XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º. anos) GABARITO

Tamanho: px
Começar a partir da página:

Download "XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º. anos) GABARITO"

Transcrição

1 XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (8º e 9º. anos) GRITO GRITO NÍVEL ) ) D ) E ) D ) D ) 7) ) 7) ) ) D 8) D ) 8) ) 4) 9) D 4) 9) D 4) 5) 0) 5) E 0) 5) ada questão da Primeira Fase vale ponto. (Total de pontos no Nível = 5 pontos). guarde a publicação da Nota de orte de promoção à Segunda Fase no site:. () Existem caminhos entre e com os seguintes custos de pedágio: 7 + = = = = = = O valor mínimo é.. () O valor da área plantada com árvores é = 0 dividindo esse valor por 0 00 obtemos o dobro da largura procurada e portanto a resposta correta é 8m.. (D) Se observarmos as três figuras, podemos montar o dado a partir do recorte da figura ao lado (Perceba que não consideramos as rotações dos números na figura ao lado). om isso, é fácil observar que, na primeira figura o número 5 está tocando a mesa; na segunda figura, o número está tocando a mesa; na terceira figura, o número 4 está tocando a mesa. Logo, a soma dos números de todas as faces em contato com a mesa é igual a = () Seja x = expressão do problema é equivalente à: Ou seja, 000. ( ) ( ) x+ 4 + x 4 x= x x+ = x 8x+ ( ) ( x ) = 4 XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível

2 5. () Sejam os lados do triângulo. omo + + = 7, temos. lém disso, >. aso =, temos >, = +. Então = = aso =, temos, 5 = +. Então = e =. Daí, as triplas de inteiros que são os lados desses triângulos são,,,,,,. ( ) = ( ) e ( ). (D) Primeiro, observe que, como o hexágono tem lados opostos paralelos, os seis triângulos menores da figura do problema também são equiláteros, devido ao paralelismo, que mantém os ângulos entre retas iguais a 0 (já que, inicialmente, as retas formavam ângulos de 0, devido aos dois triângulos equiláteros). Logo, podemos escrever as medidas dos lados como na figura: soma dos perímetros dos dois triângulos equiláteros é igual a ( a + b + c + d + e + f ), e como cada triângulo equilátero tem perímetro 7 cm, temos ( a + b + c + d + e + f ) = 7, isto é, a + b + c + d + e + f = 4. omo esse também é o perímetro do hexágono, temos que o perímetro procurado é 4cm. 7. () Inicialmente, para cada opção calculemos o produto das vogais e consoantes de sua frase correspondente. ) = ) 5 = 0 ) 7 = 4 D) 8 5 = 40 E) 7 7 = 49 única opção que corresponde ao número mencionado na opção é a alternativa. 8. (D) Podemos contar todas as maneiras de receber o troco de 7 centavos fazendo uma listagem de todos os recebimentos possíveis, ordenando as moedas em ordem decrescente: ou seja, dado que 7 = 5x + 0y + 5z + w, basta contar quantas soluções inteiras não-negativas essa equação possui. Note que x representa o número de moedas de 5 centavos, y o número de moedas de 0 centavos, z o de 5 centavos e w o de centavo. s soluções são: XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível

3 (,,0,);(,0,,);(,0,,7);(,0,0,);(0,,,);(0,,0,7);(0,,,);(0,,,7); (0,,,);(0,,0,7);(0,,5,);(0,,4,7);(0,,,);(0,,,7);(0,,,);(0,,0,7) (0,0,7,);(0,0,,7);(0,0,5,);(0,0,4,7);(0,0,,);(0,0,,7);(0,0,,);(0,0,0,7) Logo, há um total de 4 maneiras. 9. (D) Note que, para um número ter exatamente 4 divisores positivos, sua fatoração em primos deve ser da forma pq ou p³, onde p e q são primos distintos (veja porque na observação abaixo). Daí, os números de a 0 que possuem exatamente 4 divisores são os seguintes: =., 0 =.5, 4 =.7, =., =., 5 =.5, =.7, 8 = ³, 7 = ³. Portanto, temos 9 números. θ θ θk Observação: Dado um número em sua fatoração em primos n = p p... p k, o número de divisores positivos de n é igual a ( + θ )( + θ )...( + θk ). Para ver porque, observe que todo divisor de n é β β βk da forma p p... p k, com β i θ i, para todo i de até k. om isso, temos ( + θ) escolhas para β, ( + θ ) escolhas para β,..., ( + θ k ) escolhas para β k. Logo, temos ao todo ( + θ )( + θ )...( + θk ) escolhas para os β ' s, e como cada escolha define um divisor, a demonstração está completa. 0. () Sejam α=, β= DE e θ=. Temos = 50 +α. Pelo teorema do ângulo externo no triângulo D: α+ 50 +θ= 90 + β (*) lém disso, α+ θ+ 50 = 80 pelo soma dos ângulos internos do. Substituindo o valor de α+θ= = 5 em (*), temos β = 5. D α E β α + β α + 50 θ θ. (E) Seja x o número que iremos subtrair do numerador e do denominador. Temos: x 4 = 9 x 9 4x x = 7. 4 x. () Podemos agrupar os números de 4 em 4 cujo produto de seus membros termina em 4: termina em 4 termina em 4 termina em 4 XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível

4 como temos uma quantidade par de grupos, o algarismo das unidades e do produto é.. () X p M p Pelo teorema de Pitágoras nos triângulos O N Y l l XON e MOY temos p + 4l = l + 4p = 9 4 Daí, XY = 4( p + l ) = ( + 9 ) = 5 4. () Vamos contar o número de pedaços e folhas: temos (n ) pedaços que foram rasgados só uma vez, (n ) pedaços que foram rasgados duas vezes e n pedaços que foram rasgados três vezes. Logo, o total de pedaços é igual a n. omo 8 =.0 (aqui atribuímos n = 0), 8 pode ser o total de pedaços obtidos por Esmeralda. Pode-se notar ainda que não podemos ter n = 5 ou 8 ou 4 ou. 5. (E) No conjunto {5, 0, 0} podemos escolher no máximo dois números. No conjunto {,,, 4} podemos escolher no máximo números. Em cada um dos conjuntos {, }, {7, 4}, {8, } e {9, 8} podemos escolher no máximo 5 números. Logo, o total de números que podemos escolher é no máximo = 4. Um exemplo de tal conjunto é {,, 4, 5,,,, 4, 5,, 7, 8, 9, 0}.. (D) figura que Topázio desenhou é a união de duas figuras que podem ser desenhadas sem tirar o lápis do papel e que se intersectam em no máximo dois vértices. Vamos denotar o início da caminho com o símbolo e o seu final com. s setas indicam a ordem do caminho. + = 4 XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível

5 + = = + = = + = Um desenho que pode ser feito sem tirar o lápis do papel possui no máximo dois vértices de grau ímpar. união de dois desenhos desse tipo, possui no máximo 4 vértices de grau ímpar. figura D possui 8 vértices de grau ímpar e consequentemente não foi desenhada por Topázio. 7. () α β 40 + β 40 + α E D XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível 5

6 Sejam α= E e β= D. omo D=, D = 40 +α. nalogamente, E = 40 +β. soma dos ângulos internos do ED produz 0 +α+β= 80 α+β= 0. Portanto, =α+β+ 40 = () Sejam, E e os números das respostas corretas, erradas e em branco, respectivamente. Pelo enunciado, 4 E = 5 e + E+ = 4 Somando as duas equações obtemos 5+ = 7. Daí, 5. Para = 5, temos = e E = 8. k + k k k+ k N k 9. (D) Se 0 N < 0 então 0 N < 0 enquanto que 0 < 0. Daí, a 00 operação de dividir por 00 reduz mais a quantidade de dígitos do que a operação de extrair a raiz quadrada quando o número possui mais que cinco dígitos. pós as 4 primeiras operações, o número que aparece na tela é no máximo 0, 00 = x. Se nas próximas operações o número não for dividido por 00, precisaremos de no máximo quatro operações para obter um número menor que. Se na próxima operação dividirmos por 00, obteremos 0,00 e nesse caso precisaremos de no máximo três operações para obtermos um número menor que. 0. () omeçaremos escolhendo a cor do centro, posteriormente as cores das pontas da cruz central e por último as cores dos quadrados nos cantos. Vamos dividir a coloração da cruz em quatro casos correspondendo as possíveis colorações dos vértices da cruz: ª. parecem duas cores alternadas no vértice. ª. parecem duas cores não alternadas e em mesma quantidade. ª. parecem duas cores em quantidades diferentes. 4ª. parece uma única cor. Uma vez que escolhemos as cores da cruz, termo uma ou duas possibilidades para cada vértice : se os quadrados adjacentes possuem cores diferentes e caso contrário. Para o centro temos três possibilidades e, para cada escolha, há duas escolhas para e. Total de colorações em cada caso: º. caso: 0 = º. caso: = 48 º. caso: 4 = 9 4º. caso: 4 = 9 XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível

7 Total: 4.. (D) Se hoje está chovendo, X deve obrigatoriamente ser um OVNI nerd. lém disso, W não pode ser um ET-nerd, pois caso contrário estaria falando a verdade em um dia de chuva. Temos então a seguinte distribuição: (X, Y, Z, W) = (OVNI, UFO ou ET, UFO ou ET, OVNI ou UFO). Se hoje não está chovendo, X mentiu e não pode ser um ET-nerd. s próximas três falas são verdadeiras, logo temos a seguinte distribuição. (X, Y, Z, W) = (UFO, ET ou OVNI, ET ou OVNI, ET ou OVNI). Portanto, é possível que haja um UFO nerd e três ET-nerds () = concluímos que o primeiro dígito não nulo após a vírgula de é 4. = e qualquer número de conjunto { }. () omo ,, 5, 5,, 5,, é menor que, concluímos que 00 não serve para Esmeralda. ontudo, 009 = 4 49 satisfaz as condições impostas por Esmeralda. 4. () Q D omo o quadrilátero QD é cíclico, temos que Q = D = 0. lém disso, como D é um paralelogramo, temos Q = D = 0. Daí, Q é equilátero e Q = = () Na soma dos números escritos em lados alternados do hexágono, aparecem produtos de 45,,,,,. Essa soma é mínima se os maiores números são multiplicados números no conjunto { } pelos menores números. Se os números { 54,, } não são adjacentes no hexágono, temos possíveis distribuições. XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível 7

8 Dessas configurações, a menor soma é 58. Se pelo menos dois números do conjunto {4, 5, } são adjacentes, é fácil ver que a soma é maior que XXXIII Olimpíada rasileira de Matemática Primeira Fase Gabarito Nível

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º. e 7º. anos) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º. e 7º. anos) GABARITO XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (6º. e 7º. anos) GABARITO GABARITO NÍVEL ) A 6) A ) D 6) E ) B 7) E ) D 7) C ) E 8) C ) D 8) D 4) B 9) E 4) A 9) B 5) B 0) D 5) A 0) C Cada

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) B 11) B 16) D 21) A 2) C 7) C 12) C 17) D 22) A 3) D 8) E 13) D 18) C

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. e 9º. anos) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. e 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) D 11) B 16) C 1) A ) E 7) E 1) B 17) D ) D 3) B 8) B 13) D 18) C 3) D 4) B 9) E 14) D 19) C

Leia mais

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6 o. ou 7 o. anos) GABARITO

XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6 o. ou 7 o. anos) GABARITO XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL 1 (6 o. ou 7 o. anos) GRITO GRITO NÍVEL 1 1) 6) 11) 16) 2) 7) 12) E 17) 3) 8) 13) E 18) 4) 9) 14) E 19) 5) 10) 15) 20) ada questão da Primeira Fase vale

Leia mais

XXXIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXIII Olimpíada Brasileira de Matemática GBRITO Segunda Fase Soluções Nível 2 Segunda Fase Parte PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa parte

Leia mais

Olimpíada Mineira de Matemática 2008

Olimpíada Mineira de Matemática 2008 Questão 1) Alternativa C) Olimpíada Mineira de Matemática 008 Resolução Nível III Refletindo a imagem Após 1 hora e 0 minutos Refletindo novamente Observação: A posição original do relógio não é uma configuração

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO GABARITO NÍVEL 1) D 6) B 11) A 16) A 1) B ) C 7) E 1) D 17) A ) B 3) C 8) C 13) C 18) B

Leia mais

38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)

38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano) 38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) C 11) A 16) D 21) D 2) B 7) A 12) B 17) A 22) E 3) B 8) C 13) D 18) C

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)

Leia mais

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) C 6) C 11) A 16) D 1) D ) B 7) A 1) B 17) A ) E 3) B 8) C 13) D 18) C 3) C 4)

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada rasileira de Matemática GRITO Segunda Fase Soluções Nível 3 Segunda Fase Parte RITÉRIO E ORREÇÃO: PRTE Na parte serão atribuídos pontos para cada resposta correta e a pontuação máxima para

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 09 GABARITO COMENTADO 1) Nas condições do problema, a dimensão máxima, em centímetros, de cada um dos ladrilhos

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7ª. e 8ª. séries) GABARITO

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7ª. e 8ª. séries) GABARITO XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (ª e ª séries) GABARITO GABARITO NÍVEL ) E ) E ) B ) D ) E ) E ) C ) D ) B ) D ) E ) C ) C ) A ) B ) D ) A ) C ) B ) Anulada ) B 0) E ) A 0)

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 1) E 6) E 11) C 16) E ) D 7) D 1) A 17) A 3) D 8) A 13) E 18) B 4) C 9) C 14)

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 1) E 6) E 11) E 16) B 21) D 2) A 7) B 12) D 17) D 22) A 3) C 8) D 13) A 18) E 23) C 4) B 9) D 14) A

Leia mais

A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:

A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados: Quadriláteros Nesta aula vamos estudar os quadriláteros e os seus elementos: lados, ângulos internos, ângulos externos, diagonais, etc. Além disso, vamos definir e observar algumas propriedades importantes

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6º e 7º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1 1) E 6) E 11) C 16) E ) D 7) D 1) A 17) A 3) D 8) A 13) E 18) B 4) C 9) C 14)

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

Matemática B Semi-Extensivo V. 3

Matemática B Semi-Extensivo V. 3 GRITO Matemática Semi-Etensivo V. (, e (, M, Então: M = M = M = M = Eercícios D Substituindo em I, temos: = =. = = Então, = ( = 8 M(, (, (, M = M = 8 M = M = D Sabendo que o eio é o da abcissa e que o

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola de Aprendizes- Marinheiros PSAEAM Questão 1 Concurso 010 Sabendo que 1 grosa é equivalente a 1 dúzias, é correto afirmar que

Leia mais

Gabarito do Banco de Questo N ıvel 2-1a Fase

Gabarito do Banco de Questo N ıvel 2-1a Fase tica 3a Olimp ıada Vic osense de Matema es Gabarito do Banco de Questo N ıvel - a Fase OLIMPÍADA LIM IMPÍADA VIÇ VIÇOSENSE SE DE MAT MA MATEMÁTICA TE. Solu c ao: Sejam c e p o n umero de copos e pratos

Leia mais

Gabarito comentado da Prova Proposta para alunos da 2ª série do Ensino Médio.

Gabarito comentado da Prova Proposta para alunos da 2ª série do Ensino Médio. OLIMPÍADA DE MATEMÁTICA DO COLÉGIO SANTO INÁCIO RJ. Gabarito comentado da Prova Proposta para alunos da 2ª série do Ensino Médio. ª Questão: De AD AB temos que 2 BD AB, mas BE BD e, portanto BE 2 AB. De

Leia mais

João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições?

João esqueceu-se do seu código, mas lembra-se que é divisível por 9. Quantos códigos existem nessas condições? 2/09/16 Duração: 4 horas e 0 minutos 1 Para desbloquear o seu celular, João desliza o dedo horizontalmente ou verticalmente por um quadro numérico, semelhante ao representado na figura, descrevendo um

Leia mais

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof.

Polos Olímpicos de Treinamento. Aula 18. Curso de Geometria - Nível 3. Transformações geométricas II - Simetria e rotação. Prof. olos límpicos de Treinamento urso de Geometria - Nível 3 rof. ícero Thiago ula 18 Transformações geométricas II - Simetria e rotação. 1. Simetria com relação a um ponto. Dizemos que o ponto é o simétrico

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.

Leia mais

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) C 6) B 11) B 16) D 1) A ) C 7) C 1) C 17) D ) A 3) D 8) E 13) D 18) C 3) E 4)

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

37ª Olimpíada Brasileira de Matemática Nível 1 Segunda Fase

37ª Olimpíada Brasileira de Matemática Nível 1 Segunda Fase 37ª Olimpíada Brasileira de Matemática Nível 1 Segunda Fase PARTE A (ada problema vale 5 pontos) RITÉRIO DE ORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Instruções para a realização da Prova Leia com muita atenção

Instruções para a realização da Prova Leia com muita atenção Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

1. O gráfico abaixo mostra o faturamento mensal das empresas A e B no segundo semestre de A) 38 B) 39 C) 40 D) 41 E) 42

1. O gráfico abaixo mostra o faturamento mensal das empresas A e B no segundo semestre de A) 38 B) 39 C) 40 D) 41 E) 42 XXIV OLIMPÍD RSILEIR DE MTEMÁTIC Primeira Fase Nível a. Fase Olimpíada Regional ES MG P P RJ RS SC - duração da prova é de horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros.

Leia mais

Encontro 6: Áreas e perímetros - resolução de exercícios

Encontro 6: Áreas e perímetros - resolução de exercícios Encontro 6: Áreas e perímetros - resolução de exercícios Recapitulando... Área de um triângulo retângulo Área de um paralelogramo Á. 2 Á. Todos os paralelogramos de mesma base e mesma altura possuem áreas

Leia mais

OPEMAT. Olimpíada Pernambucana de Matemática

OPEMAT. Olimpíada Pernambucana de Matemática OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

II OMIF 2019 RESOLUÇÃO DA PROVA

II OMIF 2019 RESOLUÇÃO DA PROVA II OMIF 019 RESOLUÇÃO DA PROVA QUESTÃO 01 GABARITO: B Como 3µ tem que tem valor terminado em µ, então µ =0 ou µ =5. Contudo, µ não pode ser zero, pois, se fosse, todos os algarismos teriam que ser zero.

Leia mais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais

Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão

Leia mais

( )( ) = =

( )( ) = = GABARITO IME MATEMÁTICA Questão Assinale a alternativa verdadeira: (A) 06 0 < 07 06

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

Problemas dos Círculos Matemáticos. Problemas extras para o Capítulo 4

Problemas dos Círculos Matemáticos. Problemas extras para o Capítulo 4 Problemas dos Círculos Matemáticos Problemas extras para o Capítulo 4 Problemas dos Círculos Matemáticos - Capítulo 4 1 Exercícios Introdutórios Exercício 1. Quantos triângulos existem na figura abaixo?

Leia mais

, com a, b e c inteiros, 0 a 8, 0 b 5 e 0 c 3. Apenas 45 = 2 3

, com a, b e c inteiros, 0 a 8, 0 b 5 e 0 c 3. Apenas 45 = 2 3 XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) GABARITO GABARITO NÍVEL 1) B 6) B 11) D 16) A 1) E ) D 7) C 1) E 17) D ) C ) E 8) C 1) B 18) D ) E 4) E 9) D 14) C 19) E 4)

Leia mais

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.

Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um

Leia mais

GABARITO DO CADERNO DE QUESTÕES

GABARITO DO CADERNO DE QUESTÕES OLÍMPIADAS DE MATEMÁTICA DO OESTE CATARINENSE GABARITO DO CADERNO DE QUESTÕES NÍVEL 3 Ensino Médio Universidade Federal da Fronteira Sul Campus Chapecó 017 OLIMPÍADA REGIONAL DE MATEMÁTICA GABARITO: 1.

Leia mais

Matemática A Extensivo V. 3

Matemática A Extensivo V. 3 Etensivo V. Eercícios 0) a) S = {, } b) S = c) S = ; 4 d) S = {,,, } e) S = ; a) + = Pela propriedade IX temos: + = ou + = = = = = Para = Para = + = + = = = = (ok) = (ok) S = {, } b) = + Pela propriedade

Leia mais

MATEMÁTICA Professores: Andrey, Cristiano e Julio

MATEMÁTICA Professores: Andrey, Cristiano e Julio MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5

Leia mais

Teste de MATEMÁTICA - 7º D 09 fev 2015

Teste de MATEMÁTICA - 7º D 09 fev 2015 Teste de MTEMÁTI - 7º D 09 fev 2015 Proposta de resolução lice orreia (alicejcorreia@gmail.com) 1. Resposta: Opção D 5 = 1 5 = 5 1 = 15 2. Para descobrir o valor de a, calculamos a raiz quadrada de 100000:

Leia mais

rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade.

rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade. 01 Marcar a frase certa: (A) Todo número terminado em 0 é divisível por e por 5. (B) Todo número cuja soma de seus algarismos é 4 ou múltiplo de 4, é divisível por 4 (C) O produto de dois números é igual

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

Universidade do Algarve

Universidade do Algarve Universidade do Algarve Olimpíadas oncelhias da Matemática Ensino da Matemática na óptica da resolução de problemas: Uma parceria entre a Universidade e as Escolas 1. Na figura, [ABD] é um quadrado e [DP]

Leia mais

18 18 = Da igualdade acima, temos: k = k+ 4 Não apresenta solução. ou. Assim: k! = 7! = Resposta: D

18 18 = Da igualdade acima, temos: k = k+ 4 Não apresenta solução. ou. Assim: k! = 7! = Resposta: D 01 18 18 = k k+ 4 Da igualdade acima, temos: k = k+ 4 Não apresenta solução. ou k + k + 4 = 18 k = 7 Assim: k! = 7! = 5040 Resposta: D 1 0 14 14 = k k 4 Da igualdade acima, temos: k = k 4 não apresenta

Leia mais

Questões Objetivas A) B) C)

Questões Objetivas A) B) C) Questões Objetivas 1) Wagner tem 15 moedas, algumas de 25 centavos e outras de 10 centavos, no valor total de 2 reais e 70 centavos. Se x é o número de moedas de 25 centavos que ele tem, qual das equações

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 2. Terceiro Ano - Médio Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 2 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta segunda parte, veremos

Leia mais

Matemática D Superintensivo

Matemática D Superintensivo GRITO Matemática Superintensivo ercícios 01) 03) R Q 60 0 0) Sendo = P Q + Q + R e = 90 + 90 + 60 = 0 R ntão P Q = 0 = 80 e 3 a = 80 = 0 o desenho temos que: a = 90 3 = 30 Portanto, 30 = π π 180 6 0) *

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Áreas de Poĺıgonos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Áreas de Poĺıgonos. Terceiro Ano - Médio Material Teórico - Módulo de Geometria naĺıtica Áreas de Poĺıgonos Terceiro no - Médio utor: Prof ngelo Papa Neto Revisor: Prof ntonio Caminha M Neto 1 Área de um triângulo Na aula Equação da Reta Módulo

Leia mais

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Paralelismo. MA13 - Unidade 3. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Paralelismo M13 - Unidade 3 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Nomes tradicionais reta t corta as retas r e s. Dizemos que a reta t é uma

Leia mais

38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 2 (8 o ou 9 o ano)

38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 2 (8 o ou 9 o ano) 38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 2 (8 o ou 9 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 1 (5 a. ou 6 a. séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 1 (5 a. ou 6 a. séries) XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 1 (5 a. ou 6 a. séries) PARTE A (Cada problema vale 3 pontos) 01. Quantas vezes aparece o algarismo 9 no resultado da operação 10 100 003? 0. Quantos

Leia mais

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Material Teórico - Módulo Áreas de Figuras lanas Áreas de Figuras lanas: Exercícios da OME Nono no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha M. Neto de dezembro de 018 1 roblemas da OME

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

Questões escritas. volume 1

Questões escritas. volume 1 Questões escritas volume 0. Se b é ímpar, então ele é da forma b k +, k d N, ou seja, a + (k + ) + k + k + + k + k ( + k + k ), de forma que a é par, pois + k + k d N. 0. Fazendo a Divisão Euclidiana de

Leia mais

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA DE MATEMÁTICA 2015 GABARITO 5º E 6º ANOS Questão Resposta 1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) 450 13) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA

Leia mais

,12 2, = , ,12 = = (2012) 2.

,12 2, = , ,12 = = (2012) 2. 1 QUESTÃO 1 Usando a comutatividade da multiplicação, podemos escrever 1000 0,1,01 100 = 1000,01 00 0,1 = 01 01 = (01). QUESTÃO Observe que para obter o primeiro retângulo foi necessário escrever quatro

Leia mais

1. O retângulo da figura a seguir está dividido em 7 quadrados. Se a área do menor quadrado é igual a 1, a área do retângulo é igual a:

1. O retângulo da figura a seguir está dividido em 7 quadrados. Se a área do menor quadrado é igual a 1, a área do retângulo é igual a: XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível - A duração da prova é de horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para rascunho.

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa

Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um

Leia mais

Solução do Simulado PROFMAT/UESC 2012

Solução do Simulado PROFMAT/UESC 2012 Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo

Leia mais

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Quadriláteros Inscritíveis II. Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis. Programa Olímpico de Treinamento urso de Geometria - Nível 3 Prof. Rodrigo ula 2 Quadriláteros Inscritíveis II Nesta aula, trataremos de três teoremas muito utilizados em problemas de quadriláteros inscritíveis.

Leia mais

Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Centro Federal de Educação Tecnológica CEFET Barbosa, L.S. leonardosantos.inf@gmail.com 28 de outubro de 201 2 Sumário I Provas 5 1 Vestibular 2011/2012 7 1.1

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Andressa Franco Vargas 1.2 Público alvo: Alunos do 8º e 9º ano 1.3 Duração: 120 minutos 1.4 Conteúdo desenvolvido: Teorema de Pitágoras:

Leia mais

Aula 12 Introdução ao conceito de área

Aula 12 Introdução ao conceito de área MÓULO 1 - UL 1 ula 1 Introdução ao conceito de área Objetivos Introduzir o conceito de área de uma figura plana presentar as fórmulas para o cálculo da área de algumas figuras planas Introdução entre as

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXI Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

Área: conceito e áreas do quadrado e do retângulo

Área: conceito e áreas do quadrado e do retângulo Área: conceito e áreas do quadrado e do retângulo Dada uma figura no plano, vamos definir a área desta figuracomo o resultado da comparação da figura dada como uma certa unidade de medida. No caso do conceito

Leia mais

DESAFIO FINAL GABARITO ALL

DESAFIO FINAL GABARITO ALL DESAFIO FINAL GABARITO ALL 01. a) Queremos que apareça na tela o número 7 10 2 10 7 = 7 10 9. Uma maneira de fazer tal conversão, começando com 7 10 2, é apertar quatro vezes a tecla com a operação de

Leia mais

deve ter a forma 2 3 5, com a, b e c inteiros, 0 a 8, é dessa forma. Cada um dos outros números possui um fator primo diferente de 2, 3 e 5.

deve ter a forma 2 3 5, com a, b e c inteiros, 0 a 8, é dessa forma. Cada um dos outros números possui um fator primo diferente de 2, 3 e 5. XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL 1) E 6) C 11) E 16) D 1) E ) B 7) B 1) C 17) E ) C ) E 8) D 1) D 18) A ) B 4) E 9) D 14) A 19) C 4) E

Leia mais

EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas

EXERCÍCIOS RESOLVIDOS Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas EXERCÍCIOS RESOLVIDOS 1 SINUÊ DAYAN BARBERO LODOVICI Resumo Exercícios Resolvidos - Geometria Analítica BC 0404 1 Prova de 23/07/2009 Todas as questões se referem a um sistema ortogonal de coordenadas

Leia mais

IGUALDADES EM IR IDENTIDADES NOTÁVEIS

IGUALDADES EM IR IDENTIDADES NOTÁVEIS IGUALDADES EM IR Uma relação muito importante definida em IR (conjunto dos números reais) é a relação de igualdade. Na igualdade A = B, A é o primeiro membro e B é o segundo membro. As igualdades entre

Leia mais

XXXIV Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXIV Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXIV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação

Leia mais

A) 4 B) 14 C) 60 D) 120 E) 24

A) 4 B) 14 C) 60 D) 120 E) 24 XXIII OLIMPÍD RSILEIR DE MTEMÁTI Primeira Fase Nível - Prova de 0 questões. - Duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar

Leia mais

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto Portal

Leia mais

Calculou as bases do trapézio corretamente: +3 pontos

Calculou as bases do trapézio corretamente: +3 pontos 1. O quadrado ABCD abaixo tem área 144 cm 2 e seus lados satisfazem BC 3P C, CD 4DQ e AD 5AR (notação: dados dois pontos X e Y, denotamos a medida do segmento que liga X à Y por XY ). Responda o que se

Leia mais

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo.

GABARITO E PAUTA DE CORREÇÃO DO ENQ Questão 2 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. GABARITO E PAUTA DE CORREÇÃO DO ENQ-014. Questão 1 [ 1,0 pt ::: (a)=0,5; (b)=0,5 ] Sejam a, b, p inteiros, com p primo. Demonstre que: (a) se p não divide a, então (p, a) = 1. (b) se p ab, então p a ou

Leia mais

Aula 9 Triângulos Semelhantes

Aula 9 Triângulos Semelhantes MUL 1 - UL 9 ula 9 Triângulos Semelhantes efinição: ois triângulos são semelhantes se os três ângulos são ordenadamente congruentes e se os lados homólogos são proporcionais. figura mostra dois triângulos

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 4 de janeiro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática

Leia mais

POLIGONOS INSCRITOS E CIRCUNSCRITOS. São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência.

POLIGONOS INSCRITOS E CIRCUNSCRITOS. São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência. POLIGONOS INSCRITOS E CIRCUNSCRITOS POLIGONOS INSCRITOS NA CIRCUNFERÊNCIA São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência. Veja: POLIGONOS CIRCUNSCRITOS NA

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Matemática A Extensivo V. 2

Matemática A Extensivo V. 2 GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)

Leia mais

QUESTÃO 16 Observe a figura, onde BDFH é um retângulo.

QUESTÃO 16 Observe a figura, onde BDFH é um retângulo. Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 Observe a figura, onde BDFH é um retângulo. Não é correto afirmar

Leia mais

Matemática B Extensivo v. 4

Matemática B Extensivo v. 4 Extensivo v. Exercícios 0) a) S π ; π b) S π π ; c) S π π ; a) (x) x π Portanto, S π π ;. π π 0) B tg x 0 tg x x π. 0) A Portanto, possui uma única solução para x [0, p]. x 0 x x x π. b) Errata: S π π

Leia mais

Matemática B Intensivo V. 2

Matemática B Intensivo V. 2 Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA OPM 2003 Segunda Fase Nível 1 (5 a. ou 6 a. séries) Soluções Nível 1 Segunda Fase Parte A

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA OPM 2003 Segunda Fase Nível 1 (5 a. ou 6 a. séries) Soluções Nível 1 Segunda Fase Parte A XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA OPM 003 Segunda Fase Nível 1 ( a. ou 6 a. séries) Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 3 pontos para cada

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO 35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO GABARITO NÍVEL 3 1) C 6) D 11) B 16) D 1) C ) D 7) E 1) C 17) A ) C 3) D 8) A 13) A 18) A 3) C 4) E 9) B 14) D 19) C

Leia mais

Soluções do Nível 3 (Ensino Médio) 1 a Fase

Soluções do Nível 3 (Ensino Médio) 1 a Fase Soluções do Nível (Ensino Médio) a Fase. (alternativa C) Como A, B e C são pontos médios, os quatro triângulos rotulados com I na figura ao lado são congruentes, bem como os dois indicados por II. Logo

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais