesmos valores nas mesmas interpretações. O critério acima pode ser convertido em um método para justificar que certos enunciados não são equivalentes. De fato, como dois enunciados simbolizados são equivalentes quando possuem os mesmos valores em qualquer interpretação, dois enunciados simbolizados não são equivalentes quando possuem valores diferentes em alguma interpretação. Assim, de maneira geral, temos: Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1, p 2,..., p n. Dizemos que ϕ e ψ não são equivalentes se existe ao menos uma interpretação conjunta para ϕ e ψ ou seja, algum domínio de avaliação D, associado simultaneamente a todos os quantificadores e significados para as propriedades p 1, p 2,..., p n em D no qual o valor de ϕ é diferente do valor de ψ. Vamos ver, agora, como podemos utilizar o critério acima para mostrar que certos enunciados bem simples não são equivalentes. Exemplo 4 (a) Os enunciados x[p(x)], x[p(x)] não são equivalentes. Intuitivamente, isto é claro pois, usualmente, quando afirmamos que algum objeto possui uma propriedade, não estamos querendo dizer que todos os objetos a possuam. Assim, aparentemente, é possível exibir uma interpretação conjunta para x[p(x)] e x[p(x)], na qual x[p(x)] é V e x[p(x)] é F. De fato, consideremos a interpretação: D : formado por todos os números naturais p : ser igual a 0 Nesta interpretação o enunciado x[p(x)] significa x (x é igual a 0) 5

6 ou seja, ao menos um é igual a 0 e, portanto, é V. Enquanto que o enunciado x[p(x)] significa ou seja, x (x é igual a 0) todos são iguais a 0 e, portanto, é F. Como exibimos uma interpretação na qual x[p(x)] e x[p(x)] têm valores diferentes, eles não são equivalentes. (b) Os enunciados y[p(y)] z[q(z)], x[p(x) q(x)] não são equivalentes. Intuitivamente, isto é claro pois, usualmente, quando afirmamos que existe um objeto que possui uma propriedade e que existe um objeto que possui uma outra propriedade, não estamos querendo dizer que o mesmo objeto possui ambas as propriedades. Assim, aparentemente, é possível exibir uma interpretação conjunta para y[p(y)] z[p(z)] e x[p(x) q(x)], na qual y[p(y)] z[p(z)] é V e x[p(x) q(x)] é F. De fato, consideremos a interpretação: D : formado por todos os números naturais p : ser par q : ser ímpar Nesta interpretação o enunciado y[p(y)] z[p(z)] significa ou seja, y (y é par) z (z é ímpar) existe ao menos um par e existe ao menos um ímpar e, portanto, é V. Observe que, ao interpretarmos p(y) e p(z) para tornarmos y[p(y)] e z[p(z)] verdadeiros, nesta interpretação, as variáveis y e z assumem valores diferentes. Enquanto que o enunciado x[p(x) q(x)] significa x (x é par x ímpar) e, portanto, é F. Observe que, ao interpretarmos p(x) q(x) para tornarmos x[p(x) q(x)] verdadeiros, nesta interpretação, o valor de x deveria ser simultaneamente par e ímpar, o que é impossível. 6

7 1.1 Observações Observação 1 Os raciocínios empregados nos Exemplos 3(a) e 3(b) são perfeitamente gerais. Isto é, se v é uma variável qualquer e ϕ(v) é um enunciado qualquer que possui ocorrências livres de v (e não possui ocorrências livres de nenhuma outra variável), então os seguintes pares de enunciados são formados por enunciados equivalentes: v[ϕ(v)], v[ ϕ(v)] v[ϕ(v)], v[ ϕ(v)] Esta é uma característica comum das justificativas de que dois enunciados são equivalentes: Usualmente, um raciocínio baseado apenas nas regras de avaliação dos conectivos e quantificadores, que justifica corretamente que dois enunciados simbolizados são equivalentes, também mostra que quaisquer dois enunciados, que possuem a mesma forma que os enunciados dados, são equivalentes. Observação 2 Por outro lado, a justificativa de que dois enunciados não são equivalentes, usualmente, não é suficiente para mostrar que quaisquer dois enunciados que possuem a mesma forma que os enunciados dados não são equivalentes. Por exemplo, nos Exemplos 4(a) e 4(b), mostramos que os enunciados x[p(x)] e x[p(x)] não são equivalentes. Mas isto não nos autoriza a concluir de imediato que, dadas uma existencialização e uma generalização, elas não são equivalentes. De fato, os enunciados x[p(x) p(x)], x[p(x) p(x)] que, em um certo sentido, possuem as mesmas formas que x[p(x)] e x[p(x)], são equivalentes. Para justificar esta afirmação, considere um domínio de avaliação D qualquer e uma propriedade qualquer, representada por p, em D. De acordo com as regras de avaliação do, do, do e do, temos que: x[p(x) p(x)] é V o enunciado p(x) p(x) é V, para ao menos um dos valores que a variável x pode assumir em D (2) F 7

8 para todos os valores que a variável x pode assumir em D o enunciado p(x) p(x) é V (3) x[p(x) p(x)] é V Na justificativa acima, usamos o fato de que o enunciado p(x) p(x) é uma contradição para qualquer valor que a variável x assuma em D. Assim, (2) e (3) são F. Logo, x[p(x) p(x)] é V x[p(x) p(x)] é V, ou seja, os enunciados são equivalentes. Observação 3 Em linhas gerais, o método que utilizamos nos Exemplos 3(a) e 3(b) para justificar que dois enunciados simbolizados são equivalentes pode ser resumido do seguinte modo: Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1, p 2,..., p n. Para justificar que ϕ e ψ são equivalentes, podemos executar os seguintes passos: 1. Considerar uma interpretação conjunta genérica para ϕ e ψ, formada por um domínio de avaliação genérico, D, e n propriedades genéricas, representadas por p 1,..., p n, em D. 2. Utilizar as regras de avaliação dos conectivos e quantificadores para justificar que ϕ é V ψ é V. 3. Se o Passo 2 terminar com sucesso, então ϕ e ψ são equivalentes. Observe o peso que é dado à palavra genérico, na descrição geral deste método. Aqui, a palavra genérico é empregada para salientar que: Os raciocínios apresentados na justificativa de que dois enunciados simbolizados são equivalentes devem ser baseados apenas nas regras de avaliação dos conectivos e quantificadores e não, por exemplo, em nossa intuição e/ou imaginação. 8

9 O uso deste tipo de raciocínio, ou seja, raciocínio baseado apenas nas definições e não na intuição e/ou imaginação é uma das características essenciais da Matemática. Nos primeiros contatos com os conteúdos matemáticos abordados no Ensino Superior, o emprego deste tipo de raciocínio parece um pouco exagerado, já que ele usualmente não é empregado no Ensino Médio. Mas, quanto mais estudamos e aprendemos Matemática, mais vemos que o emprego deste tipo de raciocínio é essencial. Assim, ele também é uma das habilidades que todo estudante de Matemática deve possuir. Observação 4 Sejam ϕ e ψ enunciados simbolizados que possuem ocorrência(s) de quantificador(es) e ocorrências de propriedades dentre p 1,..., p n. Para justificar que ϕ e ψ não são equivalentes, podemos executar os seguintes passos: 1. Considerar uma interpretação conjunta específica para ϕ e ψ, formada por um domínio de avaliação específico, D, e n propriedades específicas, representadas por p 1,..., p n, em D. 2. Utilizar as regras de avaliação dos conectivos e quantificadores para justificar que ϕ e ψ possuem valores diferentes nesta interpretação. 3. Se o Passo 2 terminar com sucesso, então ϕ e ψ não são equivalentes. Observe o peso que é dado à palavra específico, na descrição geral deste método. Aqui, a palavra específico é empregada para salientar que: Os raciocínios apresentados na justificativa de que dois enunciados simbolizados não são equivalentes deve ser baseado nas regras de avaliação dos conectivos e quantificadores mas pode, também, ser baseado em nossos conhecimentos específicos sobre um determinado domínio de objetos. Na verdade, neste caso, utilizamos nossa intuição, imaginação e/ou conhecimentos específicos, quando estamos elaborando uma interpretação determinada, baseada na qual raciocinamos empregando as definições para mostrar que os enunciados podem possuir valores diferentes. Observação 5 Justificar que enunciados quantificados são equivalentes, baseados apenas na definição de interpretação e nas regras de avaliação dos conectivos e quantificadores, é uma tarefa puramente técnica que requer, usualmente, reflexão e cuidado. Além disso, em certos casos, elaborar uma explicação detalhada da equivalência pode requerer um texto muito mais complexo do que os que estamos acostumados a redigir, até o momento. Por estas razões, nos limitaremos a tratar apenas dos exemplos mais simples e úteis de equivalências de enunciados quantificados. 9

10 Justificar que enunciados não são equivalentes baseados apenas na definição de interpretação e nas regras de avaliação dos conectivos e quantificadores também é uma tarefa técnica, mas pode requerer um pouco de imaginação, uma vez que devemos exibir ao menos uma interpretação na qual os valores de ϕ e ψ são diferentes. Esta interpretação pode ser qualquer uma, baseada na realidade ou inventada, desde que os enunciados, quando ali interpretados, tenham valores opostos. 1.2 Exercícios resolvidos Exercício 1 Mostre, usando interpretações, que os enunciados abaixo são equivalentes: (i) x[p(x)] e y[p(y)] (ii) x[p(x)] e y[p(y)] Exercício 2 Mostre, usando interpretações, que os enunciados x[p(x) q(x)] e y[p(y)] z[p(z)] não são equivalentes. Antes de ler as resoluções, tente resolver o exercício usando os conceitos estudados. Resolução do Exercício 1: (i) Sejam D um domínio qualquer e p uma propriedade qualquer em D. Temos que x[p(x)] é V sse p(x) é V para ao menos um dos valores que x pode assumir em D sse p(y) é V para ao menos um dos valores que y pode assumir em D sse y[p(y)] é V (observe que, se p(x) é V quando x : d, temos que p(y) também é V quando y : d; e vice-versa). (ii) Sejam D um domínio qualquer e p uma propriedade qualquer em D. Temos que x[p(x)] é V sse para todos os valores que x assume em D, temos que p(x) é V sse para todos os valores que y assume em D, temos que p(y) é V sse y[p(y)] é V (observe que, se p(x) fosse F quando x : d, teríamos que p(y) também seria F quando y : d; e vice-versa). D : N Resolução do Exercício 2: Considere a interpretação: p : ser par Nesta q : ser ímpar. interpretação x[p(x) q(x)] significa x (x é par x é ímpar) e, portanto, é V. Enquanto que y[p(y)] z[p(z)] significa [ x (x é par) ] [ x (x é ímpar) ] e, portanto, é F. Observe que x (x é par) é F, nesta interpretação, e x (x é ímpar) também é F, nesta interpretação. c 2014 Márcia Cerioli, Renata de Freitas e Petrucio Viana IM-UFRJ, IME-UFF 10

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Enunciados Quantificados Equivalentes Renata de Freitas e Petrucio Viana IME, UFF Junho de 2014 Sumário Equivalência de enunciados quantificados. Aplicação da noção de interpretação para decidir quando

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Método das Tabelas para Validade

Método das Tabelas para Validade Lógica para Ciência da Computação I Lógica Matemática Texto 10 Método das Tabelas para Validade Sumário 1 Simbolização de argumentos 2 1.1 Observações................................ 3 1.2 Exercício resolvido............................

Leia mais

Lógica dos Quantificadores: sintaxe

Lógica dos Quantificadores: sintaxe Lógica dos Quantificadores: sintaxe Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário 1. Princípios sintáticos 2. Alfabeto de LQ 3. Fórmulas de LQ 4. Variáveis livres, variáveis ligadas

Leia mais

Enunciados Abertos e Enunciados Fechados

Enunciados Abertos e Enunciados Fechados Lógica para Ciência da Computação I Lógica Matemática Texto 12 Enunciados Abertos e Enunciados Fechados Sumário 1 Enunciados atômicos abertos e fechados 2 1.1 Observações................................

Leia mais

IME, UFF 4 de novembro de 2013

IME, UFF 4 de novembro de 2013 Lógica IME, UFF 4 de novembro de 2013 Sumário e ferramentas Considere o seguinte texto, da aritmética dos números naturais. Teorema: Todo número inteiro positivo maior que 1 tem um fator primo. Prova:

Leia mais

Lógica dos Conectivos: demonstrações indiretas

Lógica dos Conectivos: demonstrações indiretas Lógica dos Conectivos: demonstrações indiretas Renata de Freitas e Petrucio Viana IME, UFF 18 de junho de 2015 Sumário Olhe para as premissas Olhe para a conclusão Estratégias indiretas Principais exemplos

Leia mais

Lógica dos Conectivos: validade de argumentos

Lógica dos Conectivos: validade de argumentos Lógica dos Conectivos: validade de argumentos Renata de Freitas e Petrucio Viana IME, UFF 16 de setembro de 2014 Sumário Razões e opiniões. Argumentos. Argumentos bons e ruins. Validade. Opiniões A maior

Leia mais

Simbolização de Enunciados com Conectivos

Simbolização de Enunciados com Conectivos Lógica para Ciência da Computação I Lógica Matemática Texto 4 Simbolização de Enunciados com Conectivos Sumário 1 Conectivos: simbolização e sintaxe 2 2 Enunciados componentes 5 2.1 Observações................................

Leia mais

IME, UFF 5 de novembro de 2013

IME, UFF 5 de novembro de 2013 Lógica IME, UFF 5 de novembro de 2013 . em LS. Método das.. Sumário. Simbolização não é determinística Dependendo de o entendemos o significado de uma sentença, ela pode ser simbolizada de mais de uma

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

IME, UFF 7 de novembro de 2013

IME, UFF 7 de novembro de 2013 em Lógica IME, UFF 7 de novembro de 2013 em Sumário Intermezzo sobre problemas. Intermezzo sobre algoritmos.. em : Val, Sat, Conseq, Equiv, Consist. Redução de problemas. em Um problema computacional é

Leia mais

Simbolização de Enunciados com um Quantificador

Simbolização de Enunciados com um Quantificador Lógica para Ciência da Computação I Lógica Matemática Texto 13 Simbolização de Enunciados com um Quantificador Sumário 1 Quantificadores: simbolização e sintaxe 2 2 Explicitando e quantificando variáveis

Leia mais

IME, UFF 10 de dezembro de 2013

IME, UFF 10 de dezembro de 2013 Lógica IME, UFF 10 de dezembro de 2013 Sumário.... Considere o seguinte argumento Um problema de validade (1) p q q r r s s t p t (1) é válido ou não? A resposta é sim... Uma demonstração Uma demonstração

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Renata de Freitas e Petrucio Viana. IME - UFF 27 de agosto de 2014

Renata de Freitas e Petrucio Viana. IME - UFF 27 de agosto de 2014 Simbolização em LC Renata de Freitas e Petrucio Viana IME - UFF 27 de agosto de 2014 Sumário Classificações imediatas e não imediatas Falta de uniformidade Regras de reescrita Legendas Procedimento de

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

1 Lógica de primeira ordem

1 Lógica de primeira ordem 1 Lógica de primeira ordem 1.1 Sintaxe Para definir uma linguagem de primeira ordem é necessário dispor de um alfabeto. Este alfabeto introduz os símbolos à custa dos quais são construídos os termos e

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Departamento de Análise Instituto de Matemática, UFF Outubro de 2014

Departamento de Análise Instituto de Matemática, UFF Outubro de 2014 O Paradoxo Departamento de Análise Instituto de Matemática, UFF Outubro de 2014 da mentira Nossa conversa tratará dos seguinte itens: Sumário..... Vou mostrar para vocês como eu entrei no mundo da Lógica

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA

A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2017 Texto sobre Lógica (de autoria da Professora Iole de Freitas Druck) A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA Iniciemos

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Técnicas de Prova Profa. Sheila Morais de Almeida DAINF-UTFPR-PG julho - 2015 Técnicas de Prova Definição Uma prova é um argumento válido que mostra a veracidade de um enunciado matemático.

Leia mais

Introdução aos Métodos de Prova

Introdução aos Métodos de Prova Introdução aos Métodos de Prova Renata de Freitas e Petrucio Viana IME-UFF, Niterói/RJ II Colóquio de Matemática da Região Sul UEL, Londrina/PR 24 a 28 de abril 2012 Sumário Provas servem, principalmente,

Leia mais

Argumentos, Correção e Validade

Argumentos, Correção e Validade Lógica para Ciência da Computação I Lógica Matemática Texto 9 Argumentos, Correção e Validade Sumário 1 Razões e opiniões 2 2 Argumentos 3 2.1 Observações................................ 4 2.2 Exercício

Leia mais

EXPRESSÕES RELACIONAIS

EXPRESSÕES RELACIONAIS AULA 7 EXPRESSÕES RELACIONAIS 7.1 Operadores relacionais Uma expressão relacional, ou simplesmente relação, é uma comparação entre dois valores de um mesmo tipo. Esses valores são representados na relação

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção Exercícios Quantificadores Agrupados; (Rosen 50) Traduzindo sentenças. Exercícios Quais as negações de: 1) Existe um político honesto 2) Todos os brasileiros comem

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Plotar Gráficos com Recursos Computacionais

Plotar Gráficos com Recursos Computacionais Plotar 1 Gráficos com Recursos Computacionais Plotar (esboçar) o gráfico de uma função nem sempre é uma tarefa fácil. Para facilitar nosso trabalho, podemos utilizar softwares matemáticos especialmente

Leia mais

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2

Notas de aula de Lógica para Ciência da Computação. Aula 11, 2012/2 Notas de aula de Lógica para Ciência da Computação Aula 11, 2012/2 Renata de Freitas e Petrucio Viana Departamento de Análise, IME UFF 21 de fevereiro de 2013 Sumário 1 Ineficiência das tabelas de verdade

Leia mais

Lógica predicados. Lógica predicados (continuação)

Lógica predicados. Lógica predicados (continuação) Lógica predicados (continuação) Uma formula está na forma normal conjuntiva (FNC) se é uma conjunção de cláusulas. Qualquer fórmula bem formada pode ser convertida para uma FNC, ou seja, normalizada, seguindo

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

Aula 4: Bases Numéricas

Aula 4: Bases Numéricas Aula 4: Bases Numéricas Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Bases Numéricas FAC 1 / 36 Introdução e Justificativa Diego Passos (UFF)

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG

Matemática Discreta. Lógica de Predicados. Profa. Sheila Morais de Almeida. agosto DAINF-UTFPR-PG Matemática Discreta Lógica de Predicados Profa. Sheila Morais de Almeida DAINF-UTFPR-PG agosto - 2016 Quantificadores Como expressar a sentença Para todo número inteiro x, o valor de x é positivo. usando

Leia mais

Instituto de Matemática e Estatística, UFF Março de 2011

Instituto de Matemática e Estatística, UFF Março de 2011 ,,,,, Instituto de Matemática e Estatística, UFF Março de 2011 ,, Sumário,,. finitos,. conjunto: por lista, por propriedade.. Igualdade,. Propriedades básicas.. ,, Christos Papadimitriou, Autor dos livros

Leia mais

Quantificadores, Predicados e Validade

Quantificadores, Predicados e Validade Quantificadores, Predicados e Validade Quantificadores e Predicados Fbfs proposicionais tem uma possibilidade limitada de expressão. Exemplo: Para todo x, x > 0 Ela não pode ser simbolizada adequadamente

Leia mais

Lógica de Predicados

Lógica de Predicados Lógica de Predicados Conteúdo Correção dos Exercícios (Rosen 47) Prioridade dos Quantificadores (Rosen 38) Ligando Variáveis (Rosen 38) Predicados com duas variáveis. Equivalências lógicas (Rosen 39) Negando

Leia mais

Lógica para computação - Linguagem da Lógica de Predicados

Lógica para computação - Linguagem da Lógica de Predicados DAINF - Departamento de Informática Lógica para computação - Linguagem da Lógica de Predicados Prof. Alex Kutzke ( http://alex.kutzke.com.br/courses ) 13 de Outubro de 2015 Razões para uma nova linguagem

Leia mais

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos

Resumo das aulas dos dias 4 e 11 de abril e exercícios sugeridos MAT 1351 Cálculo para funções uma variável real I Curso noturno de Licenciatura em Matemática 1 semestre de 2016 Docente: Prof. Dr. Pierluigi Benevieri Resumo das aulas dos dias 4 e 11 de abril e exercícios

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

Lógica de Predicados. Correção dos Exercícios Regras de Inferência

Lógica de Predicados. Correção dos Exercícios Regras de Inferência Lógica de Predicados Correção dos Exercícios Regras de Inferência O que foi visto até agora... Predicado Proposição Quantificadores Conjuntos Quantificadores com restrição Operações Lógicas com predicados

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos 1 - Algoritmo de Euclides; Indução Matemática; Teorema Fundamental da Aritmética 1. Considere os inteiros a 406 e b 654. (a) Encontre d mdc(a,b), o

Leia mais

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno,

CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4. Prezado Aluno, CEDERJ MÉTODOS DETERMINÍSTICOS 1 - EP4 Prezado Aluno, Neste EP daremos sequência ao nosso estudo da linguagem da lógica matemática. Aqui veremos o conectivo que causa mais dificuldades para os alunos e

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Teoremas e Propriedades Operatórias

Teoremas e Propriedades Operatórias Capítulo 10 Teoremas e Propriedades Operatórias Como vimos no capítulo anterior, mesmo que nossa habilidade no cálculo de ites seja bastante boa, utilizar diretamente a definição para calcular derivadas

Leia mais

4.1 Cálculo do mdc: algoritmo de Euclides parte 1

4.1 Cálculo do mdc: algoritmo de Euclides parte 1 page 92 92 ENCONTRO 4 4.1 Cálculo do mdc: algoritmo de Euclides parte 1 OAlgoritmodeEuclidesparaocálculodomdcbaseia-senaseguintepropriedade dos números naturais. Observamos que essa propriedade está muito

Leia mais

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;

CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,

Leia mais

Uma experiência sobre o ensino de sistemas lineares

Uma experiência sobre o ensino de sistemas lineares Uma experiência sobre o ensino de sistemas lineares Adaptado do artigo de Maria Cristina Costa Ferreira Maria Laura Magalhães Gomes O estudo dos sistemas lineares está sempre presente nos programas de

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Exercícios Use lógica proposicional para provar os seguintes argumentos: a) A B C B A C b) A B C B C A c) A B B A C C Exercícios Use lógica

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Introdução à Lógica de Predicados

Introdução à Lógica de Predicados Introdução à Lógica de Predicados Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 10 de dezembro de 2012 Motivação (I) Considere

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA TERCEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula introduziremos o conceito de derivada e a definição de uma reta tangente ao gráfico de uma função. Também apresentaremos

Leia mais

Aula 4: Consequência Lógica e Equivalência Lógica

Aula 4: Consequência Lógica e Equivalência Lógica Lógica para Computação Segundo Semestre, 2014 Aula 4: Consequência Lógica e Equivalência Lógica DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 4.1. Em lógica proposicional dizemos que uma fórmula B

Leia mais

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES

FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número

Leia mais

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional. Capítulo 9 1. Coordenadas no Espaço Seja E o espaço da Geometria Euclidiana tri-dimensional. Um sistema de eixos ortogonais OXY Z em E consiste de três eixos ortogonais entre si OX, OY e OZ com a mesma

Leia mais

ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES

ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES ÁLGEBRA DE BOOLE POSTULADOS, TEOREMAS E PROPRIEDADES A aplicação principal da álgebra de Boole é o estudo e a simplificação algébrica de circuitos lógicos. As variáveis booleanas podem assumir apenas dois

Leia mais

INTRODUÇÃO À LÓGICA MATEMÁTICA

INTRODUÇÃO À LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE

O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE O REI MALIGNO E A PRINCESA GENEROSA: SOBRE BASES NUMÉRICAS E CRITÉRIOS DE DIVISIBILIDADE ANA PAULA CHAVES AND THIAGO PORTO 1. Introdução Os temas centrais deste texto - bases numéricas e critérios de divisibilidade

Leia mais

Cálculo de Predicados

Cálculo de Predicados Matemática Discreta - Departamento de Matemática - EST-IPV - 2003/2004 - II Cálculo de Predicados 1. Predicados e quantificadores Consideremos as afirmações seguintes: x é par (1) x é tão alto como y (2)

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

SOLUÇÕES OBMEP 2ª. FASE 2016 NÍVEL 2

SOLUÇÕES OBMEP 2ª. FASE 2016 NÍVEL 2 SOLUÇÕES OBMEP 2ª. FASE 2016 NÍVEL 2 N2Q1 Solução A figura em questão é formada pela junção de duas peças. Ela é formada por oito quadradinhos de 1 cm de lado, e seu contorno contém exatamente 16 lados

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

Algoritmos e Programação I

Algoritmos e Programação I Algoritmos e Programação I Operadores Relacionais, Lógicos e Aritméticos Prof. Fernando Maia da Mota mota.fernandomaia@gmail.com CPCX/UFMS Fernando Maia da Mota 1 Expressões Uma expressão relacional, ou

Leia mais

Minicurso de Métodos de Prova

Minicurso de Métodos de Prova Minicurso de Renata de Freitas e Petrucio Viana IME-UFF II Colóquio de Matemática da Região Sul 24 a 28 de abril de 2012 Universidade Estadual de Londrina Londrina, PR R. de Freitas 1 P. Viana Sumário

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Recursão. Prof. Cristiano André da Costa. [Versão de Março de 2000] Definição

Recursão. Prof. Cristiano André da Costa. [Versão de Março de 2000] Definição Recursão [Versão de Março de 2000] Definição Um objeto é dito recursivo se ele consistir parcialmente ou for definido em termos de si próprio Recursões ocorrem na matemática, informática, no dia a dia...

Leia mais

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir:

[ ] EXEMPLOS: Muitas vezes precisamos montar uma Matriz a partir de uma lei geral. Analise os exemplos a seguir: MATRIZES CONCEITO: Um conjunto de elementos algébricos dispostos em uma tabela retangular com linhas e colunas é uma Matriz. A seguir, vemos um exemplo de Matriz de 3 linhas e 4 colunas, e que representaremos

Leia mais

Instituto de Matemática e Estatística, UFF Março de 2011

Instituto de Matemática e Estatística, UFF Março de 2011 Instituto de Matemática e Estatística, UFF Março de 2011 Sumário.... Venn Matemático inglês. Levou os diagramas a sério. John Venn (1834 1923) Dados: Letras maiúsculas: A, B, C,..., A 1, B 1, C 1,...,

Leia mais

Aula 5 Equações paramétricas de retas e planos

Aula 5 Equações paramétricas de retas e planos Aula 5 Equações paramétricas de retas e planos MÓDULO 1 - AULA 5 Objetivo Estabelecer as equações paramétricas de retas e planos no espaço usando dados diversos. Na Aula 3, do Módulo 1, vimos como determinar

Leia mais

Lógica Computacional

Lógica Computacional Lógica Computacional Consequência Tautológica e Lógica em Frases Quantificadas Leis de de Morgan Separação de Quantificadores Consequências Analíticas e Método Axiomático 3 Novembro 2016 Lógica Computacional

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Aula 1: Métodos de pesquisa

Aula 1: Métodos de pesquisa Aula 1: Métodos de pesquisa Quanti/Qualitativos Professores: Jose Renato de Campos Araujo Rogério Mugnaini 1 Métodos de pesquisa Artigo de Turato (2005), com os seguintes objetivos: Oferecer maior clareza

Leia mais

Distribuição Normal. Prof. Herondino

Distribuição Normal. Prof. Herondino Distribuição Normal Prof. Herondino Distribuição Normal A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas

Leia mais

Aula 6: Dedução Natural

Aula 6: Dedução Natural Lógica para Computação Segundo Semestre, 2014 DAINF-UTFPR Aula 6: Dedução Natural Prof. Ricardo Dutra da Silva Em busca de uma forma de dedução mais próxima do que uma pessoa costuma fazer, foi criado

Leia mais

PROBLEMAS DE LÓGICA. Prof. Élio Mega

PROBLEMAS DE LÓGICA. Prof. Élio Mega PROBLEMAS DE LÓGICA Prof. Élio Mega ALGUNS CONCEITOS DA LÓGICA MATEMÁTICA Sentença é qualquer afirmação que pode ser classificada de verdadeira (V) ou falsa (F) (e exatamente uma dessas coisas, sem ambiguidade).

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Unidade: Proposições Logicamente Equivalentes. Unidade I:

Unidade: Proposições Logicamente Equivalentes. Unidade I: Unidade: Proposições Logicamente Equivalentes Unidade I: 0 Unidade: Proposições Logicamente Equivalentes Nesta unidade, veremos a partir de nossos estudos em tabelas-verdade as proposições logicamente

Leia mais

PROBABILIDADE. Prof. Patricia Caldana

PROBABILIDADE. Prof. Patricia Caldana PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,

Leia mais

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental

Material Teórico - Módulo Equações do Segundo Grau. Equações de Segundo Grau: outros resultados importantes. Nono Ano do Ensino Funcamental Material Teórico - Módulo Equações do Segundo Grau Equações de Segundo Grau: outros resultados importantes Nono Ano do Ensino Funcamental Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio

Leia mais

GERAIS. Para além dos objectivos do domínio dos valores e atitudes, Desenvolver a capacidade de comunicar; Usar Noções de lógica.

GERAIS. Para além dos objectivos do domínio dos valores e atitudes, Desenvolver a capacidade de comunicar; Usar Noções de lógica. TEMA I GEOMETRIA NO PLANO E NO ESPAÇO Unidade 1: Lógica e Raciocínio Matemático (Programa pags 36 e 37) LÓGICA GERAIS. Noções de Termo e de Proposição;. Conectivos Lógicos:Negação, Disjunção e Conjunção;.

Leia mais