XI Encontro de Iniciação à Docência

Tamanho: px
Começar a partir da página:

Download "XI Encontro de Iniciação à Docência"

Transcrição

1 4CCENDFMT01 EXEMPLO DE APLICAÇÃO DE UMA METODOLOGIA PARA A SOLUÇÃO DE PROBLEMAS DE FÍSICA E MATEMÁTICA Erielson Nonato (1) e Pedro Luiz Christiano (3) Centro de Ciências Exatas e da Natureza/Departamento de Física/MONITORIA RESUMO: O presente trabalho teve sua origem na observação de que os alunos das disciplinas de física vêm encontrando enormes dificuldades na solução de problemas propostos e na impressão de que tais dificuldades são devidas à ausência de uma heurística adequada à abordagem desses problemas para ordenar a ação dos estudantes. (Objetivo) O presente trabalho visa a apresentar um exemplo de aplicação de uma metodologia proposta para facilitar a resolução de problemas de física. (Descrição Metodológica) Para melhor evidenciar a aplicação da metodologia proposta esta é trabalhada a partir de sua aplicação a um exemplo concreto, um problema clássico em cursos básicos de física. (Resultados) É apresentada de forma bastante detalhada a forma como os diferentes passos da metodologia devem ser seguidos, desde a análise do enunciado do problema até o teste final da solução. (Conclusão) A partir da utilização da metodologia explicitada neste trabalho o estudante poderá ordenar seus esforços para a solução de problemas de física, melhorando sua capacidade de resolvê-los e aprimorando seu entendimento do conteúdo. Palavras Chave: heurística, solução de problemas, Polya Introdução A habilidade em resolver problemas de matemática e de física, diferentemente do que pensa a maioria das pessoas, depende muito mais da utilização de técnica adequada para analisar o enunciado e buscar os caminhos para sua solução do que de uma habilidade natural, um dom, do indivíduo. Neste trabalho apresentamos a solução de um problema de física como um exemplo de como deve ser a abordagem desse tipo de problemas em geral. Para sua solução utilizamos uma adaptação da técnica de solução de problemas desenvolvida por G. Polya e apresentada em seu livro clássico How to Solve It, publicado inicialmente em 1945 e republicado recentemente com uma introdução de John H. Conway, que relembra as palavras de A. H. Schoenfeld a respeito do livro: Para a educação matemática e o mundo da solução de problemas, ele representa uma linha de demarcação entre duas eras, solução de problemas antes e depois de Polya. É nosso objetivo então nesse trabalho apresentar essas técnicas, devidamente adaptadas para sua utilização em problemas de física, aos nossos estudantes pois ) Bolsista, (2) Voluntário/colaborador, (3) Orientador/Coordenador, (4) Prof. colaborador, (5) Técnico colaborador.

2 acreditamos que é muito mais a ausência de técnicas adequadas do que de esforço e dedicação que fazem com que o estudo de física seja tão difícil para a maioria deles. Como a técnica já foi apresentada em outro trabalho, aqui cuidaremos apenas de ilustrá-la, mostrando a sua aplicação a um problema clássico de física básica. Como exemplo, utilizaremos o seguinte problema: Um bloco de massa M é solto de uma altura H 0 e desliza sem atrito sobre um plano inclinado, como mostrado na figura abaixo. Após descer o plano, o bloco entra em um loop, de raio R, onde também não existe atrito. Determine a força normal que atua no bloco quando o mesmo se encontra no ponto B, indicado na figura. Descrição Metodológica Como já observamos em outro trabalho, a heurística proposta para a solução de problemas de física mantém a estrutura de quatro estágios originalmente sugerida por Polya e listados abaixo. 1. Entendendo o problema a ser resolvido 2. Construindo um plano para a sua solução 3. Executando o plano 4. Revisando a solução encontrada Comecemos então a analisar nosso problema a partir do primeiro desses estágios. 1. Entendendo o problema Esse estágio consiste na identificação de diferentes aspectos do enunciado do problema, de forma a fazer com que o mesmo seja plenamente compreendido antes que se proceda à busca de sua solução. Para tanto, o estudante deve buscar as respostas às seguintes questões: Qual é a incógnita? No caso do problema que estamos considerando, a incógnita procurada é a força normal exercida pelo loop sobre o bloco quando o mesmo está passando pelo ponto A. Designaremos essa quantidade por N A. É importante que o estudante atribua à incógnita procurada uma

3 denominação, como fizemos. Deve, a seguir, escrever logo abaixo do enunciado qual a incógnita procurada vê qual foi a designação a ela atribuída, como mostrado abaixo. Incógnita: Força normal que atua sobre o bloco no ponto A (N A ) Quais são os dados? Alguns dados, como a altura em que se inicia o movimento, a massa do bloco, e o raio do loop são fornecidos de forma evidente e devem ser facilmente identificados pelo estudante. Outros, como a velocidade inicial do bloco e a altura do ponto A são fornecidos de forma menos direta: a primeira, através da afirmação de que a partícula é solta, o que implica em que sua velocidade no ponto inicial é nula e a segunda, pela indicação no desenho de que o ponto A e o centro do loop encontram-se à mesma altura. Esta então, necessariamente, é o raio R do loop. Tais dados devem ser resumidos pelo estudante, logo abaixo da identificação da incógnita, na forma mostrada abaixo. Dados: a. Massa do bloco : M b. Altura inicial : h c. Raio do loop : R d. Velocidade inicial do bloco: v 0 = 0 e. Altura do ponto A: R Quais são as condições adicionais do problema? Nesse caso o estudante deve identificar que o bloco, após ser solto, deslizará sem atrito, inicialmente por um plano inclinado e depois pelo loop. Deve observar também que, para que o bloco percorra o loop deve atuar sobre ele uma força centrípeta. O estudante deve então anotar, logo abaixo dos dados: Condições adicionais: Não existe atrito. No loop atua sobre o bloco uma força centrípeta. O passo seguinte consiste em elaborar um plano para a solução do problema. Esse plano é constituído de duas partes, uma conceitual e outra prática. Também ele deve ser construído a partir da resposta a um conjunto de perguntas. Considerando então os aspectos conceituais do plano, o estudante deve começar a responder a seguinte pergunta: 2.1 Qual o princípio básico envolvido na solução do problema? Tal pergunta, também pode ser traduzida para algo do tipo: de que trata o problema? É esse o principal momento em que se percebe mais claramente as diferenças entre principiantes e especialista. Enquanto os primeiros procuram associar o problema a seus aspectos geométricos, como a questão do problema envolver planos inclinados e movimentos circulares, o especialista tende a identificar os princípios envolvidos, no caso, o princípio da

4 conservação da energia mecânica. O estudante deve escrever então, logo abaixo das condições adicionais: Princípio básico: princípio da conservação da energia mecânica. 2.2 Porque esse princípio pode ser aplicado? Ao responder a essa pergunta, o estudante deve ser levado a identificar que é o fato de não haver atrito presente na trajetória descrita pelo bloco que faz com que o princípio da conservação da energia possa ser aplicado. 2.3 Como o princípio básico deve ser aplicado? Esse é um passo crucial no sentido de se começar a resolver o problema de forma propriamente dita. No caso, a identificação de que a energia mecânica inicial deve ser igual à energia mecânica em qualquer outro instante ou posição ocupada pelo bloco, em particular, igual à energia mecânica do bloco no ponto A, é a equação que deve conduzir à solução do problema. Tal equação pode ser escrita como: E 0 = E A Uma vez respondidas essas três perguntas, que consideram os aspectos conceituais da solução do problema, o passo seguinte consiste então na identificação dos passos práticos para a obtenção da incógnita, a partir das condições iniciais e da utilização do princípio básico. Trata-se então de obter uma conexão entre os dados e a incógnita. Para isso, o primeiro passo consiste em se verificar se essa conexão já existe. O estudante deve então responder à pergunta: 2.4 Os dados iniciais juntamente com o princípio básico levam diretamente à solução do problema? Evidentemente só nos interessa aqui o caso em que a resposta a esta questão é não pois só nesse caso o estudante deve continuar sua seu esforço para resolver o problema. O estudante deve observar que não há essa conexão direta porque nem E 0 nem E A são conhecidos diretamente e, mesmo que o fossem, não levam automaticamente à normal N A. Existem então dois caminhos complementares para se chegar à resposta: I Retropropagação da incógnita O estudante deve verificar nesse ponto que a força normal procurada é a força centrípeta responsável por fazer com que o bloco descreva um movimento circular pelo loop. Deve então fazer a identificação: N A = F cent Como a relação entre a força centrípeta e a velocidade da partícula são conhecidos, o estudante pode escrever ainda: F cent = mv 2 A /R

5 Como conhecemos M e R, nosso problema agora está reduzido à determinação de v A. É neste sentido que dizemos que houve uma retropropagação da incógnita, pois ela agora está uma passo mais próximo dos dados iniciais. II Propagação dos dados Como se sabe que a energia mecânica E é determinada pela soma das energias cinética (K) e potencial (U) o estudante pode escrever: E = K + U Por outro lado, essas energias são dadas por: K = ½ mv 2 U = mgh De modo que, com essas definições, pode-se escrever a equação fornecida pela utilização do princípio básico: como: E 0 = E A ½ mv mgh = ½ mv 2 A + mgh A Como a massa pode ser cancelada, pois está presente em todos os termos, usando-se os dados fornecidos inicialmente pode-se escrever: gh = ½ v 2 A + gh A Como v A é a única incógnita nessa equação, e ela é também a quantidade que se necessitava para a obtenção da força normal procurada, isso significa que foi encontrado um caminho conectando os dados iniciais e a incógnita e, portanto, o problema foi virtualmente resolvido. Esse caminho pode ser esquematizado como: Ou seja: dos dados iniciais m e v 0 se obtém K 0 e dos dados m e h se obtém U 0 que, juntas fornecem E 0. O valor dessa energia, juntamente com a equação fornecida pelo princípio básico e com m e H A que juntamente com m e R permitem encontrar F cent que é a força normal procurada. 3. Executando o plano Nessa etapa, as dificuldades são apenas de cálculo e, como observado por Polya, exigem apenas paciência, atenção e alguma habilidade matemática. No entanto, é também

6 uma ótima oportunidade para se testar rigorosamente cada uma das etapas do plano desenvolvido. Teremos então: K 0 = ½ mv 2 0 = 0 (pois v 0 = 0) U 0 = mgh E, então, E 0 = mgh. Como E A = ½ mv 2 A + mgh A tem-se v 2 A = 2g(h-HÁ) Dessa forma, de F cent = mv 2 A / R obtém-se F cent = 2mg(h-HÁ) / R e como F cent = N tem-se N = 2mg(h-HÁ) / R que é a resposta procurada. 4. Revisando a solução encontrada O quarto passo, como proposto por Polya, deve ser não só uma oportunidade de se testar a solução encontrada, como também para se aprender mais sobre o problema, procurando novos caminhos para resolvê-lo ou explorando casos limite interessantes. Como teste, consideremos a análise dimensional da solução. Como a normal é uma força, sua unidade deve ser o Newton. Obviamente, o lado direito da equação que a determina tem que ter a mesma unidade. Vejamos [N] = [m]. [g]([h] [H A ]) / [R] substituindo as grandezas por suas unidades obtém-se N = kg.(m/s 2 )m / m ou seja N = kg.m / s 2. como deveria ser. Como exemplo de caso limite, consideremos o que aconteceria se o bloco fosse solto da altura H A. Nesse caso, nossa solução nos indica que a normal em A seria nula. Apenas um pouco de reflexão é suficiente para verificar que isso é correto porque, tendo sido solto dessa mesma altura, no ponto A o bloco deverá parar. Nesse ponto então não se encontra descrevendo um movimento circular. Logo, não há força centrípeta e, então, também não existe nenhuma normal.

7 Resultados Com a utilização de uma heurística adequada pode-se ver como a solução de um problema de física e/ou matemática pode ser facilitada, permitindo ao estudante, além do desenvolvimento das habilidades necessárias, uma melhor compreensão do problema resolvido e, por conseqüência, dos conteúdos envolvidos. Conclusão Neste trabalho apresentamos um exemplo de aplicação de uma heurística desenvolvida para solução de problemas de física adaptada da proposta por G. Polya. A heurística apresentada visa a estruturar a abordagem iusada pelos estudantes na solução de problemas e a guiá-los no sentido de uma melhor compreensão do enunciado do problema até uma análise mais completa do resultado obtido. Referências G. Polya. How to Sole It. A new aspect of mathematical method. Princeton University Press. Princeton e Oxford, John D. Bransford, Ann L. Brown, and Rodney R. Cocking (editores). How People Learn: Brain, Mind, Experience and School. National Academy Press, Washington, E. J. S. Lima, P. Ronney e P. L. Christiano, Proposta de uma metodologia para solução de problemas de matemática e de física..

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica Unidade 10 Teoremas que relacionam trabalho e energia Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica Teorema da nergia Cinética Quando uma força atua de forma favorável

Leia mais

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA CAPÍTULO 1 AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA Talvez o conceito físico mais intuitivo que carregamos conosco, seja a noção do que é uma força. Muito embora, formalmente, seja algo bastante complicado

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Departamento de Física Universidade do Algarve PÊNDULO SIMPLES

Departamento de Física Universidade do Algarve PÊNDULO SIMPLES Departamento de Física Universidade do lgarve PÊNDULO SIMPLES 1. Resumo Um pêndulo é largado de uma determinada altura, medindo-se a sua velocidade linear quando passa pela posição mais baixa. Este procedimento

Leia mais

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Plantão de Atendimento Horário: terças e quintas-feiras das 14:00 às 16:00. MSN:

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

= R. Sendo m = 3,3. 10 27 kg, V = 3,0. 10 7 m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3,3. 10 27. (3,0. 10 7 ) 2 = (N) 0,45

= R. Sendo m = 3,3. 10 27 kg, V = 3,0. 10 7 m/s e R = 0,45m, calcula-se a intensidade da força magnética. 3,3. 10 27. (3,0. 10 7 ) 2 = (N) 0,45 37 a FÍSICA Em um cíclotron tipo de acelerador de partículas um deutério alcança velocidade final de 3,0 x 10 7 m/s, enquanto se move em um caminho circular de raio 0,45m, mantido nesse caminho por uma

Leia mais

CONSERVAÇÃO DA ENERGIA MECÂNICA

CONSERVAÇÃO DA ENERGIA MECÂNICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T3 Física Experimental I - 2007/08 CONSERVAÇÃO DA ENERGIA MECÂNICA 1. Objectivo Verificar a conservação da energia mecânica de

Leia mais

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s 01 De acordo com o enunciado, não há dissipação ou acréscimo de energia. Considerando que a energia citada seja a mecânica e que, no ponto de altura máxima, a velocidade seja nula, tem-se: ε ε = ' + 0

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

A PROBLEMATIZAÇÃO COMO ESTRATÉGIA METODOLÓGICA

A PROBLEMATIZAÇÃO COMO ESTRATÉGIA METODOLÓGICA A PROBLEMATIZAÇÃO COMO ESTRATÉGIA METODOLÓGICA Jeferson Luiz Appel Dar-se-ia mais significação aos conteúdos conceituais a serem aprendidos pelos alunos pela necessidade de esses adquirirem um novo conhecimento

Leia mais

Problemas de Mecânica e Ondas 11

Problemas de Mecânica e Ondas 11 Problemas de Mecânica e Ondas 11 P. 11.1 ( Exercícios de Física, A. Noronha, P. Brogueira) Dois carros com igual massa movem-se sem atrito sobre uma mesa horizontal (ver figura). Estão ligados por uma

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

LEIS DE CONSERVAÇÃO NA MECÂNICA CLÁSSICA

LEIS DE CONSERVAÇÃO NA MECÂNICA CLÁSSICA LIS D CONSRVAÇÃO NA MCÂNICA CLÁSSICA 1 Na Física um método muito usado para se estudar propriedades que variam com o tempo, consiste em considerar as propriedades que NÃO variam com o tempo. Ao longo da

Leia mais

Lição 5. Instrução Programada

Lição 5. Instrução Programada Instrução Programada Lição 5 Na lição anterior, estudamos a medida da intensidade de urna corrente e verificamos que existem materiais que se comportam de modo diferente em relação à eletricidade: os condutores

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Cálculo de resultante I Considere um corpo sobre o qual atual três forças distintas. Calcule a força resultante. F 1 = 10 N 30 F

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

Provas Comentadas OBF/2011

Provas Comentadas OBF/2011 PROFESSORES: Daniel Paixão, Deric Simão, Edney Melo, Ivan Peixoto, Leonardo Bruno, Rodrigo Lins e Rômulo Mendes COORDENADOR DE ÁREA: Prof. Edney Melo 1. Um foguete de 1000 kg é lançado da superfície da

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2.

E irr = P irr T. F = m p a, F = ee, = 2 10 19 14 10 19 2 10 27 C N. C kg = 14 1027 m/s 2. FÍSICA 1 É conhecido e experimentalmente comprovado que cargas elétricas aceleradas emitem radiação eletromagnética. Este efeito é utilizado na geração de ondas de rádio, telefonia celular, nas transmissões

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A. FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza

Leia mais

EAM- FÍSICA. Comentários da prova de Física EAM 2012:

EAM- FÍSICA. Comentários da prova de Física EAM 2012: Comentários da prova de Física EAM 2012: Comentários elaborado pelo Professor Xiru e revisado Pela Professora Cristiane professores do Liderança Cursos Preparatórios, Rio Grande-RS. No geral, a prova foi

Leia mais

O caso estacionário em uma dimensão

O caso estacionário em uma dimensão O caso estacionário em uma dimensão A U L A 6 Meta da aula Aplicar o formalismo quântico no caso de o potencial ser independente do tempo. objetivos verificar que, no caso de o potencial ser independente

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU

EQUAÇÕES E INEQUAÇÕES DE 1º GRAU 1 EQUAÇÕES E INEQUAÇÕES DE 1º GRAU Equação do 1º grau Chamamos de equação do 1º grau em uma incógnita x, a qualquer expressão matemática que pode ser escrita sob a forma: em que a e b são números reais,

Leia mais

CONSTRUINDO TRIÂNGULOS: UMA ABORDAGEM ENFATIZANDO A CONDIÇÃO DE EXISTÊNCIA E CLASSIFICAÇÕES

CONSTRUINDO TRIÂNGULOS: UMA ABORDAGEM ENFATIZANDO A CONDIÇÃO DE EXISTÊNCIA E CLASSIFICAÇÕES CONSTRUINDO TRIÂNGULOS: UMA ABORDAGEM ENFATIZANDO A CONDIÇÃO DE EXISTÊNCIA E CLASSIFICAÇÕES Poliana de Brito Morais ¹ Francisco de Assis Lucena² Resumo: O presente trabalho visa relatar as experiências

Leia mais

Prova Escrita de Física e Química A

Prova Escrita de Física e Química A Exame Final Nacional do Ensino Secundário Prova Escrita de Física e Química A 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 715/Época Especial Critérios de Classificação 11 Páginas

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.

Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema. SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces

Leia mais

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES Olá, pessoal! Tudo bem? Vou neste artigo resolver a prova de Fïsica para a Polícia Rodoviária Federal, organizada pelo CESPE-UnB. Antes de resolver cada questão, comentarei sobre alguns trechos das minhas

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Força atrito. Forças. dissipativas

Força atrito. Forças. dissipativas Veículo motorizado 1 Trabalho Ocorrem variações predominantes de Por ex: Forças constantes Sistema Termodinâmico Onde atuam Força atrito É simultaneamente Onde atuam Sistema Mecânico Resistente Ocorrem

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por: Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito

CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 009 e 1 o semestre letivo de 010 CURSO de ENGENHARIA (CIVIL, ELÉTRICA, MECÂNICA, PETRÓLEO, DE PRODUÇÃO e TELECOMUNICAÇÕES) NITERÓI - Gabarito

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727).

No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727). 2.1-1 2 As Leis de Newton 2.1 Massa e Força No ano de 1687 foi publicado -com o imprimatur de S. Pepys- a Philosophiae naturalis principia mathematica de Isaac Newton (1643-1727). As três Leis (leges)

Leia mais

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos Resumo de Física 2C13 Professor Thiago Alvarenga Ramos ENERGIA Grandeza escalar que existe na natureza em diversas formas: mecânica, térmica, elétrica, nuclear, etc. Não pode ser criada nem destruída;

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

Física Simples e Objetiva Mecânica Cinemática e Dinâmica Professor Paulo Byron. Apresentação

Física Simples e Objetiva Mecânica Cinemática e Dinâmica Professor Paulo Byron. Apresentação Apresentação Após lecionar em colégios estaduais e particulares no Estado de São Paulo, notei necessidades no ensino da Física. Como uma matéria experimental não pode despertar o interesse dos alunos?

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS 3.º

ESCOLA SECUNDÁRIA DE CASQUILHOS 3.º ESCOLA SECUNDÁRIA DE CASQUILHOS 3.º teste sumativo de FQA 16.dezembro.01 11.º Ano Turma A Professor: Maria do Anjo Albuquerque Duração da prova: 90 minutos. Este teste é constituído por 8 páginas e termina

Leia mais

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g).

QUEDA LIVRE. Permitindo, então, a expressão (1), relacionar o tempo de queda (t), com o espaço percorrido (s) e a aceleração gravítica (g). Protocolos das Aulas Práticas 3 / 4 QUEDA LIVRE. Resumo Uma esfera metálica é largada de uma altura fixa, medindo-se o tempo de queda. Este procedimento é repetido para diferentes alturas. Os dados assim

Leia mais

PLANO DE AULA Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Campus Bento Gonçalves

PLANO DE AULA Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Campus Bento Gonçalves PLANO DE AULA Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul Campus Bento Gonçalves Projeto PIBID-IFRS-BG Área: Física Plano de Aula para Aplicação de Atividade Experimental Nº

Leia mais

Anual de Física para Medicina e Odontologia 2005 - www.fisicaju.com.br - Prof Renato Brito

Anual de Física para Medicina e Odontologia 2005 - www.fisicaju.com.br - Prof Renato Brito Anual de Física para Medicina e Odontologia 005 - www.fisicaju.com.br - Prof Renato Brito AULA 5 TRABALHO E ENERGIA QUESTÃO O enunciado afirmou que o caminhão e o carro estão se movendo com energias cinéticas

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Organizada por: Pedro Alves. A tabela a seguir contém algumas integrais que podem ser úteis durante a prova.

Organizada por: Pedro Alves. A tabela a seguir contém algumas integrais que podem ser úteis durante a prova. SIMULADO 01-1ª Prova de Seleção para as OIF s 2016 1. A prova é composta por CINCO questões. Cada questão tem o valor indicado nos eu início. A prova tem valor total de 100 pontos. 2. Não é permitido o

Leia mais

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical 01 Em uma queda livre, a resultante das forças é o peso; assim: R = P m a = m g a = g = constante Então, se há um movimento uniformemente variado (MUV), os itens b, d, e, g e h estão corretos, e os itens

Leia mais

FÍSICA GABARITO LISTA DE EXERCÍCIOS 2 APOSTILA 13

FÍSICA GABARITO LISTA DE EXERCÍCIOS 2 APOSTILA 13 FÍSICA rof. aphael GABAIO LISA DE EXECÍCIOS AOSILA esposta da questão : a) O enunciado afirma que após atinir a altura de m a velocidade torna-se constante e iual a m/s. Ora, de a s, a ordenada y mantém-se

Leia mais

A mobilização de conhecimentos matemáticos no ensino de Física

A mobilização de conhecimentos matemáticos no ensino de Física Cintia Ap. Bento dos Santos Universidade Cruzeiro do Sul Brasil cintiabento@ig.com.br Edda Curi Universidade Cruzeiro do Sul Brasil edda.curi@cruzeirodosul.edu.br Resumo Este artigo apresenta um recorte

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

DESCOBRINDO ALTURAS POR MEIO DO TEOREMA DE TALES. GT 01 Educação Matemática no Ensino Fundamental: Anos Iniciais e Anos Finais

DESCOBRINDO ALTURAS POR MEIO DO TEOREMA DE TALES. GT 01 Educação Matemática no Ensino Fundamental: Anos Iniciais e Anos Finais DESCOBRINDO ALTURAS POR MEIO DO TEOREMA DE TALES GT 01 Educação Matemática no Ensino Fundamental: Anos Iniciais e Anos Finais Vanessa Faoro UNIJUÍ - vanefaoro@yahoo.com.br Kelly Pereira Duarte UNIJUÍ kelly_duartee@yahoo.com.br

Leia mais

XI Encontro de Iniciação à Docência

XI Encontro de Iniciação à Docência 4CCENDFPLIC01 Proposta de uma metodologia para solução de problemas de matemática e física. Emanoel John dos Santos Lima (1) e Pedro Luiz Christiano (3) Centro de Ciências Exatas e da Natureza, Departamento

Leia mais

LOOPING 1 INTRODUÇÃO. 1.3 Problema (a)- Qual deve ser a altura da queda para que o carro faça o Looping completo?

LOOPING 1 INTRODUÇÃO. 1.3 Problema (a)- Qual deve ser a altura da queda para que o carro faça o Looping completo? FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto de Pesquisa da Primeira Série Série: Primeira Curso: Eletrotécnica Turma: 2112 Sala: 234 Início: 17 de junho de 2009 Entrega: 23 de junho

Leia mais

SOLUÇÃO: RESPOSTA (D) 17.

SOLUÇÃO: RESPOSTA (D) 17. 16. O Ceará é hoje um dos principais destinos turísticos do país e uma das suas atrações é o Beach Park, um parque temático de águas. O toboágua, um dos maiores da América Latina, é uma das atrações preferidas

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Aula 1: Demonstrações e atividades experimentais tradicionais e inovadoras

Aula 1: Demonstrações e atividades experimentais tradicionais e inovadoras Aula 1: Demonstrações e atividades experimentais tradicionais e inovadoras Nesta aula trataremos de demonstrações e atividades experimentais tradicionais e inovadoras. Vamos começar a aula retomando questões

Leia mais

Aceleração Constante

Aceleração Constante Objetivos: Aceleração Constante Encontrar as equações do movimento a aceleração constante e traçar uma metodologia para resolução destes problemas; Detalhar o movimento de Queda Livre para um corpo próximo

Leia mais

RESPOSTA AO RECURSO. FUNDAMENTAÇÃO: Correção de gabarito para alternativa A. a) Somente II está correta.

RESPOSTA AO RECURSO. FUNDAMENTAÇÃO: Correção de gabarito para alternativa A. a) Somente II está correta. QUESTÃO: 13 MOTIVO ALEGADO PELO CANDIDATO: A questão 13 acredito que deveria ser anulada. A alternativa I está incorreta, pois o fluxo magnético através de uma superfície fechada é zero. O fluxo magnético

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. Exercícios A U L A 10 Meta da aula Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. objetivo aplicar os conhecimentos adquiridos nas Aulas 4 a 9 por meio da

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

UMA INVESTIGAÇÃO COM ALUNOS DE UM CURSO DE LICENCIATURA EM MATEMÁTICA SOBRE A MOBILIZAÇÃO DE CONHECIMENTOS MATEMÁTICOS

UMA INVESTIGAÇÃO COM ALUNOS DE UM CURSO DE LICENCIATURA EM MATEMÁTICA SOBRE A MOBILIZAÇÃO DE CONHECIMENTOS MATEMÁTICOS UMA INVESTIGAÇÃO COM ALUNOS DE UM CURSO DE LICENCIATURA EM MATEMÁTICA SOBRE A MOBILIZAÇÃO DE CONHECIMENTOS MATEMÁTICOS Cintia Ap. Bento dos Santos Universidade Cruzeiro do Sul Programa de Pós Graduação

Leia mais

FEP2195 - Física Geral e Experimental para Engenharia I

FEP2195 - Física Geral e Experimental para Engenharia I FEP195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Um corpo de massa m, enfiado em um aro circular de raio R situado em um plano vertical, está preso por uma mola de

Leia mais

O prof Renato Brito Comenta:

O prof Renato Brito Comenta: PROVA DA UFC 009.1 COMENTADA Prof. Renato Brito R 1 = 1 x 10 6 m, Q 1 = 10.000.e R = 1 x 10 3 m Q = 10 n.e 4 n Q1 Q 10.e 10.e 1 6 3 4 π.(r 1) 4 π.(r ) (10 ) (10 ) σ = σ = = Assim, a ordem de grandeza pedida

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Considere uma transformação linear T(x,y) em que, 5 autovetores de T com relação aos auto valores -1 e 1, respectivamente. e,7 são os Determine

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Palavras-chave: Educação Matemática; Avaliação; Formação de professores; Pró- Matemática.

Palavras-chave: Educação Matemática; Avaliação; Formação de professores; Pró- Matemática. PRÓ-MATEMÁTICA 2012: UM EPISÓDIO DE AVALIAÇÃO Edilaine Regina dos Santos 1 Universidade Estadual de Londrina edilaine.santos@yahoo.com.br Rodrigo Camarinho de Oliveira 2 Universidade Estadual de Londrina

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

FÍSICA - Grupos H e I - GABARITO

FÍSICA - Grupos H e I - GABARITO 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Um sistema básico de aquecimento de água por energia solar está esquematizado na figura abaixo. A água flui do reservatório térmico para as tubulações de cobre

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 07 Este é o 7º artigo da série de dicas para facilitar / agilizar os cálculos matemáticos envolvidos em questões de Raciocínio Lógico, Matemática, Matemática Financeira

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais