18 18 = Da igualdade acima, temos: k = k+ 4 Não apresenta solução. ou. Assim: k! = 7! = Resposta: D

Tamanho: px
Começar a partir da página:

Download "18 18 = Da igualdade acima, temos: k = k+ 4 Não apresenta solução. ou. Assim: k! = 7! = Resposta: D"

Transcrição

1 = k k+ 4 Da igualdade acima, temos: k = k+ 4 Não apresenta solução. ou k + k + 4 = 18 k = 7 Assim: k! = 7! = 5040 Resposta: D 1

2 = k k 4 Da igualdade acima, temos: k = k 4 não apresenta solução. ou k + k 4 = 14 k = 9 Resposta: D

3 = x 1 x + 1 Da igualdade acima, temos: x 1= x + 1 x = ou x 1+ x+ 1= 1 x = 4 S = {, 4} Resposta: C 3

4 04 Como os binomiais k+ 3 e k+ 5 são complementares, temos: 3+ 5 = k+ k = 6 Resposta: A 4

5

6 06 Pela Relação de Stifel: = = Resposta: B 6

7 07 n 1 n+ 1 = 4 Da igualdade acima, temos: ( n 1! ) ( n+ 1! ) =! ( n 3! ) 4! ( n 3! ) ( ) ( + ) ( ) n 1! n 1 n n 1! = = n + n n + n 1 = 0 Daí: n= 3 ou n= 4 (não convém) S = { 3} Resposta: {3} 7

8 08 ( ) ( ) ( ) ( ) ( ) ( ) ( ) n= n= n= 5 3 n= 5 3 n= 8 Assim: 8 8! ! = = = ! 5! 3 1 5! 3 3 Resposta: D 8

9 09 a) Verdadeira. C7,3 = C7,4, pois 7 3 e 7 4 são binomiais complementares. b) Falsa. C + C = C + C, 5,3 4, 6, = = 1 (Absurdo!) c) Verdadeira. C6, + C6,3 = C7,3, pois ela satisfaz a Relação de Stifel. Observe: = = d) Verdadeira. C C C 6 6,0 + 6, ,6 = (propriedade observada no Triângulo de Pascal) e) Verdadeira. C0,0 + C1,0 + C,0 + + Cn,0 = n+ 1. Observe que essa soma é equivalente a: ( n + ) 1 vezes Resposta: B 9

10 10 Seja 56 a soma dos elementos da linha n do Triângulo de Pascal. n = 56 = n 8 n= 8 Resposta: A 10

11 11 m 1 Repare que e p 1 m 1 m 1 = = 10 p 1 m p m Repare, ainda, que e p m 1 são complementares, logo: m p m também são complementares, logo: m p m = 55 p Pela Relação de Stifel: Assim: m = 55 p m 1 = 45 p m 1 m 1 m + = p 1 p p Resposta: B 11

12 1 I. Verdadeira. 0 0 =, pois e 0 8 são complementares. II. Verdadeira = observada no Triângulo de Pascal) 0 (propriedade III. Verdadeira. + = = = (pela Relação de Stifel). Observe: Resposta: E 1

13 = a) ( x 3y) x ( 3y) x ( 3y) x ( 3y) ( ) ( ) x 3y + x 3y 3 4 ( ) ( ) x + 3y = 1 x 1+ 4 x 3y + 6 x 9y + 4 x 7y 1 81y x + 3y = x + 1x y + 54x y + 108xy + 81y = + = b) ( x ) x ( ) x ( ) x ( ) ( ) ( ) 3 3 ( x ) = 1 x 1+ 3 x ( ) + 3 x ( 8) ( ) x + x x = x 6x + 1x Respostas: a) b) x + 1x y + 54x y + 108xy + 81y 3 x 6x + 1x 8 13

14 14 A soma dos coeficientes do desenvolvimento de ( ) 5 tomando x = 1 e y = 1. Daí: x + y é obtida ( ) = 3 = 43 Resposta: C 14

15 15 A soma dos coeficientes no desenvolvimento do binômio ( x+ y) n é obtida tomando x = 1 e y = 1. Daí: ( ) n n 1+ 1 = Resposta: D 15

16 16 Como a soma dos coeficientes do desenvolvimento de ( x+ a) p é 51, temos x = 1 e a = 1, assim: ( ) p 1+ 1 = 51 = p 9 p = 9 Resposta: C 16

17 17 A soma dos coeficientes do desenvolvimento de ( ) 37 tomando x = 1 e y = 1. Daí: 14x 13y é obtida ( ) 37 = 1 Resposta: B 17

18 18 Pelo Triângulo de Pascal, o número de termos do desenvolvimento do binômio ( x+ a) n é dado pelo número de termos da linha n do triângulo, ou seja, n n n n n,,,,, n. Essa linha apresenta n+ 1 termos. Resposta: A 18

19 A soma dos coeficientes do desenvolvimento de ( x y) ( x y) obtida tomando x = 1 e y = 1. Daí: + é ( ) ( ) = 1 3 = 43 Resposta: E 19

20 0 A soma dos coeficientes do polinômio ( ) 50 x = 1. Daí: x + 3x 3 é obtida tomando ( ) = 1 = 1 Resposta: B 0

21 ( ) ( ) ( ) ( ) ( ) ( 3) ( 3) ( 3) ( 3) ( 3) ( ) ( 10 ) Resposta: D 1

22 Para obter a soma dos coeficientes de ( x+ y) m, basta tomar x = 1 e y = 1. Daí: ( ) m 1+ 1 = 104 = m 10 m = 10 Assim: 10! ! A10, = = = 90 8! 8! Resposta: B

23 3 De x + 4x y + 6x y + 4xy + y = 16, temos: ( x + y) 4 = 16 Como x e y são positivos, x+ y =. Observe este sistema: x y = 1 x + y = Somando as equações membro a membro, temos: x = 3 3 x = Resposta: E 3

24 A soma é equivalente a: ( 1) + 1 ( 1) + 1 ( 1) ( ) + + ( ) = ( + ( )) = Resposta: C 4

25 5 10 k= 0 10 k= k k = k = ( 3+ ) = 5 k 10 k k Resposta: B 5

26 6 ( a+ ) 15 Observe que um termo qualquer desse binômio é dado por: a = a p p 15 p p p 15 p Como queremos o coeficiente de 15 p = 13 p = 13 a, temos: Daí, o coeficiente pedido é: Resposta: D 6

27 7 x + ( x ) 5 Observe que um termo qualquer desse binômio é dado por: 5 p 5 x ( x ) = x ( ) x p p 5 p 5 p 5 5+ p p x ( x ) = x ( ) p p 5 p 5 p 5 p 5+ p x ( x ) = ( ) x p p 5 p 5 p p p Como queremos o coeficiente de 5+ p = 8 p = 3 8 x, temos: Daí, o coeficiente pedido é: 5 ( ) 3 = 80 3 Resposta: A 7

28 8 ( x+ a) 5 Observe que um termo qualquer desse binômio é dado por: 5 5 x a = a x p p 5 p p p 5 p Como o coeficiente de 5 p = p = 3 x é 80, temos: 5 a 3 80 = a 80 = 3 a 8 a = = Resposta: E 8

29 9 O terceiro termo do desenvolvimento de ( a+ b) n, segundo potências decrescentes é dado por Do enunciado, vem: n = 5 n= 7 n a b n. O sexto termo é dado por: n a b 5 n 5 5 Como n= 7, temos: 7 a b = 1a b Resposta: C 9

30 30 + x x 8 Observe que um termo qualquer desse binômio é dado por: 8 p x 8 p p 8 p 8 p p x 8 p 8 p 8 p x 8 8 x p = x p x 8 8 x = x p x p p 8 p p 8+ p 8 8 x = x p x p p 8 p p 8 p O termo independente de x é obtido fazendo p 8 = 0, ou seja, p = 4. Daí: = = 4 A soma dos algarismos do número 110 é = 4. Resposta: B 30

31 31 ( α x+β y) 5 Observe que um termo qualquer desse binômio é dado por: 5 5 ( αx) ( β y) = α β x y p p 5 p p 5 p p 5 p p. Fazendo p = 1: 4 5α β= 40 4 α β= 48 Fazendo p = : 5 α β x y = 70x y αβ = 70 3 αβ = 7 Daí: 4 α β 3 = αβ α = β Resposta: E 31

32 3 O quarto termo do binômio ( ) 8 decrescente, é dado por: 8 8 = 3 3 ( ) kx y k x y kx + y, segundo as potências de expoente Daí: 8 k = k k = 3 k = = Resposta: A 3

33 33 O terceiro termo do binômio ( ) 1 expoentes decrescentes, é dado por: x + k, segundo as potências de ( x) k = ( ) x k = k x Daí: 1 10 k 66 = k 66 k = 1 = 10 Como k > 0, temos: 1 k = 5 1 k = 3 Resposta: E 33

34 34 O binômio ( ) 6 x+ 3 apresenta sete termos; logo, o termo central é o quarto. Organizando os termos segundo potências de expoentes decrescentes, temos: 6 3 x ( 3 ) = 0 x ( 7 ) = 540x Resposta: A 34

35 35 Um termo qualquer do binômio x + ( ) 5 5 ( x ) ( ) = ( ) x p p 5 p p p 10 p Tomando p = 1: 5 ( ) 1 = m 1 m = 10 Tomando p = 5: 5 ( ) 5 = n 5 n = 3 5 é dado por: Assim: m + n = 10 + ( 3) = 4 Resposta: D 35

Aula: Fatorial e binomial

Aula: Fatorial e binomial Aula: Fatorial e binomial BINOMIAIS E TRIÂNGULO DE PASCAL Fatorial e binomial Fatorial de um número inteiro e não negativo n se define como sendo a expressão: n! = n(n 1). (n 2). (n 3). (n 4)... 2. 1 Indicação:

Leia mais

Binómio de Newton. De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o

Binómio de Newton. De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o Binómio de Newton Introdução Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b². Se quisermos calcular (a + b)³, podemos escrever: (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 Se quisermos calcular,

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

Matemática E Extensivo V. 4

Matemática E Extensivo V. 4 Etensivo V. Eercícios n 0) a) Por roriedade, 0. Logo 0. Ou ainda, 0 0 0 0! 0! 0! b) Por roriedade, n 0. Logo. Ou ainda, 0 0!! 0!!! c) Por roriedade, n n. Logo. Ou ainda,!!( )!!!!!! d) Por roriedade, n.

Leia mais

Notação e fórmula. O teorema do binômio de Newton se escreve como segue: são chamados coeficientes binomiais e são definidos como:

Notação e fórmula. O teorema do binômio de Newton se escreve como segue: são chamados coeficientes binomiais e são definidos como: Introdução Em matemática, binômio de Newton permite escrever na forma canônica o polinómio correspondente à potência de um binómio. O nome é dado em homenagem ao físico e matemático Isaac Newton. Entretanto

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

Resolução do Simulado (08/Maio) Semi

Resolução do Simulado (08/Maio) Semi Resolução do Simulado (08/Maio) Semi Questão 1. Item 01. Verdadeiro. O número total de samambaias será dado pelo produto do número de quadrantes pela quantidade de samambaias em cada quadrante. A t.b representa

Leia mais

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m.

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m. Módulo Binômio de Newton e o Triângulo de Pascal Desenvolvimento Multinomial. 2 ano/e.m. Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Onde usar os conhecimentos

Onde usar os conhecimentos VI LOGARIMO Por que aprender Binômio de Newton?... Binômio de Newton é uma ferramenta matemática desenvolvida por Isaac Newton que facilita certos cálculos matemáticos que seriam trabalhosos pelo processo

Leia mais

Exercícios de Analíse Combinatória. Binômio de Newton.

Exercícios de Analíse Combinatória. Binômio de Newton. Exercícios de Analíse Combinatória. Binômio de Newton. QUESTÃO 1 A expressão é igual a A ( ) 2630. B ( ) 2690. C ( ) 2712. D ( ) 1584. E ( ) 1604. QUESTÃO 2 O professor de Matemática aplicou um problema-desafio

Leia mais

Expansões AULA ... META. Apresentar a expansão binomial e multinomial. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de:

Expansões AULA ... META. Apresentar a expansão binomial e multinomial. OBJETIVOS. Ao final da aula o aluno deverá ser capaz de: Expansões META Apresentar a expansão binomial e multinomial. OBJETIVOS Ao final da aula o aluno deverá ser capaz de: Identificar e utilizar algumas propriedades dos coeficientes binomiais; Expandir produto

Leia mais

17.1 multiplicidade de um ponto da curva

17.1 multiplicidade de um ponto da curva Aula 17 multiplicidades de interseção (Anterior: C é fecho algébrico de R ) Voltamos ao estudo de curvas planas O assunto agora diz respeito à compreensão das multiplicidades O exemplo modelo bem conhecido

Leia mais

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2). 01) a) P (1) = 1 + 7 1 17 1 P (1) = 1 + 7 17 P (1) = 11 P (1) é sempre igual a soma dos coeficientes de P (x) b) P (0) = 0 + 7 0 17 0 P (0) = 0 + 0 0 P (0) = P (0) é sempre igual ao termo independente

Leia mais

Combinatória III Continuação

Combinatória III Continuação 1 Combinatória III Continuação Sumário 11 Introdução 2 12 O Triângulo Aritmético 4 1 O Binômio de Newton 5 1 Unidade 1 Introdução 11 Introdução A unidade se inicia com o triângulo de Tartaglia-Pascal,

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7

Leia mais

MATEMÁTICA Professores: Andrey, Cristiano e Julio

MATEMÁTICA Professores: Andrey, Cristiano e Julio MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5

Leia mais

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla

U.C Matemática Finita. 6 de junho de Questões de escolha múltipla Ministério da Ciência, Tecnologia e Ensino Superior U.C. 21082 Matemática Finita 6 de junho de 2018 - Resolução e Critérios de Avaliação - Questões de escolha múltipla 1. (Exame e P-fólio De quantas maneiras

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais

+ + 2 + + + 2 + + 23 + 3 + 23 + 2 + + 23 + 3 + 23 + 3 + 23 + 3 2345678 2 3 4 2 2 + + 2 + 3 2 3 2 3 ± + + 2 2 + + 3 2 3 2 + + + + 2 3 3 + + + + 2 3 3 + + + + 2 3 3 + + + 2 3 3 + + 2 3 4 + 2 3 23452454 +

Leia mais

Continuidade e Limite

Continuidade e Limite Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada

Leia mais

Lista - Estimativas e Desigualdades

Lista - Estimativas e Desigualdades Lista - Estimativas e Desigualdades Semana Olimpíca/2018 - Nível 2 Prof. Armando 25 de janeiro de 2019 1 Lista de ideias Funções do 2 grau (ou graus maiores) Desigualdades básicas (M.Q. M.A. M.G. M.H.

Leia mais

Matemática B Extensivo v. 4

Matemática B Extensivo v. 4 Extensivo v. Exercícios 0) a) S π ; π b) S π π ; c) S π π ; a) (x) x π Portanto, S π π ;. π π 0) B tg x 0 tg x x π. 0) A Portanto, possui uma única solução para x [0, p]. x 0 x x x π. b) Errata: S π π

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO

EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO QUESTÃO 1: Uma urna contém 4 bolas vermelhas, 6 pretas e 5 azuis. Retirando-se dessa urna, ao acaso, uma bola, CALCULE a probabilidade de ela: ser vermelha. ser vermelha ou preta. não ser azul. QUESTÃO

Leia mais

POLINÔMIOS. Operadores aritméticos: Adição, subtração, multiplicação e potenciação.

POLINÔMIOS. Operadores aritméticos: Adição, subtração, multiplicação e potenciação. POLINÔMIOS Prof. Patricia Caldana Um polinômio é uma expressão algébrica formada por monômios e operadores aritméticos. O monômio é estruturado por números (coeficientes) e variáveis (parte literal) em

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º. anos) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º. anos) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (8º e 9º. anos) GRITO GRITO NÍVEL ) ) D ) E ) D ) D ) 7) ) 7) ) ) D 8) D ) 8) ) 4) 9) D 4) 9) D 4) 5) 0) 5) E 0) 5) ada questão da Primeira Fase vale

Leia mais

Luciana Santos da Silva Martino

Luciana Santos da Silva Martino Sumário APLICAÇÕES DA INDUÇÃO Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 11 de agosto de 2017 Sumário 1 Definição por Recorrência 2 Binômio

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web Ita analise combinatoria 1. (Ita 2016) Pintam-se N cubos iguais utilizando-se 6 cores diferentes, uma para cada face. Considerando que cada cubo pode ser perfeitamente distinguido dos demais, o maior valor

Leia mais

n 2,

n 2, 1. Considere o polinômio P (x) = ax 3 + bx 2 + cx, com a, b, c R. Suponha que P satisfaz P (x + 1) P (x) = x 2, para todo x R. i. Calcule os valores de a, b e c. ii. Usando a propriedade acima, calcule

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

8º ANO. Lista extra de exercícios

8º ANO. Lista extra de exercícios 8º ANO Lista extra de exercícios . Determine os valores de x que tornam as equações a seguir verdadeiras. a) (x + 4)(x ) = 0 b) (x + 6)(x ) = 0 c) (x + )(6x 9) = 0 d) 4x(x ) = 0 e) 7x(x ) = 0. Determine

Leia mais

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos

CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)

Leia mais

OPRM a Fase Nível 3 01/09/18 Duração: 4 horas

OPRM a Fase Nível 3 01/09/18 Duração: 4 horas 1. Considere os números de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21,..., onde cada termo na sequência é a soma dos dois termos anteriores. O ano mais próximo de 2018 que é número de Fibonacci foi o ano de 1597.

Leia mais

VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06.

VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06. VESTIBULAR DA UFBA- FASE / 00-0- PROVA DE MATEMÁTICA Resolução e comentários pela professora Maria Antônia C. Gouveia. UESTÕES DE 0 A 06. LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA UESTÃO, FORMULE SUAS RESPOSTAS

Leia mais

GABARITO COMENTÁRIO PROVA DE MATEMÁTICA (IV SIMULADO ITA/2007) QUESTÕES OBJETIVAS 3 ( 2) ( 2) = 3. 5 m. 64 x

GABARITO COMENTÁRIO PROVA DE MATEMÁTICA (IV SIMULADO ITA/2007) QUESTÕES OBJETIVAS 3 ( 2) ( 2) = 3. 5 m. 64 x D: 00 08 º EM MATEMÁTICA ITA IME SIMUL COMENT Rosângela o Ensino Médio PROVA DE MATEMÁTICA (IV SIMULADO ITA/00) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Como a equação é do quinto grau

Leia mais

XXXIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXXIII Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXXIII Olimpíada Brasileira de Matemática GBRITO Segunda Fase Soluções Nível 2 Segunda Fase Parte PRTE Na parte serão atribuídos 4 pontos para cada resposta correta e a pontuação máxima para essa parte

Leia mais

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab.

CÁLCULO FUNÇÕES DE UMA E VÁRIAS VARIÁVEIS Pedro A. Morettin, Samuel Hazzan, Wilton de O. Bussab. Introdução Função é uma forma de estabelecer uma ligação entre dois conjuntos, sujeita a algumas condições. Antes, porém, será exposta uma forma de correspondência mais geral, chamada relação. Sejam dois

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Um reservatório, com capacidade para 680 litros, tem a forma de um cilindro circular reto. Se o raio da base deste reservatório mede 1 metro, sua altura mede: A) 1 m (Considere π =,14) B) 1,4 m C)

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

( ) ( ) Polinômios. Polinômios. a n x n + a n-1 x n a 1 x + a 0. O Teorema Fundamental da Álgebra afirma que todo polinômio de grau n

( ) ( ) Polinômios. Polinômios. a n x n + a n-1 x n a 1 x + a 0. O Teorema Fundamental da Álgebra afirma que todo polinômio de grau n UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Técnicas de fatoração O

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 23/junho/2013

CPV especializado na ESPM ESPM Resolvida Prova E 23/junho/2013 CPV especializado na ESPM ESPM Resolvida Prova E 3/junho/03 MATEMÁTICA. O valor numérico da expressão (x + 4x + 4). (x x) x 4 para x = 48 é: a) 4800 b) 00 c) 400 d) 3500 e) 800 Fatorando a expressão, temos:.

Leia mais

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162 0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 10 GABARITO COMENTADO 1) Identifiquemos o peso da primeira sacola por a e o peso da segunda por b. Como expresso

Leia mais

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 017 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

Polinômios. 1.Introdução 2.Técnicas de fatoração 3.Fatoração de polinômios de terceiro grau ou de grau superior 4.Teorema do zero racional

Polinômios. 1.Introdução 2.Técnicas de fatoração 3.Fatoração de polinômios de terceiro grau ou de grau superior 4.Teorema do zero racional UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Polinômios Prof.:

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse:

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br Fundamentos de Matemática Superior - BINÔMIO DE NEWTON Estes resultados foram escritos com expoentes

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n).

1 Congruências de Grau Superior. Dado um polinômio f(x) Z[x] e um número natural n, vamos estudar condições para que a congruência. f(x) 0 (mod n). Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 10 Congruências de Grau Superior 1 Congruências de Grau Superior Dado um polinômio f(x Z[x] e um número

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Exercícios de exames e provas oficiais. Um dos termos do desenvolvimento de x x, com x 0, não depende da variável x. 0 Qual é esse termo? 040 804 04 5 matemática A º ano, exame, ª fase, 04. A soma

Leia mais

T.D. - Resolução Comentada

T.D. - Resolução Comentada T.D. - Resolução Comentada Matéria: Série: Turmas: Professor: Matemática º Ano A, B, C, D e Olímpica Wilkson Linhares Bimestre: 3º Assunto: Geometria Analítica Questão: 01 Resposta: Item: c) O ponto P

Leia mais

DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA AUTOMAÇÃO INDUSTRIAL ELETRÔNICA ELETROMECÂNICA MEIO AMBIENTE

DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA AUTOMAÇÃO INDUSTRIAL ELETRÔNICA ELETROMECÂNICA MEIO AMBIENTE Instituto Federal de Educação Ciência e Tecnologia Fluminense Campus Macaé DIREÇÃO DE ENSINO EMENTA DE DISCIPLINA - MATEMÁTICA Nível Curso Série CH Semanal CH Anual Ensino Médio Integrado AUTOMAÇÃO INDUSTRIAL

Leia mais

MATEMÁTICA PARA TÉCNICOS

MATEMÁTICA PARA TÉCNICOS PETROBRAS INDICADA PARA TODOS CARGOS TÉCNICOS MATEMÁTICA PARA TÉCNICOS QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 ÍNDICE DE QUESTÕES MATEMÁTICA - CARGOS TÉCNICOS

Leia mais

Portanto, = 4 1= 2. LETRA D

Portanto, = 4 1= 2. LETRA D TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()

Leia mais

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO Projecto Delfos: Escola de Matemática Para Jovens 1 Uma função, f, é uma aplicação de um conjunto, D, que designamos por domínio, para um conjunto, C, designado por contra-domínio, segundo uma lei, f(x),

Leia mais

Matemática E Intensivo V. 2

Matemática E Intensivo V. 2 Matemática E Intensivo V. Exercícios 0) E P 6 6! 70 0) motorista possibilidades p. p. p. p. p 8 possibilidades 0) motorista P 6. P 0 0) E P 0 68800 Então precisam de 68800 dias. Aproximadamente 99,9 anos

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria

APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria O que é preciso saber (passo a passo) Seja: Potenciação O expoente nos diz quantas vezes à base

Leia mais

Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b

Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b Questão Resposta 1 e 2 c 3 a 4 a 5 d 6 d 7 d 8 b 9 a 10 c 11 e 12 c 13 c 14 d 15 d 16 b MAT2457 - Álgebra Linear para Engenharia I Prova 1-10/04/2013 Nome: NUSP: Professor: Turma: INSTRUÇÕES (1) A prova

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Mat.Semana 8. Alex Amaral (Rodrigo Molinari)

Mat.Semana 8. Alex Amaral (Rodrigo Molinari) Alex Amaral (Rodrigo Molinari) Semana 8 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/04

Leia mais

Nome: Nr Turma GRUPO II (80 PONTOS) . 1 2

Nome: Nr Turma GRUPO II (80 PONTOS) . 1 2 Faculdade de Ciências Económicas e Empresariais UCP MATEMÁTICA I MINI-TESTE 1 - versão A Duração: 90 minutos Durante a prova não serão prestados quaisquer tipo de esclarecimentos. Qualquer dúvida ou questão

Leia mais

XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase

XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase XXVI Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível Solução do Problema : Os possíveis produtos x k x k são ( )( ) =, ( + )( + ) = + e ( )( + ) =. Suponha que a produtos são iguais

Leia mais

4 3 10! Resposta pedida: 3! x 4! = 144 Resposta: C

4 3 10! Resposta pedida: 3! x 4! = 144 Resposta: C ágina 80. reparar o Exame 0 07 Matemática A 4 0! 4 x x 0!. Devemos escolher, das oito posições, duas para as letras A: temos 8 formas de o fazer. Das seis posições restantes, uma tem de ser para a letra

Leia mais

Ao final de 10 anos, o número de exames por imagem aumentou de 40 milhões por ano para 94 milhões por ano. Isso

Ao final de 10 anos, o número de exames por imagem aumentou de 40 milhões por ano para 94 milhões por ano. Isso Resposta da questão 1: [C] a1 = 6 an = 4 n = número de dias r = 4 = 6 + (n 1) 18 = n 1 n = 19 (6 + 4) 19 48 19 S = = S = 456km Resposta da questão : [C] Tem-se que os elementos de uma mesma coluna estão

Leia mais

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5. Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =

Leia mais

Polinômios com TN. Semana Olimpíca/ Nível 3. Prof. Armando Barbosa. 22 de janeiro de 2019

Polinômios com TN. Semana Olimpíca/ Nível 3. Prof. Armando Barbosa. 22 de janeiro de 2019 Polinômios com TN Semana Olimpíca/019 - Nível 3 Prof. Armando Barbosa de janeiro de 019 Há algum tempo, no mundo das olimpíadas de matemática, tem aparecido questões que misturam assuntos como, por exemplo,

Leia mais

ficha 1 matrizes e sistemas de equações lineares

ficha 1 matrizes e sistemas de equações lineares Exercícios de Álgebra Linear ficha matrizes e sistemas de equações lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2/2

Leia mais

Matemática 1 a QUESTÃO

Matemática 1 a QUESTÃO Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é

Leia mais

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE

MATEMÁTICA MÓDULO 1 TEORIA DOS NÚMEROS 1. DIVISIBILIDADE 1.1. DEFINIÇÃO 1.2. CRITÉRIOS DE DIVISIBILIDADE TEORIA DOS NÚMEROS 1. DIVISIBILIDADE Neste momento inicial, nosso interesse será em determinar quando a divisão entre dois números inteiros é exata, ou seja, quando o resto da divisão é 0. Antes de mais

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

[C] [D] [A] [B] Calculando: = 4035 Divisores 4035 = (1 + 1).(1 + 1).(1 + 1) = 2.2.

[C] [D] [A] [B] Calculando: = 4035 Divisores 4035 = (1 + 1).(1 + 1).(1 + 1) = 2.2. RESOLUÇÕES 1 4 2 Calculando: 2018 2-2017 2 4072324-4068289 = 4035 Divisores 4035 = 3 1.5 1.269 1 (1 + 1).(1 + 1).(1 + 1) = 2.2.2 = 8 Sejam x, y, z e w, respectivamente, a idade da professora e de suas

Leia mais

O valor da expressão y = para x = 1,3 é: a) 2 b) 2 c) 2,6 d) 1,3 e) 1,3 Resolução. y = = = 0,7 x. Para x = 1,3 resulta y = 0,7 ( 1,3) = 0,7 + 1,3 = 2

O valor da expressão y = para x = 1,3 é: a) 2 b) 2 c) 2,6 d) 1,3 e) 1,3 Resolução. y = = = 0,7 x. Para x = 1,3 resulta y = 0,7 ( 1,3) = 0,7 + 1,3 = 2 MATEMÁTICA a 0,9 x O valor da expressão y = para x =, é: 0,7 + x a) b) c),6 d), e), 0,9 x (0,7 + x)(0,7 x) y = = = 0,7 x. 0,7 + x (0,7 + x) Para x =, resulta y = 0,7 (,) = 0,7 +, = e A soma dos valores

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca

Leia mais

Tira-Teima Curso Mentor. Barbosa, L. S.

Tira-Teima Curso Mentor. Barbosa, L. S. Tira-Teima Curso Mentor Barbosa, L. S. leonardosantos.inf@gmail.com 18 de fevereiro de 01 Lista de Siglas EEAr................................. Escola de Especialistas da Aeronáutica CMRJ.....................................

Leia mais

Módulo Tópicos Adicionais. Recorrências

Módulo Tópicos Adicionais. Recorrências Módulo Tópicos Adicionais Recorrências Módulo Tópico Adicionais Recorrências 1 Exercícios Introdutórios Exercício 1 Considere a sequência definida por x 1 d e x n r + x n 1, para n > 1 Trata-se de uma

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

AmigoPai. Matemática. Exercícios de Equação de 2 Grau

AmigoPai. Matemática. Exercícios de Equação de 2 Grau AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar

Leia mais

MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II

MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II MATEMÁTICA CADERNO SEMIEXTENSIVO E Assim: A tem R$,, B tem R$ 8,, C tem R$ 9, e D tem R$ 6,. FRENTE ÁLGEBRA n Módulo 9 Sistemas Lineares II x + y + z = x + y + z = ) y + z = y + z = 6z = 8 z = ) x + y

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 4 de janeiro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática

Leia mais

QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO. b) cos (α + β) = cos (α) cos (β) sen (α) sen (β) e (valor: 10,0 pontos)

QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO. b) cos (α + β) = cos (α) cos (β) sen (α) sen (β) e (valor: 10,0 pontos) Questão nº QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO i( + β) e = cos( + β) + isen( + β ) () i iβ e. e = (cos + isen ). (cos β + isen β) = =coscos β +i sensen β +isencos β +icossen β

Leia mais

FATORAÇÃO DE EXPRESSÕES ALGÉBRICAS (continuação)

FATORAÇÃO DE EXPRESSÕES ALGÉBRICAS (continuação) FATORAÇÃO DE EXPRESSÕES ALGÉBRICAS (continuação) 4º caso de fatoração: Trinômio do tipo x² + Sx + P O quarto caso de fatoração, assim como o terceiro, é a fatoração de uma expressão algébrica em forma

Leia mais

Unidade 8 Equações e Sistemas de Equações do 1º grau. Sentenças matemáticas

Unidade 8 Equações e Sistemas de Equações do 1º grau. Sentenças matemáticas Unidade 8 Equações e Sistemas de Equações do 1º grau Sentenças matemáticas A matemática pode ser considerada uma linguagem e, como todas elas, é preciso algum tempo para dominá-la. Sentenças, em matemática,

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento

Leia mais

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0. UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.

Leia mais

O Triângulo de Pascal

O Triângulo de Pascal O Triângulo de Pascal Márcio Nascimento da Silva 6 de fevereiro de 009 Resumo O Triângulo de Pascal ou Triângulo Artimético ou na Itália, Triângulo de Tartaglia) é um triângulo numérico infinito definido

Leia mais

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68

o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68 Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.

Leia mais

O espião que me amava

O espião que me amava Reforço escolar M ate mática O espião que me amava Dinâmica 2 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 3ª Algébrico-Simbólico. Polinômios e Equações Algébricas. Aluno

Leia mais

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda)

Lista de Módulo Extensivo Alfa Professor: Leandro (Pinda) Lista de Módulo Etensivo Alfa Professor: Leandro (Pinda). (Pucpr 08) Considere os seguintes dados. Pode-se dizer que quando duas variáveis e y são tais que a cada valor de corresponde um único valor de

Leia mais

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima. 01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22

Leia mais

Resolução do 1 o Teste - A (6 de Novembro de 2004)

Resolução do 1 o Teste - A (6 de Novembro de 2004) ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Ano Lectivo de 2004/2005 Resolução do 1 o Teste - A (6 de Novembro de 2004) 1 Considere o subconjunto

Leia mais

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27

5) [log 5 (25 log 2 32)] 3 = [log 5 (5 2 log )] 3 = = [log 5 (5 2 5)] 3 = [log ] 3 = 3 3 = 27 MATEMÁTICA CADERNO CURSO D ) [log ( log )] = [log ( log )] = = [log ( )] = [log ] = = 7 FRENTE ÁLGEBRA n Módulo Logaritmos: Definição e Eistência ) a) log 8 = = 8 = = b) log 8 = = 8 = = c) log = = ( )

Leia mais