Matemática B Extensivo v. 4

Tamanho: px
Começar a partir da página:

Download "Matemática B Extensivo v. 4"

Transcrição

1 Extensivo v. Exercícios 0) a) S π ; π b) S π π ; c) S π π ; a) (x) x π Portanto, S π π ;. π π 0) B tg x 0 tg x x π. 0) A Portanto, possui uma única solução para x [0, p]. x 0 x x x π. b) Errata: S π π ; (x) x π Portanto, S π π ;. π 0) B θ θ Portanto, o valor θ (em graus) tal que θ θ é θ e θ. π c) tg(x) π Portanto, S π π ;. π 0) A [x π ] 0 Para x [0, π ] devemos ter: x π π (pois, π 0) π x π + π x π x π. x π

2 0) C 08) D. x + x + x x x Os ângulos em que a tg é igual zero são x π e x π. Daí, para tg (x) 0, temos: x π x π. 7π π Portanto, x π e x π + π π. (período π) Portanto, para x em x [0,π], temos: x' 7 π π e x''. Segue, x' + x'' 7 π π 8π + π. 07) D Os ângulos em que x são 0 e 00. Então, Para 0 : 0 x 0 x 0 x ) 7 Temos ainda: x π x π Portanto, x π π 7π e x + π. S {0, π ; π π 7π ; ; } tg (x) 0 possui soluções. x x x. x. x x. x. x 0 ( x ). x 0 Então, x 0 ou x 0. Para x [0, π], temos: x 0 x as soluções são: x π x π Lembre que os valores do no º Q e º Q são iguais, obtemos então os valores de x 0 e x x 9 π x π Para 00 : x 00 x 00 x 0 Portanto, x 0 e x S {0, 0, 0, 0 }. Segue, para x 0, temos: x π x π x π Portanto, o número de soluções são 7.

3 0) B x x x x 0 x x. x 0 x. ( x) 0 ) a) {π/, π/} b) {π/, π/, π/} a) x x 0 ou x 0 x. Para x [0, π] As soluções x 0 são: x 0 ou x π ou x π π π As soluções x são: x π ou x π Portanto, S {0, π, π, π, π}. S { π, π } ) D x [ π x] 0 π π x x. x x. x x x 0 x ( x) x x + x x x x x x 0 b) x x x x x ( x x) x x x x x + 0.( ) x + x 0 Seja y x y + y 0 Resolvendo a equação acima, teremos: y' ou y'' Seja y x y y 0 (i) Substituindo y' em y x, obteremos: Resolvendo a equação acima temos: x y' ou y'' x π e x π. Substituindo y' em (i), teremos: x x π π e x. Substituindo y'' em (i), teremos: x x 0 e x π. Portanto, a equação x [ π x] possui solu- ções. ) E Substituindo y'' em y x, obtemos: x x π. S { π, π π, } Para (x³ + 7x² + x + ) + ²(x³ + x² + ) devemos ter: x + 7x² + x + x + x² + 7x² + x + x² 0 x² + x 0

4 ) A ) A Resolvendo a equação acima, temos: x' ou x'' S {, /}. ² x + x 0 Seja y x Daí, y + y 0 Resolvendo a equação acima, temos: y' ou y'' Substituindo y' em y x, teremos: x x π e x π. Substituindo y'' em y x, teremos: x. x π. S { π, π, π } ² x x 0 Seja y x y y 0 Resolvendo a equação acima, teremos: y' ou y'' Substituindo y' em y x, teremos: x x π π π e x. (Não serve, pois [0, π].) Substituindo y'' em y x, x (absurdo, pois x para todo x R) S { π } Portanto, x x 0 possui apenas solução. ) D ² x x ² x x 0 x ( x ) 0 Então, x 0 ou x 0. 7) A 8) C De x 0 temos como solução: x 0 e x π e x π De x 0 x Não possui solução, pois x é limitado em: x. Portanto, teremos soluções. ² x x 0 (² x ² x) ( x ) x 0 ² x x 0 Fazendo y x, temos: y² y 0 y² y + 0 ( ) y² + y 0 Resolvendo a equação acima, obtemos: y' ou y'' Substituindo y' em y x, temos: x x π e x π π. (Não serve, pois [0, π].) Substituindo y'' em y x, temos: x (absurdo, pois o é limitado em x para todo x R) S { π } x tg x x x x x x x x x x + 0 ( ) x + x 0 Seja y x. y + y 0 Resolvendo o sistema acima, temos: y' + x +. ou y''

5 9) D x Portanto, x (absurdo, pois. ² x x + ² x 0 ² x x + ² x 0 ² x x + 0 Se x 0, então x x. Daí: ² x x + 0 Seja y x y² y + 0 Resolvendo a equação acima, temos: y' ou y''. Substituindo y' em y x, teremos: x x π. Substituindo y'' em y x, teremos: x. x π e x π. Se x < 0, então x x. Daí: ² x + x + 0 Seja y x y² + x + 0 Resolvendo a equação acima, obtemos: y' ou y''. [, ]) Substituindo y' em y x, obtemos: x. x 7 π π e. Substituindo y'' em y x, obtemos: x. x π. Portanto, a equação ² x x + 0 possui soluções. 0) D ) B Como x é raiz de (² α)x² (α. β)x + β 0, então ² α α. β + β 0 (i). Note que os ângulos α e β são complementares, ou seja, β α Substituindo β α em (i), obtemos: ² α α. α + α 0 ² α ² α + α 0 ² α + α 0 α ( α + ) 0 α 0 ou α + 0 De α 0, temos: α π ou α π Ambos não servem, pois α é agudo. De α + 0 α.( ) α α. α α π e α π. (Não serve, pois α não é agudo). Portanto, α π. Como α e β são complementares, então β π. 8. tg α β 0 tg α β 0 tg α 8 β

6 Daí, vem: tg α+ β 0 tg α+ 8 β tg α β 0 + tg α+ 8 β Fazendo (i) + (ii), temos: β β β.( ) () i () ii ) B α α ( α + α) ( α α). ( α α) α ( α) α + α α + β π para todo β ]0, π[. Substituindo β em tg α + β 0, obtemos: tg α +. 0 ) D tg α + 0 tg α + 0 tg α α π Portanto, α + β π π π π π x A tgx x x x x det A x. x + x. x + x. tgx x x. tgx x 0 x. x x + x 0 (x) 0 x x π x π ( π, pois x [0, π ]) α α 8 Substituindo na relação fundamental α + α, obtemos: 8 + α α 8 α 8 Segue, α 8 tg α α 8 ) C tg α tg α ² x x. x + ² x 0 ( ² x) x x.x x + 0 x x x tg x tg x + 0 Seja y tg x y y + 0 Resolvendo a equação acima, teremos: y' + ou y'' Portanto, os valores possíveis são: tg x + e tg x +

7 ) 0 0. Correta. 0. Correta. Considere o triângulo a seguir sem perda de generalidade: A B l h l l l O ângulo α é o maior ângulo agudo, pois o ângulo está oposto ao maior cateto. Portanto, C D α. Sabemos que l h, em que h é altura do triângulo equilátero. h l.. 9 l. 9 l. l.. l cm 0. Incorreta. tg x x x x. x Da relação fundamental x + x, temos: ( x) + x. x + x. x x x x x. x. (x [π, π ]) (racionalização) 08. Incorreta. α α α tg α α α + tg α α α+ α + α α α α α α α+ α ² α ² α. Incorreta. x 0 Temos como possíveis soluções: x π + kπ x π + k π Para k 0 x π Para k x π + π π Para k x π + π π Para k x π + π 7π Para k x π + π 9 π não serve, pois x 9 π [0, π]. S { π, π π 7π,, } Portanto, x possui soluções. 7

8 ) C ( x x) x x ( x + x) + x x ( x ) + x x x + x + + x x x + x x 0 x. ( x + x ) 0 x 0 ou x+ x 0 De x 0, temos: x 0 + x 0 x 0 x x π + kπ x π + kπ Para k 0 x π Para k x π Para k x π não serve, pois x [0, π] De x + x 0 Seja y x x + x 0 ( x) x + x 0 y + y 0 Resolvendo a equação acima, teremos: y' ou y'' + x + x x (absurdo, pois x ) 7) E Portanto, a soma das soluções é dada por: π + π π + π π Observe que: 8 x ( x) ( x) ( x + x) + x + 8 x x + x x Daí, 8 x 8 x + x x + x a Assim, x x + a a Para a 0, temos: x x + 0 x ± 8 R n 0 Para a, temos: x x + 0 ± x ou x x ± ou x ±. Dessa forma, a equação possui n 8 soluções no intervalo [0; π], como se vê no círculo trigono- métrico. Substituindo y' em y x, obtemos: x + x + x x x kπ x kπ Para k 0 x 0 Para k x π Para k x π Para k x π não serve, pois x [0, π] Substituindo y' em y x, obtemos: x 8

9 Para a, temos: x x 0 x( x ) 0 x 0 ou x ±. Dessa forma, a equação possui n 7 soluções no intervalo [0; π], como se vê no ciclo trigonométrico a seguir. 9) a) S π π ; b) S π π ; a) (x) x π π e x π S b) (x) ; π Para a, temos: x x 0 x x 0 x ± x ou x (não serve) x ± x π ou x π S π π ; Portanto, a equação tem n soluções. Dessa forma, todas as afirmações são verdadeiras. 0) [π/, π/] 8) C ( ax ) ( a) y tga.( a) ( ax ) + ( ay ).( a) ( a. ax ) ( ay ) a ( a. ax ) + ( a) y a () i () ii x A solução da inequação x no intervalo: 0 x π é: S {x R / π x π π } [, π ] Fazendo (i) (ii), teremos: ( a)y ( a)y a + a ( a + a)y 0. y 0 y 0 0 Portanto, x 0. y 0 x

10 ) E x > S {x R / 0 < x < π ou < x < π} π ) E x < x < a solução se apreta nos quadrantes. II Q I Q III Q IV Q ) A tg x > S x R π < x< π ou π < x< π. ) (A f(x) x x 0 x x D {x R / π x π } 0

11 ) B y + tg x A função y está definida para + tg x 0 tg x D {x R / π 8 x π ou π π x }. 8 7) B ² x ² x x Solução para x [0, 80 ] S [7,,, ] 8 0 7, 90, ) B 8 Para obter a solução x [80 ; 0 ], o período (p π) a cada solução acima. Então: S [7, ; 9, ] Portanto, a solução é: S S S [7, ;, ] [7, ; 9, ]. x. x x. x. x. x x S [0, π ] 8) E x x > 0 ( x+ x) ( x x) > 0 x x > 0 x > 0 S 0, π π, π 0

12 9) S 0, π π, π ² x x 0 x ( x ) 0 Portanto, a solução ² x x 0 é dada por: S 0, π π, π 0) B ( x + x)² > ² x + x. x + ² x > (² x + ² x) + x. x > + x > x > x > 0 ) A A equação x² + x + θ 0 não possui raiz real para Δ < 0. Então: Δ < 0. b ac < 0 ( ).. θ < 0 θ < 0 < θ θ > 0 θ > S {x R / 0 < θ < π } Solução para x [0, π[ S {x R / 0 < x < π } Solução para x [π, π]. Como x é periódico com período π, então para obter a solução x [π, π] basta somar o período a cada solução anterior. Portanto: 0 S {x R / π < x < π }. S S S π x R 0< x< ou π < x< π.

13 ) A x < < x < S 0 De x <, temos: S S S 0 0 ) 0 x π/ ou π/ x < π ² x x + 0 Seja y x, daí temos que: y² y + 0 S ] π, π [ De x >, temos: y, ou seja, x. Note que para x é satisfeito para todo x [0, π]. Resolvendo x, obtemos: S [0, π ] [ π, π] ) A Portanto, a solução ² x x + 0 é dada por S S, isto é: 0 x π ou π x π. ² x + x > + x + x > x > x x + S ]0, π x [ ], π[ 0 Portanto, a solução da inequação x < é dada por: S S S ] π, π π π [ ], [.

14 S π π x ( 0, π) 0< x< ou < x < π ) B S ]0, π [ ] π π 7π, [ ], π [ ( x) x 0 x ) B S 0; π π ; π S ] π, π π π [ ], [ 8 x + 0 x < 0 Seja y x 8y + 0 y < 0.( ) 8y 0 y + > 0 a solução é dada por: y < ou y >, isto é: x < ou x > x < ou x > 7 7) A, m 7 m Note que a bola deve ter altura máxima de,8 m, pois, caso contrário, a bola bateria na trave e o jogador não faria o gol.

15 B 0) C,8 m A m C x arc tg para x ] π, π [ tg x 8) a) 9) D tg α 8, π b) π c) π a) arc x π. α arc tg ( 8, ) x x para x [0, π] b) arc ( ) x x para x [ π, π ] x π. c) arc tg ( ) x tg x para x [ π, π ] x π. Sejam arc α, arc ( ) β e arc tg ( ) γ Segue que: arc a α para α [ π, π ] ) B ) D x π. arc Seja arc x x (arc ) x tg arc Seja x arc y x ( ) + y y tg (arc ) tg x. ) D α arc x α α π Portanto, B arc ( ) β β β π para β [0, π] α Portanto, C arc tg ( ) γ tg γ para γ ] π, π [ π. Portanto, A. β arc tg tg β

16 β α Temos, x x x x.( ) ) D ) E ) E Temos ainda que:. (α + β). ( α. β α. β) f(x) arc (x ) x + x + x x x Portanto, o domínio da função f(x) está definido para x [, ]. f(x) arc (x + ) x + x x x x Portanto, o domínio da função f(x) está definido para x ;. x ( x ) x. x. 9 x 8 9 x 9 7) Errata: gabarito letra E. α arc α arc α α π α π α π Portanto, α ( π). 8) Errata: considere [0, π] o contradomínio da função arco o. Seja x arc e y arc. Assim, arc + arc (x + y) x. y x. y De x arc, temos: x arc x y arc Seja x arc x arc x h x + h h x.

17 9) C 0) D De arc, temos: y arc y k y + k k y Portanto, arc + arc x. y x. y arc tg(x + ) + arc tg x π (aplicando a tg em ambos os lados) tg[arc tg(x + ) + tg.(arc tg x)] tg π tg[ arc tgx ( + ) + tg.( arc tgx)] tg π tg[ arc tgx ( + ) + tg.( arc tgx)] x + x x x + ( x² x) x + + x² + x + x² x² A No triângulo ACD, temos: tg α 0 0 C D B No triângulo ABD, temos: tg β 0 Segue, tg α+ tg β tg BÂC tg (α + β) tg α. tg β Portanto, tg BÂC 9 ) F V V F F 9 I. Falsa. x x x + x + x. 9 BÂC arc tg x x x ± x (x Q) x x x II. Verdadeira. x π + kπ x π + kπ D {x R/x π + kπ, k Z} III. Verdadeira. tg 0 x. x. x A B 0 C 7

18 Teorema de Pitágoras: ( AB) + ( AC) ( BC) ( ) + ( ) ( BC) ( BC). + ( BC) Portanto, ( AB) + ( BC) ( )² IV. Falsa. θ arc θ y x θ π. V. Falsa. a a a a a )8 0. Incorreta. Pois f (x) arc x 0. Incorreta. x tg x x E x x x x x x E x x x x x x x x E x sec x 0. Correta. Seja f(x ) f(x ). Assim, x x x x ( ) Como g(x) x é decrescente para todo x [ π, π ], temos que: x x x x Note que f(x) no intervalo π π, é crescente. 08. Correta. ² x cotg x x ² x. x x x ² x. x x. x ² x. x x. x 0 x. x ( x ) 0 x. ( x ) 0 x ( x ) 0 x 0 ou x 0 De x 0, temos: x kπ x k π D π x R/ x k De x 0, temos: x 0 x D π x R/ x + kπ, k Z Mas note: x 0, isto é, x kπ. D D D {x R / x kπ}. Portanto, D {x R / π + kπ, K Z}.. Correta. Seja arc x x x Portanto, f(x) é injectiva. x 8 x

19 arc x.. Incorreta. tg x m m tgx sec x m Assim, tg x sec x x x x x. x x x x x x + kπ x x kπ x kπ. ( ) x kπ Seja w k x wπ Para w, temos x π. Substituindo em sec x m: sec x m x m x m π m m m Z, Portanto, existe um m tal que não pertence ao intervalo. Incorreta. x x + E cotgx + sec x + x x x x x x x + x + + E x x E. N.,. 9

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante ano EM Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante Exercícios Introdutórios Exercício a o quadrante b o quadrante

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C).

ENSINO SECUNDÁRIO 11.º ANO. 1. Pela lei dos Senos, tem-se que: = 5. De onde se tem = Logo, a opção correta é a opção (C). ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A A: R E S O L U Ç Ã O D O TR A B A L H O I N D I V I D U A L P R O F E S S O R C A R L O S MI G U E L SA N T O S. Pela lei dos Senos, tem-se que: De onde se tem

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm.

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm. Tarefas 05, 0, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Gabarito: 0. D Calculando: x x x 4x x S,5,5 5 x x 0 x x7 4 ( 7) 5 5 5 x' 0,75 (não convém) x 4 x''

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO

LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA 2º ANO LISTA DE REVISÃO PROVA TRIMESTRAL ÁLGEBRA º ANO. (Udesc) Assinale a alternativa que corresponde ao valor da expressão: 7 cos cos sen tg A) B) 5 C) 9 D) E). (Aman) Os pontos P e Q representados no círculo

Leia mais

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca

Leia mais

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas:

Assinale as questões verdadeiras some os resultados obtidos e marque na Folha de Respostas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Assinale as questões

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A]

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A] Gabarito: Resposta da questão 1: Considere a situação Utilizando da relação de seno temos: cateto oposto 1 x sen(30 ) = = x = 85 cm. hipotenusa 1,7 Resposta da questão : Utilizando a relação de tangente

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3.

a) 7. b) 6. c) 5. d) 1. e) -1. a) 1 b) 1. c) 1. d) 1. e) 3. TRIGONOMETRIA CIRCULAR ) (UFRGS) Se θ = 8 o, então a) tg θ < cos θ < sen θ. b) sen θ < cos θ < tg θ. c) cos θ < sen θ < tg θ. d) sen θ < tg θ < cos θ. e) cos θ < tg θ < sen θ. ) (UFRGS) O menor valor que

Leia mais

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k

MATEMÁTICA MÓDULO 10 EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS 1. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS 1.1. EQUAÇÃO EM SENO. sen a arcsena 2k, k arcsena 2k, k EQUAÇÕES E INEQUAÇÕES TRIGONOMÉTRICAS. EQUAÇÕES TRIGONOMÉTRICAS BÁSICAS Vamos mostrar como resolver equações trigonométricas básicas, onde temos uma linha trigonométrica aplicada sobre uma função e igual

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas

LISTA DE EXERCÍCIOS. Trigonometria no Triângulo Retângulo e Funções Trigonométricas LISTA DE EXERCÍCIOS Pré-Cálculo UFF GMA 09 Trigonometria no Triângulo Retângulo e Funções Trigonométricas [0] (* Em sala de aula vimos como usar um quadrado e um triângulo equilátero para obter os valores

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima.

; b) ; c) Observação: Desconsidere o gabarito dado para esta questão no Caderno de Exercícios e considere a resposta acima. 01 a) A = (a ij ) 2x2, com a ij = i + j A = a 11 a12 a21 a22 a 11 = 1 + 1 = 2 a 12 = 1 + 2 = 3 a 21 = 2 + 1 = 3 a 22 = 2 + 2 = 4 Assim: A = 2 3 3 4 b) A = (a ij ) 2x2, com a ij = i j A = a 11 a12 a21 a22

Leia mais

Esta é só uma amostra do livro do Prof César Ribeiro.

Esta é só uma amostra do livro do Prof César Ribeiro. Esta é só uma amostra do livro do Prof César Ribeiro Para adquirir este (e outros livros do autor) vá ao site: http://wwwescolademestrescom/dicasemacetes Conheça também nosso Blog: http://blogescolademestrescom

Leia mais

Portanto, = 4 1= 2. LETRA D

Portanto, = 4 1= 2. LETRA D TRIGONOMETRIA PARTE QUESTÃO 0 Maior valor (cos (0,0t) -) 585 r(t) 900 + 0,5.( ) Menor valor (cos(0,0t) ) 585 r(t) 500 + 0,5.() Somando, temos: 900 + 500 000 QUESTÃO 0 P QUESTÃO 0 Queremos calcular f()

Leia mais

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0. UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II ESCOLA SECUNDÁRIA COM º CICLO D DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 4 1 Resolva o exercício 11 da página 80 do seu manual Considere

Leia mais

TESTE DE DIAGNÓSTICO

TESTE DE DIAGNÓSTICO TESTE DE DIAGNÓSTICO 9.º 10.º ANO NOME: N.º: TURMA: ANO LETIVO: / DURAÇÃO DO TESTE: 90 MINUTOS DATA: / / O teste é constituído por dois grupos. No Grupo I, são indicadas quatro opções de resposta para

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - o ciclo 018 - a Fase Proposta de resolução Caderno 1 1. Ordenando os dados da tabela podemos identificar os quartis da distribuição: Q 1 41 45 {{ 468 x 540 55 Logo a amplitude

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x =

GABARITO S = { 1, 33; 0, 2} (VERDADEIRO) 08. 2x 5 = 8x x 2 9 x x = 3 e x = 3. x = 7 ± 3. x = 88 0) x 0, 5 aplicando a prop. a n m m a n : 88 5 00 x 88 5 0 x 8 5 0 x 80 5 0 x 75 0 x 75x 0 x 0 75 x 5 multiplicando toda inequação por 0: multiplicando toda inequação por x: Porém, x 0, pois x é o denominador.

Leia mais

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:

TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes: 2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01

MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01 MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 03 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 07 01) f(x) = (x) + f(x) = 4x + f(x) g(x) = (x) g(x) = 4x = g(x) h(x) = (x) h(x) = 4x h(x) 0) Se é uma função linear, pode-se escreer como f(x)

Leia mais

Números e Funções Reais, E. L. Lima, Coleção PROFMAT.

Números e Funções Reais, E. L. Lima, Coleção PROFMAT. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 9 - Seção 9,5 do livro texto da disciplina: Números e Funções Reais,

Leia mais

Matemática B Intensivo V. 2

Matemática B Intensivo V. 2 Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +

Leia mais

8-Funções trigonométricas

8-Funções trigonométricas 8-Funções trigonométricas Laura Goulart UESB 25 de Março de 2019 Laura Goulart (UESB) 8-Funções trigonométricas 25 de Março de 2019 1 / 45 Vale mais ter um bom nome do que muitas riquezas; e o ser estimado

Leia mais

3. Uma quantidade fixa de um gás ideal é mantida a temperatura constante, e seu volume varia com o tempo de acordo com a seguinte fórmula:

3. Uma quantidade fixa de um gás ideal é mantida a temperatura constante, e seu volume varia com o tempo de acordo com a seguinte fórmula: 1. O paralelepípedo reto-retângulo ABCDEFGH, representado na figura, tem medida dos lados AB 4, BC e BF. O seno do ângulo HAF é igual a b) c) d) e) 1 1 10 10. Considere o triângulo retângulo ABD Então,

Leia mais

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam

Leia mais

Funções Trigonométricas

Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Trigonométricas

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

Matemáticas Revisão de trigonometria. a) 4 b) 5 c) 6 d) 7 e) 8. assinale o que

Matemáticas Revisão de trigonometria. a) 4 b) 5 c) 6 d) 7 e) 8. assinale o que Matemáticas Revisão de trigonometria Professor Luiz Amaral E- 1. (Uepg 01) Em um triângulo, as medidas dos lados, em cm, são números inteiros consecutivos e o ângulo maior é igual ao dobro do ângulo menor.

Leia mais

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 11.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

Tira-Teima Curso Mentor. Barbosa, L. S.

Tira-Teima Curso Mentor. Barbosa, L. S. Tira-Teima Curso Mentor Barbosa, L. S. leonardosantos.inf@gmail.com 18 de fevereiro de 01 Lista de Siglas EEAr................................. Escola de Especialistas da Aeronáutica CMRJ.....................................

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

SIMULADO GERAL DAS LISTAS

SIMULADO GERAL DAS LISTAS SIMULADO GERAL DAS LISTAS 1- Sejam as funções f e g definidas em R por f ( x) x + αx g β, em que α e β são números reais. Considere que estas funções são tais que: = e ( x) = ( x x 50) f g Valor mínimo

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Solução do Simulado PROFMAT/UESC 2012

Solução do Simulado PROFMAT/UESC 2012 Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo

Leia mais

EXERCÍCIOS MATEMÁTICA 2

EXERCÍCIOS MATEMÁTICA 2 EXERCÍCIOS MATEMÁTICA 1. (Fgv 01) Em 1º de junho de 009, João usou R$ 150.000,00 para comprar cotas de um fundo de investimento, pagando R$ 1,50 por cota. Três anos depois, João vendeu a totalidade de

Leia mais

MATEMÁTICA Professores: Andrey, Cristiano e Julio

MATEMÁTICA Professores: Andrey, Cristiano e Julio MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5

Leia mais

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17)

Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Errata da lista 1: Na página 4 (respostas), a resposta da letra e da questão 13 é {2, 3, 5, 7, 11, 13, 17} (faltou o número 17) Lista 1 - Bases Matemáticas Elementos de Lógica e Linguagem Matemática 1

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) ) cos (a) ) tg

Leia mais

I. Ora, C(0) = a. (0) + b = 200 b = 200; do mesmo modo, C(6) = a. (6) = 440 6a = 240

I. Ora, C(0) = a. (0) + b = 200 b = 200; do mesmo modo, C(6) = a. (6) = 440 6a = 240 Basta efetuar a multiplicação e fazer i = 1. Dessa forma: xy = (3 + i)(3 i) = 9 3i + 3i i = 9 ( 1) = 10 Alternativa A Sendo x o menor dos quatro temos os números x, x + 1, x + 2 e x + 3. O quadrado perfeito

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]

Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C] Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

RESPOSTAS ESPERADAS MATEMÁTICA

RESPOSTAS ESPERADAS MATEMÁTICA Questão 1 O trapézio em questão tem,8 m de base maior e m de base menor A diferença entre as bases é de 0,8 m, o que, dada a simetria do trapézio, implica uma diferença de 0,4 m de cada lado, como mostrado

Leia mais

Primeira Parte (escolha múltipla)

Primeira Parte (escolha múltipla) ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO FICHA DE TRABALHO Nº MATEMÁTICA º ANO Primeira Parte (escolha múltipla). De um ângulo α sabe-se que sen ( π α) é positivo e que cosα é negativo. Então α pertence a:

Leia mais

3 x + y y 17) V cilindro = πr 2 h

3 x + y y 17) V cilindro = πr 2 h MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009 Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 009 Proposta de resolução 1. 1.1. Como na gaveta 1 existem três maillots (1 preto, 1 cor-de-rosa e 1 lilás), são 3 os casos possíveis, dos quais são

Leia mais

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis

Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MTEMÁTIC - 3o ciclo 008 - a Chamada Proposta de resolução 1. Como a e b são números primos diferentes são primos entre si, ou seja não têm fatores comuns na sua decomposição em fatores primos.

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = det M : determinante da matriz M M : inversa da matriz M MN : produto das matrizes M e N AB

Leia mais

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO

SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 2018 GABARITO SIMULADO 3 INSTITUTO TECNOLÓGICO DE AERONÁUTICA VESTIBULAR 018 GABARITO Física Inglês Português Matemática 1 C 1 * 1 D 1 B B B E C 3 B 3 B 3 D 3 D 4 E 4 C 4 A 4 E 5 A 5 B 5 C 5 C 6 C 6 E 6 E 6 A 7 E 7

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

30's Volume 22 Matemática

30's Volume 22 Matemática 30's Volume Matemática www.cursomentor.com 0 de julho de 015 Q1. Um homem de x + 6 5 altura x + 97 m de altura está de pé próximo a um poste de m. Neste 50 5 caso qual a medida da sombra do homem neste

Leia mais

Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Técnicas de Integração - Continuação Aula 34 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 03 de Junho de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Matemática Trigonometria TRIGONOMETRIA

Matemática Trigonometria TRIGONOMETRIA TRIGONOMETRIA Aula 43 Página 83 1. Calcule o seno, o cosseno e a tangente de 750. Aula 43 Página 83 2. Calcule o seno, o cosseno e a tangente de π/4. Aula 43 Caderno de Exercícios Pág. 47 1. Obtenha a

Leia mais

EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO

EBS DA GRACIOSA - ENSINO SECUNDÁRIO 11.º ANO EBS DA GRACIOSA - ENSINO SECUNDÁRIO.º ANO M A T E M Á T I C A : RES O L U Ç Ã O D A F I C H A D E AV A L I A Ç Ã O P R O F E S S O R C A R L O S MI G U E L SA N T O S GRUPO I. Pelo facto de o triângulo

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

MAT 2A SEMI AULA Interseção com eixo y. x = 0. f (0) = = zeros da função: y = 0. x 2 + 3x = 0 x( x + 3) = 0

MAT 2A SEMI AULA Interseção com eixo y. x = 0. f (0) = = zeros da função: y = 0. x 2 + 3x = 0 x( x + 3) = 0 MAT A SEMI AULA 03 03.01 Interseção com eixo y x 0 f (0) 0 4 0 + 10 10 03.0 zeros da função: y 0 x + 3x 0 x(x + 3) 0 x 0 ou x 3 (0; 0) e (3; 0) 03.04 y 0 x + 4 0 x 4 x R 03.04 x v b ( ) a 1 1 x v 1 1 +

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2010

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2010 Teste Intermédio de MATEMÁTICA - 9o ano de maio de 200 Proposta de resolução. Como são 0 autocolantes no total (número de casos possíveis), dos quais têm imagens de aves (retirando ao número total o número

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970 A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma

Leia mais

Seno e Cosseno de arco trigonométrico

Seno e Cosseno de arco trigonométrico Caderno Unidade II Série Segmento: Pré-vestibular Resoluções Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: Unidade II: Série Seno e Cosseno de arco trigonométrico. sen90 cos80 sen70 ( ) ( )

Leia mais