Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Algoritmos Genéticos: Aspectos Práticos. Estéfane G. M. de Lacerda DCA/UFRN Junho/2009"

Transcrição

1 : Aspectos Práticos Estéfane G. M. de Lacerda DCA/UFRN Junho/2009

2 Principais Tópicos População Inicial Funções Objetivo de Alto Custo Critérios de Parada Convergência Prematura Diversidade Tipos de Substituição Problemas na Aptidão Ranking Seleção por Torneio Amostragem Estocástica Uniforme

3 População Inicial (1/3) Gerada Aleatoriatoriamente. Gerada uniformente em uma grade. Gerada com tendenciosidade para regiões promissoras do espaço de busca

4 População Inicial (2/3) Para garantir que toda posição da cadeia tem 0 e 1 na população: Gera a primeira metade da população aleatoriamente. Inverte todos os bits da primeira metade: tem-se a segunda metade. 1a. metade 2a. metade

5 População Inicial (3/3) Seeding: insere a solução obtida por outro método de otimização na população inicial (garante que AG não fará pior do que o outro método) Iniciar com uma larga população inicial e depois reduzir o tamanho.

6 Convergência Prematura (1/2) O AG converge para um mínimo/máximo local.

7 Convergência Prematura (2/2) Causas: Excessivo números de filhos de um mesmo indivíduo (o superindivíduo) Perda de diversidade. Deriva Genética (Genetic Drift) Desaparecimento de genes na população devido puramente ao acaso. Ocorre principalmente em pequenas populações. Alta pressão de seleção.

8 Diversidade (1/2) Combatendo a perda de diversidade Aumentar a taxa de mutação. Evitar cromossomos duplicatas na população. Diminuir a pressão da seleção.

9 Diversidade (2/2) Combatendo a perda de diversidade Controlar o número de filhos do superdíviduo (indivíduo com alta aptidão, mas não com aptidão ótima) usando: Ranking. Escalonamento. Seleção por torneio.

10 Tipos de Substituição Substituição Geracional Substituição Geracional com Elitismo Substituição de Regime Permanente (do inglês steady state)

11 Substituição Geracional Seja N o tamanho da população: Os N pais são substituídos pelos N filhos em cada geração. Os N pais são substituídos por N individuos do conjunto união de pais e filhos. Comentário: o segundo caso aumenta a pressão de seleção.

12 Substituição Geracional com Elitismo Os k < N melhores pais nunca são substituídos. Tipicamente k = 1 Aumentando k aumenta a pressão de seleção (risco de convergência prematura).

13 Substituição de Regime Permanente (1/2) Em cada geração apenas 2 (ou 1) filhos são gerados e substituem: Os 2 piores indivíduos da população. Os pais. Os 2 indivíduos mais velhos (i.e., que estão a mais tempo da população), pois já transmitiram os seus genes. Taxa de crossover é geralmente alta (~1).

14 Substituição de Regime Permanente (2/2) Alternativamente, k < N filhos são gerados e substituem os k piores indivíduos. Evitar inserir um filho na população quando já existe uma duplicata dele na população.

15 Problemas na Aptidão (1/3) Aptidão negativa não funciona com a roleta. Aptidão excessivamente alta Poucos individuos ocupando larga fatia da roleta Muitos individuos ocupando pequena fatia da roleta Causa convergência prematura Solução: controlar o número de filhos do superindivíduo..

16 Problemas na Aptidão (2/3) Resolução insuficiente para diferenciar os melhores dos piores individuos. A seleção torna-se aleatória (Passeio ao Acaso). Convergência lenta

17 Problemas na Aptidão (3/3) Exemplo: Função Cromossomo objetivo A 2000, B 2000, C 2000, D 2000, E 2000, Probabilidade de seleção 20,004% 20,002% 20,001% 19,998% 19,995% Soluções Expandir o intervalo da aptidão (usando ranking, escalamento linear) Seleção por torneio

18 Ranking Linear (1/3) f i = Min + ( Max Min) N N i 1 Onde i é o índice do cromossomo na população em ordem decrescente de valor da função objetivo. Ranking linear requer: 1 Max 2 Max + Min = 2 Valores bons para Max: de 1.2 a 1.5

19 Ranking Linear (2/3) Cromossomo Função objetivo rank A 2000, B 2000, C 2000, D 2000, E 2000, aptidão 2,0 1,5 1,0 0,5 0,0 probabilidade de seleção 40% 30% 20% 10% 0%

20 Ranking Linear (3/3) Controlando a pressão da seleção por Ranking linear: maior pressão => mais intensificação; menos pressão => mais diversificação. max aptidão min N alta pressão de seleção rank aptidão max min baixa pressão de seleção N rank

21 Ranking Exponencial f i =q 1 q i 1 q [0, 1] e i é o índice do cromossomo na população em ordem decrescente de valor da função objetivo. Ranking exponencial permite maior pressão de seleção do que o ranking linear.

22 Escalonamento Linear Escalonamento linear f = ag + b f max onde g é o valor da função objetivo a e b são determinados tal que o número máximo de filhos do melhor indivíduo seja no máximo igual a C (onde tipicamente C = 2) f f min g min g g max

23 Seleção por Torneio Escolhe-se k (tipicamente 2) indivíduos aleatoriamente da população e o melhor é selecionado. Não é proporcional a aptidão, Não é necessário roda da roleta, escalamento da aptidão ou ranking.

24 Seleção por Torneio Indivíduos Aptidão A1 625 A2 225 A3 196 A4 100 Torneios A4 x A1 A3 x A2 A2 x A4 A3 x A3 Os indivíduos são selecionados para os torneios com igual probabilidade. O torneio é vencido pelo indivíduo com maior aptidão pais selecionados A1 A2 A2 A3

25 Seleção por Torneio Aumentando o tamanho k do torneio acarreta: Aumento da pressão de seleção. Risco de convergência prematura. Por isso, o torneio binário é o mais utilizado.

26 Seleção por Torneio Seleção por torneio com probabilidades (Reduz ainda mais a pressão de seleção) 1) O melhor indivíduo do torneio é selecionado com probabilidade p > 0,5 2) O segundo melhor é selecionado com probabilidade p(1-p) 3) O terceiro é selecionado com probabilidade p(1-p) 2 4) e assim por diante...

27 Amostragem Estocástica Uniforme Evita a grande variância de filhos esperados do método da roleta (é tão perfeito quanto possivel) N ponteiros igualmente espaçados. c d e b a Pais selecionados a a b c d

28 Critérios de Parada Atingiu um dado número de gerações ou avaliações. Encontrou a solução (quando esta é conhecida). Perda de diversidade. Convergência: não ocorre melhora significativa na solução durante um dado número de gerações.

29 Funções Objetivo de Alto Custo (1/3) Em muitos problemas do mundo real o custo computacional do AG está concentrado na avalição do individuo. Exemplo: Simulação completa de um processo. Um treinamento de uma rede neural.

30 Funções Objetivo de Alto Custo (2/3) Dicas para reduzir o números de reavaliações do indivíduo: Evitar cromossomos iguais na população inicial. Verificar se o filho já existe nas populações passadas e na atual. Verificar se filho = pai (e.g. checar se crossover e mutação foi aplicado). Manter a população com cromossomos distintos.

31 Funções Objetivo de Alto Custo (3/3) Simplificar a função objetivo (pelo menos nas gerações iniciais) Usar um método de subida de encosta quando o AG já encontrou as regiões promissoras do espaço de busca (nas gerações finais).

32 Descobrindo a Frase Secreta Desenvolver um AG para descobrir um frase dada pelo usuário.

33 Descobrindo a Frase Secreta Cromossomo Representar usando código ASCII. Familia = (102,97,109,105,108,105,97) Espaço de busca Existem 26 maiusculas + 26 minusculas + espaço em branco. Para um frase com N caracteres há: ( ) N combinações possíveis.

34 Descobrindo a Frase Secreta Função objetivo. N f = i=1 frase [i ] -cromo[i ] 2

35 Descobrindo a Frase Secreta Exemplos: familia (102,97,109,105,108,105,97) ebnhmhb (101,98,110,104,109,104,98) função objetivo = 7 familiz (102,97,109,105,108,105,122) função objetivo = 25 O que há de errado nesta função objetivo?

36 Descobrindo a Frase Secreta Função objetivo alternativa. N f = i=1 1 sinal frase [i ]-cromo[ i ] onde sinal x ={ 1 se x=0 0 se x 0

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Prof. Kléber de Oliveira Andrade pdjkleber@gmail.com Algoritmos Genéticos Conteúdo Introdução O Algoritmo Genético Binário Noções de Otimização O Algoritmo Genético com Parâmetros

Leia mais

Representação por Números Reais

Representação por Números Reais Representação por Números Reais Cromossomas expressam valores através de números reais (ponto flutuante) e não em binário Para apresentarmos essa representação vamos introduzir o conceito de hibridização

Leia mais

Algoritmos Genéticos. Luis Martí LIRA/DEE/PUC-Rio. Algoritmos Genéticos

Algoritmos Genéticos. Luis Martí LIRA/DEE/PUC-Rio. Algoritmos Genéticos Luis Martí LIRA/DEE/PUC-Rio Baseado nas transparências dos professores: Teresa B. Ludermir (UFPE) Ricardo Linden (CEPEL) Marco Aurélio Pacheco (PUC-Rio) Conteúdo! Introdução! O Algoritmo Genético Binário!

Leia mais

29/Abril/2015 Aula 17

29/Abril/2015 Aula 17 4/Abril/015 Aula 16 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados

Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados GA em Otimização Combinatorial Problemas onde a busca da solução depende da avaliação de diversas combinações (ORDEM) dos elementos considerados Problem a do Caixeiro Viajante Problem as de Planejamento

Leia mais

Algoritmos Genéticos (GA s)

Algoritmos Genéticos (GA s) Algoritmos Genéticos (GA s) 1 Algoritmos Genéticos (GA s) Dado um processo ou método de codificar soluções de um problema na forma de cromossomas e dada uma função de desempenho que nos dá um valor de

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

ELEMENTOS BÁSICOS NA ELABORAÇÃO DO ORÇAMENTO DE CAPITAL

ELEMENTOS BÁSICOS NA ELABORAÇÃO DO ORÇAMENTO DE CAPITAL ELEMENTOS BÁSICOS NA ELABORAÇÃO DO ORÇAMENTO DE CAPITAL 16/08/2011 1 CAPITAL: Refere-se aos ativos de longo prazo utilizados na produção; ORÇAMENTO: é o plano que detalha entradas e saídas projetadas durante

Leia mais

3 Métodos de Otimização

3 Métodos de Otimização 3 Métodos de Otimização 3.1. Introdução Os problemas de otimização são problemas de maximização ou minimização de função de uma ou mais variáveis num determinado domínio, sendo que, geralmente, existe

Leia mais

Caracterização de desempenho em programas paralelos

Caracterização de desempenho em programas paralelos Caracterização de desempenho em programas paralelos Esbel Tomás Valero Orellana Bacharelado em Ciência da Computação Departamento de Ciências Exatas e Tecnológicas Universidade Estadual de Santa Cruz evalero@uesc.br

Leia mais

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS Alisson S. C. Alencar, Ajalmar R. da Rocha Neto Departamento de Computação, Instituto Federal do Ceará (IFCE). Programa

Leia mais

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F.

Problema. Conversão Matricial. Octantes do Sistema de Coordenadas Euclidiano. Sistema de Coordenadas do Dispositivo. Maria Cristina F. Problema Conversão Matricial Maria Cristina F. de Oliveira Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências, elipses, curvas,...) no dispositivo matricial rastering = conversão

Leia mais

Hashing (Tabela de Dispersão)

Hashing (Tabela de Dispersão) Hashing (Tabela de Dispersão) Motivação! Os métodos de pesquisa vistos até agora buscam informações armazenadas com base na comparação de suas chaves.! Para obtermos algoritmos eficientes, armazenamos

Leia mais

Transcrição Automática de Música

Transcrição Automática de Música Transcrição Automática de Música Ricardo Rosa e Miguel Eliseu Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria Departamento de Engenharia Informática A transcrição automática de

Leia mais

Aplicação de algoritmos genéticos para ajuste de modelos regressores não lineares com grande número de parâmetros 1. Introdução

Aplicação de algoritmos genéticos para ajuste de modelos regressores não lineares com grande número de parâmetros 1. Introdução 15 Aplicação de algoritmos genéticos para ajuste de modelos regressores não lineares com grande número de parâmetros 1 Kamila Lacerda de Almeida 2, Mariana Tito Teixeira 3, Roney Alves da Rocha 4 Resumo:

Leia mais

Árvores B. Hashing. Estrutura de Dados II Jairo Francisco de Souza

Árvores B. Hashing. Estrutura de Dados II Jairo Francisco de Souza Árvores B Hashing Estrutura de Dados II Jairo Francisco de Souza Hashing para arquivos extensíveis Todos os métodos anteriores previam tamanho fixo para alocação das chaves. Existem várias técnicas propostas

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Planificação 7º ano 2012/2013 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS

Leia mais

Controlabilidade e Observabilidade

Controlabilidade e Observabilidade IA536 - Teoria de Sistemas Lineares - FEEC/UNICAMP contr 1/18 Controlabilidade e Observabilidade Sfrag replacements R 1 R 2 + u C 1 C 2 R 3 y A tensão no capacitor C 2 não pode ser controlada pela entrada

Leia mais

Departamento de Informática. Análise de Decisão. Métodos Quantitativos LEI 2006/2007. Susana Nascimento snt@di.fct.unl.pt.

Departamento de Informática. Análise de Decisão. Métodos Quantitativos LEI 2006/2007. Susana Nascimento snt@di.fct.unl.pt. Departamento de Informática Análise de Decisão Métodos Quantitativos LEI 26/27 Susana Nascimento snt@di.fct.unl.pt Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) Susana Nascimento (snt@di.fct.unl.pt)

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Capítulo 1 Prof. Rodrigo Varejão Andreão 2010/2 Cap. 1 Introdução PDS: área de rápido desenvolvimento nos últimos 40 anos, resultado do avanço das tecnologias de computação

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

Sistemas de Inferência Fuzzy (Sistemas Fuzzy) 6. Sistemas de Inferência Fuzzy (Esquema geral e estudo de casos) Outros nomes: 6.

Sistemas de Inferência Fuzzy (Sistemas Fuzzy) 6. Sistemas de Inferência Fuzzy (Esquema geral e estudo de casos) Outros nomes: 6. 6. Sistemas de Inferência Fuzzy (Esquema geral e estudo de casos) 6.1 Esquema Geral 6.2 Controle Fuzzy 6.3 Classificação Fuzzy 6.4 Apoio à Tomada de Decisão Fuzzy Sistemas de Inferência Fuzzy (Sistemas

Leia mais

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

O mercado de bens CAPÍTULO 3. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard O mercado de bens Olivier Blanchard Pearson Education CAPÍTULO 3 3.1 A composição do PIB A composição do PIB Consumo (C) são os bens e serviços adquiridos pelos consumidores. Investimento (I), às vezes

Leia mais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais 1 AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais Ernesto F. L. Amaral 20 e 22 de abril e 04 de maio de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte:

Leia mais

Teoria de Filas Aula 15

Teoria de Filas Aula 15 Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo

Leia mais

2. Método de Monte Carlo

2. Método de Monte Carlo 2. Método de Monte Carlo O método de Monte Carlo é uma denominação genérica tendo em comum o uso de variáveis aleatórias para resolver, via simulação numérica, uma variada gama de problemas matemáticos.

Leia mais

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel

0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Nível Intermediário 0,999... OU COMO COLOCAR UM BLOCO QUADRADO EM UM BURACO REDONDO Pablo Emanuel Quando um jovem estudante de matemática começa a estudar os números reais, é difícil não sentir certo desconforto

Leia mais

4. Tarefa 16 Introdução ao Ruído. Objetivo: Método: Capacitações: Módulo Necessário: Análise de PCM e de links 53-170

4. Tarefa 16 Introdução ao Ruído. Objetivo: Método: Capacitações: Módulo Necessário: Análise de PCM e de links 53-170 4. Tarefa 16 Introdução ao Ruído Objetivo: Método: Ao final desta Tarefa você: Estará familiarizado com o conceito de ruído. Será capaz de descrever o efeito do Ruído em um sistema de comunicações digitais.

Leia mais

Administração Financeira e Orçamentária II

Administração Financeira e Orçamentária II Administração Financeira e Orçamentária II Capítulo 6 Matemática Financeira Série Uniforme de Pagamentos e de Desembolsos Sistemas de Amortização Análise de Fluxo de Caixa Séries Uniformes de Pagamentos

Leia mais

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa

1) Eficiência e Equilíbrio Walrasiano: Uma Empresa 1) Eficiência e Equilíbrio Walrasiano: Uma Empresa Suponha que há dois consumidores, Roberto e Tomás, dois bens abóbora (bem 1) e bananas (bem ), e uma empresa. Suponha que a empresa 1 transforme 1 abóbora

Leia mais

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643

Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Ricardo Bento Afonso Nº51571 Rubén Ruiz Holgado Nº64643 Programação não linear para que serve? A programação linear tem a função objectivo e os constrangimentos lineares. O que nem sempre acontece na realidade,

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 04 Algoritmos Genéticos Introdução Algoritmos genéticos são bons para abordar espaços de buscas muito grandes e navegálos

Leia mais

Hashing. Estruturas de Dados. Motivação

Hashing. Estruturas de Dados. Motivação Estruturas de Dados Hashing Prof. Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis em http://ww3.datastructures.net (Goodrich & Tamassia). Motivação

Leia mais

Métodos Físicos de Análise - ESPECTROFOTOMETRIA ULTRAVIOLETA / VISÍVEL MÉTODOS FÍSICOS DE ANÁLISE MÉTODOS FÍSICOS DE ANÁLISE

Métodos Físicos de Análise - ESPECTROFOTOMETRIA ULTRAVIOLETA / VISÍVEL MÉTODOS FÍSICOS DE ANÁLISE MÉTODOS FÍSICOS DE ANÁLISE Métodos Físicos de Análise - ESPECTROFOTOMETRIA ULTRAVIOLETA / VISÍVEL Prof. Dr. Leonardo Lucchetti Mestre e Doutor em Ciências Química de Produtos Naturais NPPN/UFRJ Depto. de Química de Produtos Naturais

Leia mais

4. Metodologia. Capítulo 4 - Metodologia

4. Metodologia. Capítulo 4 - Metodologia Capítulo 4 - Metodologia 4. Metodologia Neste capítulo é apresentada a metodologia utilizada na modelagem, estando dividida em duas seções: uma referente às tábuas de múltiplos decrementos, e outra referente

Leia mais

Ajuste dos parâmetros de um controlador proporcional, integral e derivativo através de algoritmos genéticos

Ajuste dos parâmetros de um controlador proporcional, integral e derivativo através de algoritmos genéticos Ajuste dos parâmetros de um controlador proporcional, integral e derivativo através de algoritmos genéticos ADJUSTMENT OF CONTROLLER PID S PARAMETERS OF GENETIC ALGORITHMS Luiz Eduardo N. do P. Nunes Victor

Leia mais

Jogos vs. Problemas de Procura

Jogos vs. Problemas de Procura Jogos Capítulo 6 Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas os movimentos que podem ser tomados pelo adversário Pontuação com sinais opostos O que

Leia mais

CAPÍTULO III TOMADA DE DECISÃO COM INCERTEZA E RISCO

CAPÍTULO III TOMADA DE DECISÃO COM INCERTEZA E RISCO CAPÍTULO III TOMADA DE DECISÃO COM INCERTEZA E RISCO TOMADA DE DECISÃO 36 Tomada de Decisões Primeiro Passo i. Identificar decisões alternativas. ii. Identificar consequências possíveis. iii. Identificar

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

DINÂMICA DO PONTO MATERIAL

DINÂMICA DO PONTO MATERIAL DINÂMICA DO PONTO MATERIAL 1.0 Conceitos Forças se comportam como vetores. Forças de Contato: Representam o resultado do contato físico entre dois corpos. Forças de Campo: Representam as forças que agem

Leia mais

Sistemas de Tempo Real: Conceitos Básicos

Sistemas de Tempo Real: Conceitos Básicos Escola de Computação 2000 - IME-USP Sistemas de Tempo Real: Conceitos Básicos Jean-Marie Farines Joni da Silva Fraga Rômulo Silva de Oliveira LCMI - Laboratório de Controle e Microinformática DAS - Departamento

Leia mais

Capítulo 4 Gerenciamento de Memória

Capítulo 4 Gerenciamento de Memória Capítulo 4 Gerenciamento de Memória 4.1 Gerenciamento básico de memória 4.2 Troca de processos 4.3 Memória virtual 4.4 Algoritmos de substituição de páginas 4.5 Modelagem de algoritmos de substituição

Leia mais

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DISCIPLINA FÍSICA

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DISCIPLINA FÍSICA 26) Sejam as seguintes grandezas físicas: 1 Massa 2 Energia Cinética 3 Frequência I4 Temperatura alternativa correta que indica as grandezas cuja definição depende do tempo, é: 1 e 3 B 1 e 4 C 3 e 4 D

Leia mais

Introdução a Teoria das Filas

Introdução a Teoria das Filas DISC. : PESQUISA OPERACIONAL II Introdução a Teoria das Filas Prof. Mestre José Eduardo Rossilho de Figueiredo Introdução a Teoria das Filas Introdução As Filas de todo dia. Como se forma uma Fila. Administrando

Leia mais

Tabela de símbolos: tabelas de espalhamento

Tabela de símbolos: tabelas de espalhamento Tabela de símbolos: tabelas de espalhamento Marcelo K. Albertini 14 de Janeiro de 2014 2/28 Resumo de complexidades Análises para operação efetuada após N inserções pior caso caso médio keys chave get

Leia mais

Política de cotas para mulheres na política tem 75% de aprovação

Política de cotas para mulheres na política tem 75% de aprovação Política de cotas para mulheres na política tem 75% de aprovação População conhece pouco a atual lei de cotas, mas acha que os partidos que não cumprem a lei deveriam ser punidos A maioria da população

Leia mais

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido

Leia mais

Curvas de nível homotópicas a um ponto

Curvas de nível homotópicas a um ponto Curvas de nível homotópicas a um ponto Praciano-Pereira, T Sobral Matemática 6 de agosto de 2011 tarcisio@member.ams.org pré-prints da Sobral Matemática no. 2011.03 Editor Tarcisio Praciano-Pereira, tarcisio@member.ams.org

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1 LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar as soluções para os exercícios propostos Exercitar

Leia mais

Modelos de Filas de Espera

Modelos de Filas de Espera Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

Avaliação de Desempenho de Sistemas

Avaliação de Desempenho de Sistemas Avaliação de Desempenho de Sistemas Introdução a Avaliação de Desempenho de Sistemas Prof. Othon M. N. Batista othonb@yahoo.com Roteiro Definição de Sistema Exemplo de Sistema: Agência Bancária Questões

Leia mais

Banco de Dados I 2007. Módulo V: Indexação em Banco de Dados. (Aulas 4) Clodis Boscarioli

Banco de Dados I 2007. Módulo V: Indexação em Banco de Dados. (Aulas 4) Clodis Boscarioli Banco de Dados I 2007 Módulo V: Indexação em Banco de Dados (Aulas 4) Clodis Boscarioli Agenda: Indexação em SQL; Vantagens e Custo dos Índices; Indexação no PostgreSQL; Dicas Práticas. Índice em SQL Sintaxe:

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 03 - operações no domínio espacial Antonio Oliveira Ricardo Marroquim 1 / 38 aula de hoje operações no domínio espacial overview imagem digital operações no

Leia mais

Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática

Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática Conceitos Básicos de Algoritmos Genéticos: Teoria e Prática Thatiane de Oliveira Rosa 1, Hellen Souza Luz 2 1 Curso de Sistemas de Informação Centro Universitário Luterano de Palmas (CEULP/ULBRA) Caixa

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade

Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Exercícios resolvidos sobre Função de probabilidade e densidade de probabilidade Você aprendeu o que é função probabilidade e função densidade de probabilidade e viu como esses conceitos são importantes

Leia mais

Microsoft PowerPoint XP. Módulo I I

Microsoft PowerPoint XP. Módulo I I FUNCICI MG ESCOLA TÉCNICA DE FORMAÇÃO GERENCIAL DE CONTAGEM CURSO TÉCNICO AMBIENTAL E DE SEGURANÇA APOSTILA BÁSICA: Microsoft PowerPoint XP Módulo I I Elaborada por: Walter Santos 2007 2 S U M Á R I O

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007

Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 Prova de Admissão para o Mestrado em Matemática IME-USP - 23.11.2007 A Nome: RG: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas na folha de respostas que está

Leia mais

Casamento de Cadeias. Introdução. Introdução. Estrutura de Dados. Cadeia de caracteres: sequência de elementos denominados caracteres.

Casamento de Cadeias. Introdução. Introdução. Estrutura de Dados. Cadeia de caracteres: sequência de elementos denominados caracteres. Introdução de Cadeias Estrutura de Dados II Prof. Guilherme Tavares de Assis Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM 1 Cadeia

Leia mais

INF 1005 Programação I lista 12

INF 1005 Programação I lista 12 INF 1005 Programação I lista 12 Caracteres e cadeias de caracteres (strings) 1. [tarefa 42] Implemente e teste uma função que receba uma string como parâmetro e modifique essa string trocando todos os

Leia mais

CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com.

CONCURSO PETROBRAS DRAFT. Pesquisa Operacional, TI, Probabilidade e Estatística. Questões Resolvidas. Produzido por Exatas Concursos www.exatas.com. CONCURSO PETROBRAS ENGENHEIRO(A) DE PRODUÇÃO JÚNIOR ENGENHEIRO(A) JÚNIOR - ÁREA: PRODUÇÃO Pesquisa Operacional, TI, Probabilidade e Estatística Questões Resolvidas QUESTÕES RETIRADAS DE PROVAS DA BANCA

Leia mais

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F.

Física CPII. Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. COLÉGIO PEDRO II - UNIDADE CENTRO Exercícios p/ prova de Apoio de Física 2 a. Trim. 1 a. série Data / / Coordenador: Prof. Alexandre Ortiz Professor: Sérgio F. Lima Aluno(a): Nº Turma 1) Um bombeiro deseja

Leia mais

1. Difusão. A difusão só ocorre quando houver gradiente de: Concentração; Potencial; Pressão.

1. Difusão. A difusão só ocorre quando houver gradiente de: Concentração; Potencial; Pressão. 1. Difusão Com frequência, materiais de todos os tipos são tratados termicamente para melhorar as suas propriedades. Os fenômenos que ocorrem durante um tratamento térmico envolvem quase sempre difusão

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas Departamento de Ciências

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.1. Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Agenda Análise e Técnicas de Algoritmos Jorge Figueiredo Problemas de de otimização Conceitos ásicos O Problema da da Mochila Fracionária Template Genérico xemplos: Código de de Huffman Algoritmos Gulosos

Leia mais

Métodos de Análise de Investimentos

Métodos de Análise de Investimentos Aula Capítulo 11 Métodos de Análise de Investimentos 11.1- Introdução Neste capítulo mostraremos aplicações de valor presente líquido (VPL) e taxa interna de retorno (TIR) em comparações de fluxos de caixa

Leia mais

Mercados financeiros CAPÍTULO 4. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard

Mercados financeiros CAPÍTULO 4. Olivier Blanchard Pearson Education. 2006 Pearson Education Macroeconomia, 4/e Olivier Blanchard Mercados Olivier Blanchard Pearson Education CAPÍTULO 4 4.1 Demanda por moeda O Fed (apelido do Federal Reserve Bank) é o Banco Central dos Estados Unidos. A moeda, que você pode usar para transações,

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

QUESTÃO 01 QUESTÃO 02(UNISA)

QUESTÃO 01 QUESTÃO 02(UNISA) Disciplina: Biologia Data: /09/2012 Professor: Luiz Carlos Panisset Travassos Turma: 3º Tipo de Atividade: Atividades de recuperação Segmento:EM/Agro Etapa:2ª Nome do(a) aluno(a): QUESTÃO 01 Uma criança

Leia mais

Algoritmos e Estruturas de Dados I 01/2013. Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo

Algoritmos e Estruturas de Dados I 01/2013. Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo Algoritmos e Estruturas de Dados I 01/2013 Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo Problema 1 Suponha que soma (+) e subtração (-) são as únicas operações disponíveis em

Leia mais

BC-0504 Natureza da Informação

BC-0504 Natureza da Informação BC-0504 Natureza da Informação Aulas 2 Entropia na termodinâmica e na teoria da informação Equipe de professores de Natureza da Informação Parte 4 Os pilares da teoria da informação Os estudos de criptografia

Leia mais

4 Estudo de caso: Problema de seqüenciamento de carros

4 Estudo de caso: Problema de seqüenciamento de carros 4 Estudo de caso: Problema de seqüenciamento de carros O problema de seqüenciamento de carros em linhas de produção das indústrias automobilísticas é um tipo particular de problema de escalonamento que

Leia mais

Noções de Astrofísica e Cosmologia

Noções de Astrofísica e Cosmologia Noções de Astrofísica e Cosmologia 15. O Universo e a História do Cosmos Prof. Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/astro.html Cosmologia wikipedia:

Leia mais

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação

Introdução. A Informação e sua Representação (Parte II) Universidade Federal de Campina Grande. Unidade Acadêmica de Sistemas e Computação Universidade Federal de Campina Grande Unidade Acadêmica de Sistemas e Computação Introdução à Computação A Informação e sua Representação (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br

Leia mais

Um Detector de Complexos QRS Evolutivo para o Eletrocardiograma

Um Detector de Complexos QRS Evolutivo para o Eletrocardiograma Um Detector de Complexos QRS Evolutivo para o Eletrocardiograma Bruno Melo 1, Roberta Lopes 1, Luis Coradine 1 1 Universidade Federal de Alagoas, Instituto de Computação, Programa de Pós-Graduação em Modelagem

Leia mais

Redes Neurais. A IA clássica segue o paradigma da computação simbólica

Redes Neurais. A IA clássica segue o paradigma da computação simbólica Abordagens não simbólicas A IA clássica segue o paradigma da computação simbólica Redes Neurais As redes neurais deram origem a chamada IA conexionista, pertencendo também a grande área da Inteligência

Leia mais

Paridades. Paridade do Poder de Compra

Paridades. Paridade do Poder de Compra Paridades De poder de compra e de juros 1 Paridade do Poder de Compra a paridade do poder de compra (purchasing power parity ou PPP) reflete o custo de uma cesta de bens em dois países nas suas respectivas

Leia mais

MICROSOFT EXCEL - AULA NÚMERO 04

MICROSOFT EXCEL - AULA NÚMERO 04 MICROSOFT EXCEL - AULA NÚMERO 4 Fazendo Gráficos de Seus Dados Uma planilha calcula e apresenta as diferenças e semelhanças entre os números e suas modificações ao longo do tempo. Mas os dados em si não

Leia mais

Memória - Gerenciamento. Sistemas Operacionais - Professor Machado

Memória - Gerenciamento. Sistemas Operacionais - Professor Machado Memória - Gerenciamento Sistemas Operacionais - Professor Machado 1 Partes físicas associadas à memória Memória RAM Memória ROM Cache MMU (Memory Management Unit) Processador Tabela de Páginas TLB 2 Conceitos

Leia mais

Redes Neurais Artificiais: Funções de Base Radial

Redes Neurais Artificiais: Funções de Base Radial Treinamento COELCE CEFET UFC MÓDULO II 2008.1 Redes Neurais Artificiais: Funções de Base Radial Prof. Dr. Guilherme de Alencar Barreto Depto. Engenharia de Teleinformática (DETI/UFC) URL: www.deti.ufc.br/~guilherme

Leia mais

4) Considerando-se os pontos A(p1, q 1) = (13,7) e B (p 2, q 2) = (12,5), calcule a elasticidade-preço da demanda no ponto médio.

4) Considerando-se os pontos A(p1, q 1) = (13,7) e B (p 2, q 2) = (12,5), calcule a elasticidade-preço da demanda no ponto médio. 1) O problema fundamental com o qual a Economia se preocupa é o da escassez. Explique porque, citando pelo menos um exemplo. A escassez é o problema fundamental da Economia, porque, dadas as necessidades

Leia mais

Fila de Prioridade. Siang Wun Song - Universidade de São Paulo - IME/USP. MAC 5710 - Estruturas de Dados - 2008

Fila de Prioridade. Siang Wun Song - Universidade de São Paulo - IME/USP. MAC 5710 - Estruturas de Dados - 2008 MAC 5710 - Estruturas de Dados - 2008 Fila de prioridade Fila de prioridade é uma estrutura de dado que mantém uma coleção de elementos, cada um com uma prioridade associada. Valem as operações seguintes.

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Curva ROC. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE

Curva ROC. George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Curva ROC George Darmiton da Cunha Cavalcanti Tsang Ing Ren CIn/UFPE Introdução ROC (Receiver Operating Characteristics) Curva ROC é uma técnica para a visualização e a seleção de classificadores baseado

Leia mais

Teclado. Mike McBride Anne-Marie Mahfouf Tradução: Lisiane Sztoltz

Teclado. Mike McBride Anne-Marie Mahfouf Tradução: Lisiane Sztoltz Mike McBride Anne-Marie Mahfouf Tradução: Lisiane Sztoltz 2 Conteúdo 1 Aba Hardware 4 2 A página de disposições 4 3 A página Avançado 6 3 Este módulo permite escolher como teclado seu trabalha. Existem

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Técnicas metaheurísticas aplicadas na otimização de parâmetros em um modelo probabilístico de gestão de estoques

Técnicas metaheurísticas aplicadas na otimização de parâmetros em um modelo probabilístico de gestão de estoques Técnicas metaheurísticas aplicadas na otimização de parâmetros em um modelo probabilístico de gestão de estoques Sidnei Alves de Araújo André Felipe Henriques Librantz

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Tabela ASCII de caracteres de controle

Tabela ASCII de caracteres de controle Caracteres Estruturas de Dados Aula 6: Cadeias de Caracteres 31/03/2010 Caracteres são representados internamente por códigos numéricos Tipo char (inteiro pequeno ) 1 byte (8 bits) 256 caracteres possíveis

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Amostragem e PCM. Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento

Amostragem e PCM. Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Amostragem e PCM Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Roteiro 1 Amostragem 2 Introdução O processo

Leia mais

CAPÍTULO 5 - Exercícios

CAPÍTULO 5 - Exercícios CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos

Leia mais

Gerência de Memória. Paginação

Gerência de Memória. Paginação Gerência de Memória Paginação Endereçamento Virtual (1) O programa usa endereços virtuais É necessário HW para traduzir cada endereço virtual em endereço físico MMU: Memory Management Unit Normalmente

Leia mais

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder

Variáveis aleatórias contínuas e distribuiçao Normal. Henrique Dantas Neder Variáveis aleatórias contínuas e distribuiçao Normal Henrique Dantas Neder Definições gerais Até o momento discutimos o caso das variáveis aleatórias discretas. Agora vamos tratar das variáveis aleatórias

Leia mais

DAS5102 Fundamentos da Estrutura da Informação

DAS5102 Fundamentos da Estrutura da Informação Árvores Existe uma ampla variedade de dados que são comumente organizados sob a forma de árvores hierárquicas utilizadas recorrentemente em nosso dia a dia. Exemplos são a organização administrativa de

Leia mais