Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Tamanho: px
Começar a partir da página:

Download "Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista."

Transcrição

1 Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Plantão de Atendimento Horário: terças e quintas-feiras das 14:00 às 16:00. MSN: Telefones: (21) Endereço: Fundação CECIERJ Extensão em Física Rua Visconde de Niterói, 1364 Mangueira, Rio de Janeiro CEP: Se você encontrar erros ou tiver sugestões para melhorar a qualidade das aulas do curso, por favor, nos mande uma mensagem através do link:

2 Aula 2 - Forças Conservativas Considere um bloco caindo verticalmente de uma altura h e despreze a resistência do ar, qual será o trabalho realizado pelo peso? _Ora, se considerarmos a força peso como sendo constante e paralela ao deslocamento, e seu módulo igual à mg, onde g é o módulo da aceleração da gravidade, o trabalho deve ser W = mgh. (5.3.1) Agora considere uma outra situação, em que um bloco desce um plano inclinado de altura h sem atrito, como mostra a Figura 5.3. Se nós supusermos que o bloco percorreu uma distância d ao longo do plano, qual será o trabalho realizado pelo peso? Figura 5.3: Bloco descendo um plano inclinado sem atrito. _Ora, sabendo que a projeção da força na direção do deslocamento é mgsen!, o trabalho será W = mgsen!d. (5.3.2) Mas veja que sen! = h / d. Assim, W = mgh. (5.3.3) _Você percebeu? O trabalho realizado pelo peso para fazer o bloco cair ou descer o plano sem atrito é o mesmo.

3 De fato, mesmo que o bloco percorresse uma trajetória arbitrária, como mostrada na Figura 5.4, por exemplo, o trabalho realizado pelo peso só dependeria da diferença entre a altura inicial e a altura final, porque o trabalho realizado pelo peso não depende da trajetória percorrida, mas apenas dos pontos de onde o corpo partiu e chegou, como vimos na seção anterior. Além disso, se o bloco voltar à mesma altura de onde saiu, o trabalho será nulo. A demonstração desse resultado é simples e muito parecida com a demonstração que fizemos para o caso do sistema massamola; por isso ela será omitida. Figura 5.4: Uma partícula desce um escorrega sem atrito. As Equações (5.3.1) e (5.3.3) acima, mostram que o trabalho realizado pela força gravitacional depende apenas da diferença entre a altura inicial e a altura final, que chamamos de h nessas equações. Essa forma de energia, que só depende da posição em que a partícula se encontra, chama-se de energia potencial, que denotaremos por U. No final deste seção, vamos explicar melhor o significado físico da energia potencial... Por hora, basta você saber que a energia potencial gravitacional, que está associada ao trabalho da força peso, é dada por U (z) = mgz, (5.3.4) onde z é a altura da partícula com relação à origem do eixo OZ. Atenção: Note que a energia potencial depende da escolha da origem do eixo OZ. De fato, quando estamos dentro de um apartamento em um prédio, podemos

4 dizer que a energia potencial de um cinzeiro sobre uma mesa é proporcional à altura da mesa. Mas também podemos dizer que a energia potencial do cinzeiro é proporcional à altura da mesa acrescida da altura do andar em que se encontra o apartamento, ou seja, U = mg( h mesa + h apartamento ). Assim, a origem, a partir do qual mede-se a altura de uma partícula, altera o valor da energia potencial. Agora, vamos voltar ao caso de uma partícula em repouso que cai verticalmente de uma altura h. Usando a Cinemática para os corpos em queda livre, a velocidade da partícula ao atingir o chão deve ser v f = 2gh. (5.3.5) Da mesma forma, uma partícula lançada verticalmente para cima com velocidade 2gh sobe uma distância h até, momentaneamente, parar. Portanto, a velocidade adquirida por uma partícula após cair de uma certa altura é capaz de fazê-la subir até essa mesma altura. Aliás, se um bloco deslizasse sobre um plano inclinado, teríamos um resultado idêntico. De fato, se um bloco parte do repouso e desliza sobre um plano inclinado sem atrito, que faz um ângulo! com a horizontal e tem altura h, depois de percorrer uma distância d, ele atinge a velocidade 2gh. Para demonstrar esse resultado, basta saber que a velocidade é calculada pela conhecida equação de Torricelli,! v 2 f = 2 g h $ " # d % & d, (5.3.6) onde gsen! = gh / d é a aceleração da força resultante que atua sobre o bloco. Logo, v f = 2gh, como queríamos demonstrar. Além disso, se você lançar o bloco com essa mesma velocidade 2gh sobre o plano inclinado, fazendo ele subir, ele percorrerá uma distância d sobre o bloco até momentaneamente parar no alto do plano inclinado, na altura h. Note que esse resultado não depende da inclinação! do plano inclinado, mas apenas da altura em que o bloco se encontra.

5 Na verdade, mesmo que o bloco percorresse uma trajetória arbitrária, como mostrada na Figura 5.4 acima; ainda assim, a velocidade adquirida pelo bloco só dependeria da altura percorrida. Assim, pela equação de Torricelli, a velocidade de uma partícula sob a ação de uma força gravitacional percorrendo uma trajetória arbitrária sem atrito, se escreve como v 2 f = v 2 i! 2g ( z f! z i ), (5.3.7) onde z i e z f são as alturas inicial e final da partícula com relação à origem do eixo OZ. A Equação (5.3.7) acima pode ser reescrita como 1 2 v 2 + gz f f = 1 2 v 2 + gz i i. (5.3.8) Portanto, para qualquer altura da trajetória, a quantidade se conserva. 1 2 v 2 + gz f Se multiplicarmos a expressão acima pela massa da partícula, encontraremos que 1 2 mv2 + mgz = K + U! E, (5.3.9) onde definimos a energia mecânica E como sendo a soma da energia potencial com a energia cinética. Logo, para uma partícula sob a ação da força gravitacional, a energia mecânica se conserva. Atenção: Forças sob ação das quais a energia mecânica se conserva são chamadas de forças conservativas. Em particular, a força peso é um exemplo de força conservativa.

6 Para fixar as idéias, vamos considerar um pedacinho de gelo que se desprende e desliza pelas paredes de uma taça semicircular sem atrito, como mostra a Figura 5.5 abaixo. Figura 5.5: Pedaço de gelo deslizando pelas paredes de uma taça semicircular sem atrito. Quando o pedaço de gelo está parado no alto da taça, ele possui energia potencial gravitacional, o que significa que a força peso pode realizar trabalho sobre ele. Na verdade, é isso que significa dizer que o bloco de gelo possui energia potencial, que é uma forma de energia que fica armazenada em forma de potencial, podendo ser convertida em outro tipo de energia e produzir trabalho. Se supusermos que a origem, a partir do qual medimos a altura, é o fundo da taça semicircular, a energia potencial será U = mgr, onde m é a massa do pedaço de gelo. Por outro lado, como o gelo está em repouso, a energia cinética será nula, K = 0. Então, a energia mecânica no alto da taça, que representaremos por E 1, é E 1 = K + U = 0 + mgr. (5.3.10) Em seguida, o gelo sai do repouso e desliza pelas paredes da taça, a força peso realiza trabalho sobre ele, transformando sua energia potencial em energia cinética. Assim, ao chegar no fundo da taça, o gelo está em movimento e, portanto, possui energia cinética. Por definição, a energia cinética é K = mv 2 / 2, onde v é o módulo da velocidade do gelo ao chegar no fundo da taça. Por outro lado, a energia potencial do gelo no fundo da taça é nula, pois a altura dele é nula. Então, a energia mecânica do gelo ao chegar no fundo da taça, que representaremos por E 2, é E 2 = U + K = mv2. (5.3.11)

7 Como sabemos, a energia mecânica se conserva, pois a força peso é conservativa, temos que E 1 = E 2. Comparando as Equações (5.3.10) e (5.3.11), é fácil calcular a velocidade com que o pedaço de gelo chega no fundo da taça: v = 2gr. Entretanto, é ainda mais interessante perceber que toda a energia potencial foi convertida em energia cinética. Aliás, se tomarmos dois pontos quaisquer da descida; por exemplo: A e B, em que a partícula passa antes por A e depois por B, podemos escrever que a energia mecânica do gelo, no ponto A, é E A = K A + U A e que a energia mecânica, no ponto B, é E B = K B + U B. Como E A = E B, podemos igualar as duas expressões anteriores para escrever isto é,!e = E B " E A = 0 # K B " K A = U A " U B ; (5.3.12)!K = "!U. (5.3.13) Atenção: Como a variação da energia mecânica é nula, temos que, para qualquer trecho da trajetória em que uma força conservativa realiza trabalho sobre um corpo, a variação da energia cinética é igual a menos a variação da energia potencial. Mas depois dessa análise, você poderia se perguntar: Ao chegar no fundo da taça, o pedaço de gelo tem energia cinética, não é? Isso quer dizer que a energia cinética tem capacidade de produzir trabalho? Ora, é claro que sim. Ao chegar no fundo da taça com energia cinética, o gelo começa a subir pela parede do outro lado da taça até chegar no alto. Enquanto sobe, a força peso realiza trabalho negativo sobre ele, diminuindo a energia cinética do pedaço de gelo. Ao chegar no alto da taça, o gelo pára, momentaneamente, e toda a energia cinética foi convertida em energia potencial. Novamente você poderia se perguntar: Ao chegar no alto da taça, o pedaço de gelo tem energia potencial, não é? Isso quer dizer que a energia potencial também tem capacidade de produzir trabalho, não é mesmo?

8 Novamente você tem razão. Ao chegar no alto da taça, o gelo começa a descer pela parede, até alcançar o fundo. Enquanto desce, a força peso realiza trabalho positivo sobre o gelo, aumentando sua energia cinética. Ao chegar no fundo, toda a energia potencial foi transformada em energia cinética novamente. Aliás, se você acha que o gelo começará a subir a parede do outro lado da taça até chegar ao topo, acertou. O gelo deve ficar subindo e descendo indefinidamente sem parar... Sem parar!? Você deve estar se perguntando. Como eu não vejo isso acontecendo todos os dias? Bem, você não vê isso acontecendo todos os dias porque no mundo real existem forças dissipativas, como o atrito. Se considerarmos o atrito, ao descer as paredes da taça, parte da energia potencial, que seria transformada em energia cinética, será transformada em calor, que é transmitido para o exterior do pedaço de gelo. Da mesma forma, ao subir pela parede do outro lado da taça, parte da energia cinética, que seria transformada em energia potencial, é dissipada, fazendo com que o gelo não alcance exatamente o alto da taça, do outro lado. Assim, enquanto vai e volta, o gelo vai subindo cada vez menos, até que finalmente pára. É exatamente isso o que vemos no nosso dia-a-dia. Finalmente, nesse ponto você poderia dizer: Entendi que a força peso é uma força conservativa, que a energia mecânica se conserva quando o peso realiza trabalho sobre um corpo e que a variação da energia cinética é igual à menos a variação da energia potencial para qualquer trecho da trajetória. Mas eu ainda me lembro que você disse, na seção anterior, que a força dada pela Lei de Hooke também era um exemplo de força conservativa. Assim, eu gostaria muito de saber como posso estender a análise da força peso para uma força conservativa variável. Isso é possível? É claro que isso é possível. Na verdade, isso é até bem fácil para o caso de um deslocamento unidimensional, como veremos a seguir. Entretanto, nossa discussão se restringirá ao caso de uma força no movimento unidimensional que só dependa da posição da partícula. No início desta seção, associamos a energia potencial gravitacional ao trabalho realizado pela força peso sobre um corpo que cai de uma determinada altura. De maneira análoga, vamos definir a função energia potencial, U(x), que depende da posição x da partícula, da seguinte forma: x " (5.3.14) U(x) =! F(x ')dx ', x i

9 onde x ' é simplesmente uma variável muda de integração. Comparando a expressão acima com a Equação (5.2.1), em que calculamos o trabalho de uma força variável, vemos que a energia potencial está associada a menos o trabalho que seria realizado pela força sobre uma partícula para ir da posição x i até a posição x. Atenção: Note que o valor da energia potencial depende de uma escolha arbitrária para x i. Como aplicação, vamos considerar a energia potencial gravitacional. Assumindo que o eixo OZ esteja apontado para cima, para qualquer altura z de um corpo sob a ação da força peso, temos que F ( z) =!mg. Logo, pela Equação (5.3.14), a energia potencial gravitacional será: U(z) =! z " z i (!mg)dz' = mgz! mgz i. A escolha de z i é arbitrária e significa escolher a altura em que a energia potencial é nula. Então, ao escolhermos a origem do eixo OZ como z i = 0, encontramos U(z) = mgz. Para o caso da Lei de Hooke, a força é F(x) =!kx e a energia potencial será x U(x) =!" (!kx ')dx ' = 1 kx 2! kx i x i 2. (5.3.15) Ao escolhermos a posição de equilíbrio da mola como x i = 0, temos que U ( x) = 1 2 kx2. (5.3.16) Note que, se a mola não está nem comprimida e nem dilatada, a massa atada à mola não possui energia potencial. Além disso, pela Equação (5.3.14), vemos que a energia potencial armazenada pelo sistema massa-mola, quando está comprimida de uma distância d com relação ao ponto de equilíbrio, possui a mesma energia

10 potencial quando está dilatada da mesma distância d. Em ambos os casos, a energia potencial é U = kd 2 / 2. De fato, quando está dilatada, a energia potencial é d U =!" (!kx ')dx ' = 1 2 kd 2. Por sua vez, quando está comprimida, a energia potencial é!d 0 U =! " (!kx ')dx ' =! " kx 'dx ' = 1 kd !d Agora, vamos considerar o caso em que a forca resultante aplicada sobre um corpo no movimento unidimensional só dependa da posição da partícula. Se representarmos por W xi!x f o trabalho realizado pela força resultante para fazer uma partícula ir da posição inicial x i até a posição final x f, podemos dizer que a variação da energia potencial da partícula,!u = U x f ( ), é ( ) " U x i!u = "W xi #x f, (5.3.17) pela definição de energia potencial vista na Equação (5.3.14). Por outro lado, pela Equação (5.2.11), quando a força resultante só depende da posição, o trabalho realizado pela resultante para fazer uma partícula ir da posição inicial x i até a posição final x f, é igual à variação da energia cinética. Portanto, basta combinar esses dois resultados para dizer que, para uma força resultante de uma partícula que só dependa da sua posição no movimento unidimensional, a variação da energia cinética da partícula é igual a menos a variação da sua energia potencial, isto é,!k = "!U. Aliás, isso é o mesmo que dizer que: Atenção: A energia mecânica de uma partícula se conserva quando a força resultante que atua sobre ela só depende da sua posição, no movimento unidimensional.

11 Para demonstrar isso, basta escrever!k = K f " K i e!u = U x f ( ). Como!K = "!U, temos que ( ) " U x i E f! K f + U ( x f ) = K i + U ( x i )! E i. Logo, a energia mecânica em x i, representada por E i, é igual à energia mecânica em x f, representada por E f, ou seja, a energia mecânica se conserva quando a força resultante realiza trabalho entre as posições x i e x f. Finalmente, como conseqüência do resultado acima, podemos dizer que: Atenção: Se uma força aplicada sobre uma partícula só depende da sua posição no movimento unidimensional, essa força é conservativa. Em particular, a força dada pela Lei de Hooke é conservativa. Curiosidade: Neste ponto, vamos reproduzir um comentário pertinente feito pelo Prof. H. Moysés Nussenzveig em seu livro Curso de Física Básica, v.1 : Poderia parecer, à primeira vista, que a força de atrito cinético ( F a = µ c N ) satisfaz ao critério de só depender da posição, uma vez que µ c é (aproximadamente) independente da velocidade, o que caracteriza uma força conservativa. Entretanto, mesmo que a magnitude da força seja independente da velocidade, o seu sentido se inverte quando a velocidade se inverte. Assim, o vetor! F a depende da velocidade, e a força correspondente é, de fato, dissipativa.

12 Figura 5.6: Sistema massa-mola. a) A mola está dilatada de uma distância x a partir da sua posição de equilíbrio. Nesse ponto a força restauradora é negativa, embora a posição da massa seja positiva. b) Sistema massa-mola na posição de equilíbrio. Nesse ponto a mola não exerce força sobre a massa. c) A mola está comprimida de uma distância x. A força restauradora é positiva, embora a posição da massa seja negativa. Para fixar as idéias, considere o sistema massa-mola. Suponha que a mola seja dilatada de uma certa distância x, medida a partir da posição de equilíbrio, como mostra a Figura 5.6.a acima. Em seguida, imagine que a massa atada à mola seja largada. O que deve acontecer? Bem, se você estudou com atenção a discussão que fizemos acima para uma força conservativa, você já deve saber que, ao ser dilatada, o sistema massa-mola armazenou energia potencial; portanto, a força restauradora da mola pode produzir trabalho. Assim, essa força restauradora realiza trabalho positivo sobre a massa, fazendo com que o sistema adquira energia cinética. Ao chegar à posição de equilíbrio, em que a mola não está nem dilatada e

13 nem comprimida, toda a energia potencial foi transformada em energia cinética. Essa situação é ilustrada pela Figura 5.6.b. Nós poderíamos lhe perguntar, então: Qual foi o trabalho realizado pela força restauradora para fazer a massa ir da posição x até a posição 0? _Ora, o trabalho é dado pela Equação (5.2.1), o que significa resolver uma integral. Entretanto, também sabemos que o trabalho realizado é menos a variação da energia potencial. Portanto, $ W x!0 = "#U = " 0 " 1 ' % & 2 kx2 ( ) = 1 2 kx2. A partir desse ponto, é interessante perceber que a massa continuará se deslocando, comprimindo a mola. Essa compressão continuará até que a mola esteja comprimida de uma distância x, quando o sistema pára momentaneamente. Essa situação está ilustrada pela Figura 5.6.c. Enquanto foi comprimida, a força restauradora da mola realizou trabalho negativo retirando a energia cinética do sistema, que foi toda transformada em energia potencial. Podemos calcular o trabalho realizado pela força para fazer a massa ir da posição 0 até a posição x: $ W 0!" x = "#U = " 1 ' 2 kx2 " 0 % & ( ) = " 1 2 kx2. Combinando os dois resultados anteriores, percebemos que o trabalho realizado pela força restauradora para fazer a massa sair da posição x até a posição x é zero. Mas isso não encerra nossa discussão, pois, como está comprimida e o sistema possui energia potencial, a força restauradora é capaz de produzir trabalho. Assim, a massa continuará se deslocando, agora na direção contrária, até parar momentaneamente na posição de onde tinha saído, em que a mola está dilatada de uma distância x, como mostra a Figura 5.6.a. Na verdade, a massa vai e vem indefinidamente, pois apenas uma força conservativa atua sobre o sistema. É fácil ver que o trabalho realizado pela força restauradora para ir da posição x até a posição x é zero. (Esse cálculo é simples e similar ao feito para o trabalho realizado entre x e x.). Assim, podemos combinar todos os resultados anteriores e concluir que o trabalho realizado pela força restauradora da mola para fazer a massa ir e voltar ao ponto de onde saiu é zero.

14 Essa é uma característica de uma força conservativa no movimento unidimensional, em que o trabalho realizado para ir e voltar ao mesmo ponto é nulo. Curiosidade: Na verdade, é assim que testamos para ver se uma força é conservativa no movimento tridimensional. De fato, no caso geral, dizemos que uma força atuando sobre uma partícula é conservativa quando! " F! d l! = 0, (5.3.18) C onde C é qualquer trajetória fechada realizada pela partícula. Isso é análogo a dizer que o trabalho realizado pela força sobre a partícula para sair de um determinado ponto no espaço e voltar ao mesmo ponto descrevendo uma curva arbitrária é zero. Obviamente, o cálculo da integral de linha acima está fora do objetivo deste curso e não será cobrado nas avaliações. Como um último comentário, considere a energia potencial associada a uma força resultante que só dependa da posição no movimento unidimensional. Da Equação (5.3.14), podemos usar o famoso Teorema Fundamental do Cálculo para escrever: ( ) =! du(x) R x dx, (5.3.19) onde R( x) é a função força resultante, que só depende da posição da partícula, x, no movimento unidimensional. Podemos, então, usar a 2ª Lei de Newton para reescrever a Equação (5.3.19) acima por a(x) =! 1 m ( ) dx du x, (5.3.20) o que nos permite obter a função aceleração da partícula. Assim, se conhecemos a energia potencial da partícula e também a sua posição e a sua velocidade em um instante inicial, o que corresponde a fornecer as condições de contorno do problema, podemos descrever completamente o movimento da partícula.

15 Na verdade, em diversas aplicações, pode ser mais conveniente estudar o movimento de um sistema através da sua energia mecânica, do que tentar identificar todas as forças que atuam sobre um sistema e calcular as forças resultantes sobre cada partícula. Aliás, as implicações dessa afirmação são imensas, mas, infelizmente, não podem ser totalmente explicadas em um curso de Física básica.

16 Créditos: Texto de Lizardo H. C. M. Nunes Logotipo da Extensão em Física criado por André Nogueira

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m. Referência: Sears e Zemansky Física I Mecânica Capítulo 7: Energia Potencial e Conservação da Energia Resumo: Profas. Bárbara Winiarski Diesel Novaes. INTRODUÇÃO Neste capítulo estudaremos o conceito de

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

CONSERVAÇÃO DA ENERGIA

CONSERVAÇÃO DA ENERGIA CONSERVAÇÃO DA ENERGIA Introdução Quando um mergulhador pula de um trampolim para uma piscina, ele atinge a água com uma velocidade relativamente elevada, possuindo grande energia cinética. De onde vem

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13 Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia

Leia mais

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Cálculo de resultante I Considere um corpo sobre o qual atual três forças distintas. Calcule a força resultante. F 1 = 10 N 30 F

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia potencial

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos Energia 1-Uma pequena bola de borracha, de massa 50g, é abandonada de um ponto A situado a uma altura de 5,0m e, depois de chocar-se com o solo, eleva-se verticalmente até um ponto B, situado a 3,6m. Considere

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

Energia & Trabalho. Aula 3

Energia & Trabalho. Aula 3 Todo o material disponibilizado é preparado para as disciplinas que ministramos e colocado para ser acessado livremente pelos alunos ou interessados. Solicitamos que não seja colocado em sites nãolivres.

Leia mais

Força atrito. Forças. dissipativas

Força atrito. Forças. dissipativas Veículo motorizado 1 Trabalho Ocorrem variações predominantes de Por ex: Forças constantes Sistema Termodinâmico Onde atuam Força atrito É simultaneamente Onde atuam Sistema Mecânico Resistente Ocorrem

Leia mais

APLICAÇÕES DAS EQUAÇÕES DE EULER-LAGRANGE

APLICAÇÕES DAS EQUAÇÕES DE EULER-LAGRANGE APLICAÇÕES DAS EQUAÇÕES DE EULER-LAGRANGE Eliomar Corrêa Caetano Universidade Católica de Brasília Orientador: Cláudio Manoel Gomes de Sousa RESUMO Neste trabalho estudamos três aplicações das equações

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Ec = 3. 10 5 J. Ec = m v 2 /2

Ec = 3. 10 5 J. Ec = m v 2 /2 GOIÂNIA, / / 015 PROFESSOR: MARIO NETO DISCIPLINA:CIÊNCIA NATURAIS SÉRIE: 9º ALUNO(a): No Anhanguera você é + Enem Uma das formas de energia, que chamamos de energia mecânica, que pode ser das seguintes

Leia mais

Provas Comentadas OBF/2011

Provas Comentadas OBF/2011 PROFESSORES: Daniel Paixão, Deric Simão, Edney Melo, Ivan Peixoto, Leonardo Bruno, Rodrigo Lins e Rômulo Mendes COORDENADOR DE ÁREA: Prof. Edney Melo 1. Um foguete de 1000 kg é lançado da superfície da

Leia mais

FEP2195 - Física Geral e Experimental para Engenharia I

FEP2195 - Física Geral e Experimental para Engenharia I FEP195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Um corpo de massa m, enfiado em um aro circular de raio R situado em um plano vertical, está preso por uma mola de

Leia mais

Movimento Harmônico Simples: Exemplos (continuação)

Movimento Harmônico Simples: Exemplos (continuação) Movimento Harmônico Simples: Exemplos (continuação) O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um ponto O e que

Leia mais

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Curso de Engenharia Civil Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Posição e Coordenada de Referência Posição é o lugar no espaço onde se situa o corpo. Imagine três pontos

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos Resumo de Física 2C13 Professor Thiago Alvarenga Ramos ENERGIA Grandeza escalar que existe na natureza em diversas formas: mecânica, térmica, elétrica, nuclear, etc. Não pode ser criada nem destruída;

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade. Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

CONSERVAÇÃO DA ENERGIA MECÂNICA

CONSERVAÇÃO DA ENERGIA MECÂNICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T3 Física Experimental I - 2007/08 CONSERVAÇÃO DA ENERGIA MECÂNICA 1. Objectivo Verificar a conservação da energia mecânica de

Leia mais

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s 01 De acordo com o enunciado, não há dissipação ou acréscimo de energia. Considerando que a energia citada seja a mecânica e que, no ponto de altura máxima, a velocidade seja nula, tem-se: ε ε = ' + 0

Leia mais

Energia Cinética e Trabalho

Energia Cinética e Trabalho Energia Cinética e Trabalho Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa uma força realizar um trabalho sobre

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica Unidade 10 Teoremas que relacionam trabalho e energia Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica Teorema da nergia Cinética Quando uma força atua de forma favorável

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2. Cinemática. Isabelle Araújo Engenharia de Produção Myllena Barros Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2. Cinemática. Isabelle Araújo Engenharia de Produção Myllena Barros Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Cinemática Isabelle Araújo Engenharia de Produção Myllena Barros Engenharia de Produção Cinemática Na cinemática vamos estudar os movimentos sem

Leia mais

FÍSICA - Grupos H e I - GABARITO

FÍSICA - Grupos H e I - GABARITO 1 a QUESTÃO: (,0 pontos) Avaliador Revisor Um sistema básico de aquecimento de água por energia solar está esquematizado na figura abaixo. A água flui do reservatório térmico para as tubulações de cobre

Leia mais

Física Fácil prof. Erval Oliveira. Aluno:

Física Fácil prof. Erval Oliveira. Aluno: Física Fácil prof. Erval Oliveira Aluno: O termo trabalho utilizado na Física difere em significado do mesmo termo usado no cotidiano. Fisicamente, um trabalho só é realizado por forças aplicadas em corpos

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS 3.º

ESCOLA SECUNDÁRIA DE CASQUILHOS 3.º ESCOLA SECUNDÁRIA DE CASQUILHOS 3.º teste sumativo de FQA 16.dezembro.01 11.º Ano Turma A Professor: Maria do Anjo Albuquerque Duração da prova: 90 minutos. Este teste é constituído por 8 páginas e termina

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

Trabalho e Conservação da Energia

Trabalho e Conservação da Energia Trabalho e Conservação da Energia Os problemas relacionados com a produção e consumo de energia ocupam diariamente os noticiários de TV, rádios e jornais e constituem uma constante preocupação do governo

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical

Física Unidade IV Balística Série 1 - Queda livre e lançamento vertical 01 Em uma queda livre, a resultante das forças é o peso; assim: R = P m a = m g a = g = constante Então, se há um movimento uniformemente variado (MUV), os itens b, d, e, g e h estão corretos, e os itens

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

Tópico 8. Aula Prática: Sistema Massa-Mola

Tópico 8. Aula Prática: Sistema Massa-Mola Tópico 8. Aula Prática: Sistema Massa-Mola. INTRODUÇÃO No experimento anterior foi verificado, teoricamente e experimentalmente, que o período de oscilação de um pêndulo simples é determinado pelo seu

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli 1. A figura abaixo mostra o mapa de uma cidade em que as ruas retilíneas se cruzam perpendicularmente e cada quarteirão

Leia mais

1 Introdução a Cinemática

1 Introdução a Cinemática 1 Introdução a Cinemática A cinemática é a parte da mecânica que estuda e descreve os movimentos, sem se preocupar com as suas causas. Seu objetivo é descrever apenas como se movem os corpos. A parte da

Leia mais

Física 2005/2006. Capitulo 5. Trabalho e Energia

Física 2005/2006. Capitulo 5. Trabalho e Energia ísica 005/006 Capitulo 5 Trabalho e Energia Trabalho e Energia A ideia de energia está intimamente ligada à de trabalho. Intuitivamente, podemos pensar em energia como alguma coisa que se manifesta continuamente

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE:

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: 01. As pirâmides do Egito estão entre as construções mais conhecidas em todo o mundo, entre outras coisas pela incrível capacidade de engenharia

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Lista de Exercícios - Movimento em uma dimensão

Lista de Exercícios - Movimento em uma dimensão UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - Movimento em uma dimensão Perguntas 1. A Figura 1 é uma gráfico

Leia mais

Solução O valor mínimo necessário para manter o bloco deslizando com velocidade constante é Fcos c P Fsen, de onde se obtém

Solução O valor mínimo necessário para manter o bloco deslizando com velocidade constante é Fcos c P Fsen, de onde se obtém Problemas Resolvidos do Capítulo 7 CONSERVAÇÃO DA ENERGIA NO MOVIMENTO GERAL Atenção Leia o assunto no livro-texto e nas notas de aula e reproduza os problemas resolvidos aqui. Outros são deixados para

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;

Leia mais

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton.

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton. CAPÍTULO 8 As Leis de Newton Introdução Ao estudarmos queda livre no capítulo cinco do livro 1, fizemos isto sem nos preocuparmos com o agente Físico responsável que provocava a aceleração dos corpos em

Leia mais

Unidade 11 Dissipação e Conservação da Energia Mecânica. Sistemas Dissipativos Sistemas Conservativos

Unidade 11 Dissipação e Conservação da Energia Mecânica. Sistemas Dissipativos Sistemas Conservativos Unidade 11 Dissipação e Conservação da Energia Mecânica Sistemas Dissipativos Sistemas Conservativos Introdução Conforme a interpretação que fizemos do Teorema da Energia Mecânica, dependendo do valor

Leia mais

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR:

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR: 2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE DATA: / / 2011 PROFESSOR: ALUNO(A): Nº: NOTA: Questão 1 - A cidade de São Paulo tem cerca de 23 km de raio. Numa certa madrugada, parte-se de carro, inicialmente

Leia mais

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES Olá, pessoal! Tudo bem? Vou neste artigo resolver a prova de Fïsica para a Polícia Rodoviária Federal, organizada pelo CESPE-UnB. Antes de resolver cada questão, comentarei sobre alguns trechos das minhas

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

LEI DA CONSERVAÇÃO DE ENERGIA MECÂNICA. LEI DA VARIAÇÃO DA ENERGIA MECÂNICA.

LEI DA CONSERVAÇÃO DE ENERGIA MECÂNICA. LEI DA VARIAÇÃO DA ENERGIA MECÂNICA. LEI DA CONSERVAÇÃO DE ENERGIA MECÂNICA. LEI DA VARIAÇÃO DA ENERGIA MECÂNICA. OTRABALHO REALIZADO PELO PESO DE UM CORPO E A VARIAÇÃO DA ENERGIA POTENCIAL GRAVÍTICA O que têm em comum estas duas situações?

Leia mais

Exercício 1E pag 149. F x = 10cm = 0,1m. P = 37000 x 10³N

Exercício 1E pag 149. F x = 10cm = 0,1m. P = 37000 x 10³N Exercício 1E pag 149 (a) Em 1975, o telhado do Velódromo de Montreal, que pesava 37000 x 10³N, foi levantado 10 cm para ser centralizado. Qual o trabalho executado pelas máquinas que levantaram o telhado?

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é:

A equação da posição em função do tempo t do MRUV - movimento retilíneo uniformemente variado é: Modellus Atividade 3 Queda livre. Do alto de duas torres, uma na Terra e outra na Lua, deixaram-se cair duas pedras, sem velocidade inicial. Considerando que cada uma das pedras leva 3,0s atingir o solo

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais

Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por

Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por Força conservativa Já vimos que a energia gravitacional entre duas partículas de massas m 1 e m 2, com vetores posição em r 1 e r 2, respectivamente, é dada por U 12 = Gm 1m 2 r 2 r 1. Vimos também que

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO MOVIMENTOS VERTICAIS NO VÁCUO MOVIMENTOS VERTICAIS NO VÁCUO 4.1 - INTRODUÇÃO Desde a antigüidade o estudo dos movimentos verticais era de grande importância para alguns cientistas conceituados, este era

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades dos móveis variam com o decurso do tempo, introduz-se o conceito de uma grandeza

Leia mais

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A. FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza

Leia mais

O prof Renato Brito Comenta:

O prof Renato Brito Comenta: PROVA DA UFC 009.1 COMENTADA Prof. Renato Brito R 1 = 1 x 10 6 m, Q 1 = 10.000.e R = 1 x 10 3 m Q = 10 n.e 4 n Q1 Q 10.e 10.e 1 6 3 4 π.(r 1) 4 π.(r ) (10 ) (10 ) σ = σ = = Assim, a ordem de grandeza pedida

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 13:37. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 13:37. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 03 Capítulo 07 1. (Pergunta 01) Classifique

Leia mais

Os princípios fundamentais da Dinâmica

Os princípios fundamentais da Dinâmica orça, Trabalho,Quantidade de Movimento e Impulso - Série Concursos Públicos M e n u orça, Exercícios Trabalho,Quantidade propostos Testes de Movimento propostos e Impulso Os princípios fundamentais da

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais