Prova Escrita - ÁLGEBRA

Tamanho: px
Começar a partir da página:

Download "Prova Escrita - ÁLGEBRA"

Transcrição

1 Ministério da Educação Programa de Pós-Graduação em Matemática Prova Escrita - ÁLGEBRA Aluno: ) Seja G um grupo finito, tal que G = mn, com mdc(m,n) =. Suponha que existe um subgrupo H de G, tal que H = n. Prove que H é o único subgrupo de G de ordem n se, e somente se, H G. 2) Mostre que se um grupo de ordem p n, com p primo, contém exatamente um subgrupo com ordens p,p 2,...,p n, então ele é cíclico. 3)SejaF umcorpoef(x) F[X], ondef(x)possuigraun. Opolinômiog(X) := X n f(/x) é dito o polinômio reverso de f(x). Prove que f é irredutível se, e somente se, g é irredutível. 4) Mostre que as seguintes afirmações são equivalentes para qualquer anel R. (a) P é um ideal primo de R. (b) Para todo a,b R, arb P implica a P ou b P. (c) Para todos os ideais à direita A,B de R, AB P implica A P ou B P. (d) Para todos os ideais à esquerda A,B de R, AB P implica A P ou B P. Além disso, mostre que se P é um ideal primo de R, então (0) é um ideal primo de R/P. 5) Encontre os grupos de Galois do polinômio x 3 2 sobre Z 5 e Z.

2 Exame de Qualicação do Doutorado - Análise Funcional - 0/0/208 Questão. Seja X um espaço vetorial e T : X X uma tranformação linear. Dizemos que um subespaço vetorial V X é invariante por T se T (V ) V. Dê exemplo de uma tranformação linear T, denida em um espaço vetorial X de dimensão innita, cujos subespaços invariantes são apenas X e {0}. Questão 2. Seja L ([0, ]) o dual topológico de L ([0, ]). a) Identique, através de uma transformação linear isométrica, o espaço L ([0, ]) com um subespaço de L ([0, ]). b) Mostre que L ([0, ]) \ L ([0, ]). Questão 3. Sejam X um espaço de Banach e K(X) o espaço dos operadores compactos T : X X. a) Prove que se T K(X) e P : X X é uma transformação linear contínua, então T P K(X). b) Dê exemplo de uma transformação linear contínua, não compacta T : X X tal que T T é compacta. Sugestão: Considere X = l 2. Questão 4. a) Dê exemplo de um espaço de Banach X e uma sequência x n X, com n N, tal que x n converge fraco a x X, mas x n não converge forte a x. b) Classique os espaços de Banach X, para os quais a topologia forte coincide com a topologia fraca. c) É verdade que em todo espaço de Banach de dimensão innita existem sequências convergindo fraco mas não forte? Justique e relacione com o item b). Questão 5. Seja X um espaço de Banach. a) Mostre que para todo x X, existe T X tal que T = x e T (x) = x 2. b) Seja P(X ) o conjunto das partes de X e dena o operador dualidade J : X P(X ) por J(x) = {T X : T = x, T (x) = x 2 }. Prove que J(x) = {T X : T x, T (x) = x 2 } e conclua que para todo x X, o conjunto J(x) é não-vazio, fechado e convexo. c) Construa um exemplo onde J(x) não é unitário para algum x X. d) Demonstre que se X é estritamente convexo então, J(x) contém um único elemento, e portanto, podemos escrever J : X X. e) Nas mesmas condições do item d) prove que J(x) = J( x). f) Seja p [, ) e J p o operador dualidade J p : L p (Ω) (L p (Ω)) = L q (Ω), onde /p + /q = e Ω é um conjunto aberto. Descreva J p (f) como um elemtento de L q (Ω).

3 Exame de Qualicação do Mestrado - Análise no R N - 08/0/208 Questão. Sejam a, b, c, n 0. Suponha que a + b + c > n. Prove que lim (x,y,z) (0,0,0) x a y b z c (x 2 + y 2 + z 2 ) n 2 Questão 2. Sejam N = 2, 3, e J : R N R uma função da forma J(x) = f(x) g(x), onde f, g são funções positivas (a menos da origem) de classe C, e positivamente homogêneas de grau p e γ respectivamente, com < p < γ. Para cada x R N \ {0}, considere a função ϕ x : [0, ] R dada por ϕ x (t) = J(tx). Dena N = {x R N \ {0} : ϕ x() = 0}. Suponha que a única solução do sistema pf(x) γg(x) = p 2 f(x) γ 2 g(x) = 0 seja x = 0. a) Prove que N é uma superfície de classe C difeomorfa a esfera de dimensão N. b) Mostre que existe c > 0 tal que x c para todo x N. c) Demonstre que se Ĵ inf x N J(x), então Ĵ > 0 e existe x 0 N satisfazendo J(x 0 ) = Ĵ. d) Prove que o ponto x 0 encontrado no item c) é um ponto crítico para a função J. e) Prove que x 0 é um ponto crítico do tipo sela. f) Sejam y R N tal que J(y) < 0 e Γ = {γ C([0, ] : R N ) : γ(0) = 0, γ() = y}. Dena Prove que Ĵ = M. Questão 3. = 0. M = inf γ Γ max t [0,] J(γ(t)). a) Prove que cada x R N \ {0} pode ser escrito de maneira única como x = rω, onde r > 0 e ω S = {x R N : x = }. b) Seja f : A α,β R uma função integrável, onde 0 < α < β e A α,β = {x R N, α x β}. Mostre que β f(x)dx = f(rω)r N drdω. A α,β S α c) Determine os valores de k R para os quais a integral imprópria dx converge, onde B x k B = {x R N : x }. Questão 4. Seja K um conjunto compacto com interior não vazio e f : K R uma função limitada. Dena a oscilação de f em um ponto x K por ) ω(f, x) = lim r 0 onde B(x, r) = {y R N : y x r}. a) Prove que ( sup{ f(u) f(v) : u, v K B(x, r)} sup{ f(u) f(v) : u, v K B(x, r)} = sup f(k B(x, r)) inf f(k B(x, r)). b) Prove que ω(f, x) é uma função semicontínua superiormente na variável x K. c) Relacione a função oscilação com a integrabilidade de f.,

4 Prova de Geometria Diferencial Fazer 7 questões. Justifique cada paso de sua resposta, resultados diretos não são considerados.!boa prova!. Mostre que se α(i) p.c.a esta contida em uma esfera de centro C e raio r, então r 2 = ( k ) 2 k 2 (s) + (s) k 2 (s)τ(s) 2. Prove que, se f : U R 3 R é uma função diferenciavel e a f(u) é um valor regular de f, então f (a) é uma superficie regular em R Seja α : R R 3 uma curva p.c.a. em R 3 com t(u), n(u), b(u) seu referencial de Frenet, k(u), τ(u) suas funções curvatura e torção e X(u, v) = α(u) + vn(u). i) Qual é a condição de regularidade de X ii) Calcule a curvatura media e Gaussiana de X iii) Encontre uma curva α para que X seja minima. 4. Considere a superficie de rotação X(u, v) = (f(u)cov, f(u)senv, g(u), onde f, g : I R, f(u) > 0. a) Prove que todos os pontos da superficie são parabolicos se, e só se, a superficie descreve um cilindro circular ou um cone. b) Determine as superficies de rotação que tem curvatura Gaussiana constante. 5. Seja X uma superficie em que todos os pontos são hiperbolicos. Prove que, se as linhas assintoticas são ortogonais, então X é uma superficie minima. 6. Considere a superficie X(u, v) = (u, v, uv), verifique que: a) As curvas coordenadas de X são linhas assintoticas. b) As linhas de curvatura de X podem ser representadas por arcsenhv ± arcsenhu = c onde c é uma constante c) A curva determinada por u = v é uma geodesica de X 7. Seja superficie da forma X(u, v) = (u, v, e u senv). a) Calcule a aplicação normal de Gauss N = (N, N 2, N 3 ). b) Calcule a curvatura Media H e Gaussiana K. H c) Verifique que a função N 3 K é uma função harmonica, (lembramos que uma função f(u, v) é harmonica se f uu + f vv = 0) 8.a) Mostre que não existe superficie X(u, v) tal que E = G =, F = 0, e =, g =, f = 0. b) Existe uma superficie X(u, v) tal que E =, F = 0, G = cos 2 u, e = cos 2 u, f = 0, g =.?

5 Prova de Geometria Riemanniana Fazer 7 questões. Justifique cada passo de sua resposta.. Prove que as isometrias de S n R n+ com a metrica induzida são as restrições a S n das transformações lineares ortogonais de R n+. 2. No espaçõ Euclideano, o transporte paralelo de um vetor entre dois pontos não depende da curva que liga estes dois pontos. Mostre, por um exemplo, que isto não é verdade numa variedade Riemanniana qualquer. 3. Prove que, se M é uma variedade diferenciavel com uma conexão simetrica e s : A M é uma superficie parametrizada então: D s v u = D u s v 4. Seja σ T p M um subespaço bidimencional do espaço tangente T p M e sejam os vetores x, y σ dois vetores linearmente independentes. Então K(x, y) = não depende da escolha dos vetores x, y σ (x, y, x, y) x y 2 5. Seja M uma variedade Riemanniana com curvatura seccional não positiva. Prove que, para todo p, o lugar geometrico dos pontos conjugados C(p) é vazio. 6. Prove que a curvatura seccional da variedade Riemannniana S 2 S 2 com a metrica produto, onde S 2 é a esfera unitaria em R 3, é não negativa. Ache um toro plano, totalmente geodesico, T 2, mergulhado em S 2 S Prove que o semi-plano superior H 2 + com a metrica de lobatchevski: é completo. g = g = y 2, g 2 = 0 8. Mostre com um exemplo a existencia de um difeomorfismo entre duas variedades Riemannianas que preserva curvatura, mais que não é uma isometria. 9. Seja c : [o, a] M uma curva e sejam L(c) = a 0 dc dt dt, E(c) = a 0 dc dt 2 dt, prove que a). L(c) 2 ae(c). b). Sejam p, q M e γ : [0, a] M uma geodesica minimizante ligando p a q. Então para toda curva ligando p a q, E(γ) E(c) e vale a igualdade se e somente se c é uma geodesica minimizante.

6 Caixa Postal 3 - Campus Samambaia Goiânia - (62) Exame Qualificação Doutorado Questão. Sejam h : R n R m e g : R n R k são funções continuamente diferenciáveis. Considere o seguinte problema de programação não linear { (P ) min f(x) sujeito a h(x) = 0, g(x) 0. i) Fale sobre as condições de otimalidade de primeira e segunda ordem para o problema (P). ii) Assuma que f, g i, i =, k, são convexas, e h(x) = Ax + b, onde A é uma aplicação linear e b R m. Mostre que se x satisfaz as condições de otimalidade de Karush-Kun-Tucker então x é um minimizador global do problema (P). Questão 2. Seja f : S n R uma função convexa diferenciável. Considere o problema de otimização convexa { min f(x) (P ) sujeito a X S+. n Mostre que X é uma solução de (P ) se, e somente se, X S n +, f(x ) S n +, tr ( f(x )X ) = 0. Notação: O espaço das matrizes simétricas de ordem n n é denotado por S n e S+ n := {A S n tr(x) o traço da matriz X. : u T Au 0, u IR n }. Denote por Questão 3. Sejam b R n, Q uma matriz simétrica e positiva definida de ordem n n e f : R n R definida por f(x) = 2 xt Qx x T b. (0.) Seja também x o único ponto de mínimo de f. Considere o método do gradiente, com busca linear exata: dado x 0 R n, defina onde t k := argmin{f(x k ta f(x k )) : t > 0}. x k+ = x k t k f(x k ) k = 0,, 2..., (0.2) i) Mostre que a iteração do método do gradiente em (0.2) pode ser escrita da seguinte forma ( f(x x k+ = x k k ) T f(x k ) ) f(x k ) T Q f(x k f(x k ), k = 0,, 2,.... ) (ii) Defina em R n a seguinte norma de vetores x Q := x T Qx, para x R n. Denote por λ min e λ max o menor e o maior autovalor de Q, respectivamente. Mostre a seguinte desigualdade x k+ x Q λ max λ min λ max + λ min x k x Q, k = 0,, 2,.... (iii) Conclua que {x k } converge para x com taxa linear na norma Q. Sugestão: Para mostrar o ítem (ii) use o seguinte resultado: (x T x) 2 (x T Qx)(x T Q x) 4λ maxλ min (λ max + λ min ) 2, x Rn. Prof: Orizon P. Ferreira, Data: Goiânia, 8 de Janeiro de 208

7 Caixa Postal 3 - Campus Samambaia Goiânia - (62) Questão 4. Sejam Ω R n um conjuto aberto e F : Ω R n uma função continuamente diferenciável. Tome A e B matrizes de ordem n n não-singulares e defina a aplicação G : Ω R n como G(u) = AF (Bu), onde Ω = B (Ω). Suponha que as sequências {x k } e {u k }, geradas pelo método de Newton para resolver as equações F (x) = 0 e G(u) = 0 com ponto inicial u 0 Ω e x 0 = Bu 0, respectivamente, estejam bem definidas. Assuma que {x k } converge para x. i) Mostre que a sequência {u k } é convergente e calcule o seu limite; ii) Mostre que se {x k } converge com taxa Q-quadrática então {u k } também converge com esta mesma taxa. Questão 5. Sejam A,..., A m S n linearmente independentes, b R m e C S n. Defina a aplicação linear A : S n R m por AX := (tr (A X),..., tr (A m X)), Defina também a aplicação linear A : R m S n como A y = m k= y ia i. Considere os seguintes problemas: min tr (CX) max b T y (P ) := AX = b, (D) := A y + S = C, X S+. n S S+. n (0.3) Mostre que se (P ) e (D) tem conjuntos viáveis não vazios então tr (CX) b T y, para X viável para (P ) e (y, S) viável para (D). Notação: O espaço das matrizes simétricas de ordem n n é denotado por S n e S+ n := {A S n tr(x) o traço da matriz X. : u T Au 0, u IR n }. Denote por Observação: A prova vale 0 pontos. A clareza das idéias e argumentação lógica, precisas e organizada na solução das questões serão fortemente consideradas na correção da prova. Prof: Orizon P. Ferreira, 2 Data: Goiânia, 8 de Janeiro de 208

8 EXAME DE QUALIFICAÇÃO DE SISTEMAS DINÂMICOS IME/UFG, 2 JAN. 208 PROVA ELABORADA POR R. GARCIA ) i) Mostre que todo campo de vetores de classe C na esfera S 2 possui um ponto singular. ii) Dê exemplo de um campo de vetores C por partes na esfera S 2 que possui uma curva regular de descontinuidade mas que não possui nenhum ponto singular. Esboce o retrato de fase do exemplo construído. iii) Construa um campo de linhas no toro T 2 sem pontos singulares e que não seja definido por campo de vetores. Obs: Não é necessário explicitar equações. 2) Considere o campo de vetores X : R 3 R 3 definido por X(x, y, z) = ( y + 2 xz, x + 2 yz, [2q(x2 y 2 ) + a](x 2 + y 2 ) + z 2 ). i) Calcule os pontos de equilibrio de X e analise a natureza dos mesmos. ii) Mostre que o círculo unitário γ(t) = (cos t, sin t, 0) é uma órbita periódica de X (verifique se a parametrização está correta). iii) Calcule a derivada da transformção de Poincaré associada a γ. 3) Seja X = (P, Q) : R 2 R 2 um campo de classe C possuindo uma conexão de sela γ entre os pontos singulares hiperbólicos p e p 2. i) Mostre que o comprimento L(γ) é finito. ii) Dado L > 0, mostre que existe um campo de vetores de classe C r, r, no plano possuindo uma conexão de sela γ B(0, ) = {p R 2 : p < } tal que L(γ) > L. Faça figuras para ilustrar o contexto. iii) No item ii) é possivel construir X polinomial? Justifique. 4) i) Defina a classe dos campos Kupka-Smale e enuncie o Teorema de Kupka-Smale para campos de vetores em variedades compactas (cap 3, livro Palis-Melo). ii) Faça um esboço detalhado (roteiro) dos principais ingredientes da prova do Teorema de Kupka-Smale. iii) Dê exemplos de campos Kupka-Smale nas esferas S 2 e S 3. 5) i) Enuncie o Teorema de Peixoto para campos de vetores Morse-Smale em superfícies compactas orientadas (cap 4, livro Palis-Melo). ii) Faça um esboço detalhado (roteiro) dos principais ingredientes da prova do Teorema de Peixoto para os sistemas Morse-Smale. iii) Dê exemplos de campos Morse-Smale na esfera S 2 e no toro T 2. 6) i) Elabore um problema (se possível original) que reflita a sua maturidade matemática adquirida na disciplina de Sistemas Dinâmicos e indique (resenhe) os passos principais para a sua solução. ii) Cite um problema em aberto que você tem conhecimento sobre os sistemas Morse-Smale. Justifique sua escolha. OBS: Resolver/comentar todos os problemas propostos. Caso não conseguir resolver algum item comente a dificuldade encontrada e não suplantada.

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Programa de Pós-Graduação em Matemática Instituto de Matemática e Estatística - IME Universidade Federal de Goiás - UFG EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Aluno: 1) Seja G um grupo e a, b G tais

Leia mais

MAT Geometria Diferencial 1 - Lista 2

MAT Geometria Diferencial 1 - Lista 2 MAT036 - Geometria Diferencial 1 - Lista Monitor: Ivo Terek Couto 19 de outubro de 016 1 Superfícies - parte ; Exercício 1. Mostre que, em um ponto hiperbólico, as direções principais bissectam as direções

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática. Exame de Qualificação

Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática. Exame de Qualificação Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática Nome: Exame de Qualificação Banca Examinadora: Romildo (Pres.), Mário e Ronaldo. Observação: Das 7 questões propostas

Leia mais

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2.

Quinta lista de Exercícios - Análise Funcional, período Professor: João Marcos do Ó. { 0 se j = 1 y j = (j 1) 1 x j 1 se j 2. UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA PÓS-GRADUAÇÃO EM MATEMÁTICA Quinta lista de Exercícios - Análise Funcional, período 2009.2. Professor:

Leia mais

Geometria Diferencial II 2 0 Lista de Exerccios (2 0 semestre 2017)

Geometria Diferencial II 2 0 Lista de Exerccios (2 0 semestre 2017) Prof. Marcos Alexandrino Monitor: Pablo Diaz Geometria Diferencial II 2 0 Lista de Exerccios (2 0 semestre 2017) 1. Geodesicas, parte I Ao longo desta sec~ao (M; g) denotara variedade Riemanniana com metrica

Leia mais

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 RICARDO SA EARP Limites e continuidade em espaços topológicos (1) (a) Assuma que Y = A B, onde A e B são subconjuntos abertos disjuntos não vazios. Deduza que A B

Leia mais

Variedades diferenciáveis e grupos de Lie

Variedades diferenciáveis e grupos de Lie LISTA DE EXERCÍCIOS Variedades diferenciáveis e grupos de Lie 1 VARIEDADES TOPOLÓGICAS 1. Seja M uma n-variedade topológica. Mostre que qualquer aberto N M é também uma n-variedade topológica. 2. Mostre

Leia mais

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO PROFESSOR RICARDO SÁ EARP (1) Superfícies regradas. Seja I um intervalo aberto da reta. Uma superfície imersa regrada S em R 3 é a imagem de uma imersão

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS

Cálculo avançado. 1 TOPOLOGIA DO R n LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Cálculo avançado 1 TOPOLOGIA DO R n 1. Considere o produto interno usual, no R n. ostre que para toda aplicação linear f : R n R existe um único vetor y R n tal que f (x) = x, y para

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 RICARDO SA EARP (1) Considere a esfera unitária S 2 = {x 2 + y 2 + z 2 = 1} em R 3. (a) Mostre que a projeção estereográfica usual do pólo norte é dada por Π N (x,

Leia mais

Geometria Intrínseca das Superfícies

Geometria Intrínseca das Superfícies Geometria Intrínseca das Superfícies Paula Gonçalves Correia Romildo da Silva Pina Goiânia 15 de Junho de 2011 Resumo Neste trabalho foi realizado um estudo sobre superfícies regulares, geometria intrínseca

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM

Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM Universidade Federal da Paraíba - UFPB Centro de Ciências Exatas e da Natureza - CCEN Departamento de Matemática - DM 3 a Lista de Exercícios de Introdução à Álgebra Linear Professor: Fágner Dias Araruna

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta.

ÁLGEBRA LINEAR I - MAT Em cada item diga se a afirmação é verdadeira ou falsa. Justifiquei sua resposta. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 2 a Lista de

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 RICARDO SA EARP Vamos tratar a Geometria Diferencial das curvas e superfícies de R 3. Vamos aplicar as equações de compatibilidade; equação de curvatura de Gauss e

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n 1. Exercícios do livro Análise Real, volume 2, Elon Lages Lima, páginas

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)

Leia mais

Introdução à geometria riemanniana

Introdução à geometria riemanniana LISTA DE EXERCÍCIOS Introdução à geometria riemanniana 1. Seja M uma variedade diferenciável e Diff(M) o grupo de difeomorfismos de M (via composição de funções). Seja então G Diff(M) um subgrupo. Diz-se

Leia mais

Lista de Exercícios de Cálculo 3 Sexta Semana

Lista de Exercícios de Cálculo 3 Sexta Semana Lista de Exercícios de Cálculo 3 Sexta Semana Parte A 1. (i) Encontre o gradiente das funções abaixo; (ii) Determine o gradiente no ponto P dado; (iii) Determine a taxa de variação da função no ponto P

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B = 3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao

Leia mais

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ

Prova de seleção ao Mestrado e/ou Programa de Verão. Programas: ICMC-USP, UFAL, UFRJ Prova de seleção ao Mestrado e/ou Programa de Verão Programas: ICMC-USP, UFAL, UFRJ Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

Modelagem em Sistemas Complexos

Modelagem em Sistemas Complexos Modelagem em Sistemas Complexos Bifurcação local de campos vetoriais Marcone C. Pereira Escola de Artes, Ciências e Humanidades Universidade de São Paulo São Paulo - Brasil Abril de 2012 Nesta aula discutiremos

Leia mais

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total

Nome:... Q N Assinatura:... 1 RG:... 2 N o USP:... 3 Turma: Teórica... 4 Professor: Edson Vargas... Total 1 a Prova de MAT036 - Geometria Diferencial I IME - 9/09/016 Nome:................................................... Q N Assinatura:............................................... 1 RG:......................................................

Leia mais

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 RICARDO SA EARP (1) Considere S 3 = {(z 1, z 2 ) C 2 ; z 1 2 + z 2 2 = 1}. seja q um inteiro q > 1. Seja Γ = {1, e 2π1/q,..., e 2π(q 1)/q }, o grupo finito agindo

Leia mais

MAT0326 Geometria Diferencial I

MAT0326 Geometria Diferencial I MAT036 Geometria Diferencial I Segunda Prova 06/11/01 Soluções Questão 1 Valor: 3.0 pontos. Considere a superfície S, de Enneper, parametrizada por Xu, v = u u3 3 + uv, v v3 3 + u v, u v. a. Determine

Leia mais

CURVATURA DE CURVAS PLANAS

CURVATURA DE CURVAS PLANAS CURVATURA DE CURVAS PLANAS PROFESSOR RICARDO SÁ EARP (1) A tractrix. Vamos continuar com o traçado das curvas planas, agora incluindo o estudo da curvatura ao roteiro sugerido no exercício 1 da lista sobre

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

Variedades Riemannianas Bidimensionais Carlos Eduardo Rosado de Barros, Romildo da Silva Pina Instituto de Matemática e Estatística, Universidade

Variedades Riemannianas Bidimensionais Carlos Eduardo Rosado de Barros, Romildo da Silva Pina Instituto de Matemática e Estatística, Universidade Variedades Riemannianas Bidimensionais Carlos Eduardo Rosado de Barros, Romildo da Silva Pina Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus II- Caixa Postal 131, CEP 74001-970

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação.

Lista 1. (1,0). (Neste caso, usar a definição de derivada parcial é menos trabalhoso do que aplicar as regras de derivação. UFPR - Universidade Federal do Paraná Departamento de Matemática CM04 - Cálculo II Prof. José Carlos Eidam Lista Derivadas parciais, gradiente e diferenciabilidade. Ache as derivadas parciais de primeira

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço

Leia mais

a definição de derivada parcial como limite do que aplicar as regras de derivação.)

a definição de derivada parcial como limite do que aplicar as regras de derivação.) 2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Álgebra Linear e Geometria Analítica Curso: Engenharia Electrotécnica Ano: 1 o Semestre: 1 o Ano Lectivo: 007/008 Ficha

Leia mais

3 Superfícies Spacelike em IR 2,1

3 Superfícies Spacelike em IR 2,1 Superfícies Spacelike em IR,. Fórmula de Representação para Spacelike no espaço de Lorentz.. O espaço de Minkowski Seja IR, = IR, ḡ o espaço de Minkowski de dimensão com a métrica de Lorentz ḡ =(dx ) +(dx

Leia mais

Lista 2. (d) f (x, y) = x y x

Lista 2. (d) f (x, y) = x y x UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno - 207/ Prof. Zeca Eidam Lista 2 Funções reais de duas e três variáveis.

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

BOA PROVA! Respostas da Parte II

BOA PROVA! Respostas da Parte II Nome: Identidade (Passaporte: Assinatura: Instruções (i O tempo destinado a esta prova é de 5 horas. (ii 5 porcento da pontuação total é da parte I (Perguntas dissertativas. BOA PROVA! Respostas da Parte

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 UFS - PROMAT Disciplina: Geometria Diferencial Professor: Almir Rogério Silva Santos Lista de Exercícios. Seja α : I R 3 uma curva regular. (a) Mostre que α é uma reta se α (t) e α (t) são linearmente

Leia mais

Justifique convenientemente as suas respostas e indique os principais cálculos. t (e t cos t, e t sin t).

Justifique convenientemente as suas respostas e indique os principais cálculos. t (e t cos t, e t sin t). Ano lectivo 004/05 Exame de Geometria Diferencial 6/7/05 Justifique convenientemente as suas respostas e indique os principais cálculos Duração: h30m Soluções 1. Considere a espiral logaritmica γ : R +

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

MAT Geometria Diferencial 1 - Lista 1

MAT Geometria Diferencial 1 - Lista 1 MAT0326 - Geometria Diferencial - Lista Monitor: Ivo Terek Couto 9 de outubro de 206 Observação. Assuma que todas as curvas e superfícies são diferenciáveis. Aquecimento Exercício. Seja α : I R R 3 uma

Leia mais

Anéis quocientes k[x]/i

Anéis quocientes k[x]/i META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:

Leia mais

Lista 8 de Álgebra Linear /01 Produto Interno

Lista 8 de Álgebra Linear /01 Produto Interno Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z

Leia mais

Introdução às superfícies de Riemann

Introdução às superfícies de Riemann LISTA DE EXERCÍCIOS Introdução às superfícies de Riemann 1. Mostre que toda curva plana é uma superfície de Riemann não-compacta. 2. Seja F : C 3 C um polinômio homogêneo de grau d, isto é, cada monômio

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

Lista Determine o valor máximo e o valor mínimo da função f sujeita às restrições explicitadas:

Lista Determine o valor máximo e o valor mínimo da função f sujeita às restrições explicitadas: UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Lista 3 Máximos e mínimos de funções de duas variáveis

Leia mais

LISTA 7 DE GEOMETRIA DIFERENCIAL Vamos continuar o nosso estudo sobre superfícies de R 3. Vamos explorar

LISTA 7 DE GEOMETRIA DIFERENCIAL Vamos continuar o nosso estudo sobre superfícies de R 3. Vamos explorar LITA 7 DE GEOMETRIA DIFERENCIAL 2007 RICARDO A EARP Vamos continuar o nosso estudo sobre superfícies de R 3. Vamos explorar certas superfícies especiais, tais como superfícies mínimas, superfícies de curvatura

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios 1 Espaços vetoriais Primeira Lista de Exercícios {( ) } a b Exercício 1.1. Considere M 2 := : a, b, c, d R, : M c d 2 M 2 M 2 dada por e : R M 2 M 2 dada por ( ) ( ) ( ) a1 b 1 a2 b 2 a1 + a := 2 b 1 +

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico

Leia mais

VARIEDADES COMPACTAS COM CURVATURA POSITIVA

VARIEDADES COMPACTAS COM CURVATURA POSITIVA VARIEDADES COMPACTAS COM CURVATURA POSITIVA Janaína da Silva Arruda 1, Rafael Jorge Pontes Diógenes 2 Resumo: O presente trabalho descreve o estudo das superfícies compactas com curvatura positiva. Um

Leia mais

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado

UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 2017/2 - Mestrado UFRGS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Programa de Pós-Graduação em Matemática Aplicada Prova Escrita - Processo Seletivo 27/2 - Mestrado A prova é composta de 6 (seis) questões, das quais o candidato

Leia mais

Topologia geral Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR

Topologia geral Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Topologia geral Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR LISTA 1: Métricas, Espaços Topológicos e Funções Contínuas 1 Métricas Exercício 1 Sejam M um espaço métrico e A M um

Leia mais

MAT Cálculo II - POLI

MAT Cálculo II - POLI MAT25 - Cálculo II - POLI Primeira Lista de Exercícios - 2006 TAYLOR 1. Utilizando o polinômio de Taylor de ordem 2, calcule um valor aproximado e avalie o erro: (a) 3 8, 2 (b) ln(1, 3) (c) sen (0, 1)

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT44 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 01 1. Esboce a superfície de nível da função F : A R R para o nível c: a) F(x, y, z) = x+y+z e c = 1 b) F(x, y, z) = x

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

ic Mestrado Integrado em Bioengenharia

ic Mestrado Integrado em Bioengenharia ic Mestrado Integrado em Bioengenharia MATEMÁTICA I 01-11- 1º Teste de Avaliação Álgebra Linear e Geometria Analítica Justifique convenientemente todos os cálculos que efetuar. O teste tem a duração de

Leia mais

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo

Leia mais

7. O Teorema Egregium de Gauss

7. O Teorema Egregium de Gauss 138 SUPERFÍCIES EM R3 7. O Teorema Egregium de Gauss Estamos agora em condições de provar um dos teoremas mais importantes do século XIX. Os matemáticos no final do século XVIII, como Euler e Monge, já

Leia mais

Álgebra linear A Primeira lista de exercícios

Álgebra linear A Primeira lista de exercícios Álgebra linear A Primeira lista de exercícios Prof. Edivaldo L. dos Santos (1) Verifique, em cada um dos itens abaixo, se o conjunto V com as operações indicadas é um espaço vetorial sobre R. {[ ] a b

Leia mais

Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista.

Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. MAT 2454 - Cálculo II - POLI - 2 a Lista de Exercícios 2 o semestre de 2002 Fazer os exercícios 35, 36, 37, 38, 39, 40, 41, 42 e 43 da 1 a lista. 1. Calcule w t e w pela regra da cadeia e confira os resultados

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim. MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..

Leia mais

1 Diferenciabilidade e derivadas direcionais

1 Diferenciabilidade e derivadas direcionais UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Nosso objetivo nestas notas é provar alguns resultados

Leia mais

Prova Extramuro BOA PROVA! Respostas da Parte II

Prova Extramuro BOA PROVA! Respostas da Parte II Prova Extramuro Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento da pontuação total é da parte I (Perguntas dissertativas). BOA PROVA!

Leia mais

Justifique convenientemente as suas respostas e indique os principais cálculos

Justifique convenientemente as suas respostas e indique os principais cálculos Ano lectivo 006/07 Exame de Geometria Diferencial 5/7/07 Justifique convenientemente as suas respostas e indique os principais cálculos Duração: h30m Soluções 1. Determine: a) Uma parametrização da curva

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 014 1. Em cada caso, esboce a superfície de nível c da função F : R R: a) Fx, y, z) = x + y + z e c = 1 b) Fx, y, z) =

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

Exercícios sobre Espaços Vetoriais II

Exercícios sobre Espaços Vetoriais II Exercícios sobre Espaços Vetoriais II Prof.: Alonso Sepúlveda Castellanos Sala 1F 104 1. Seja V um espaço vetorial não trivial sobre um corpo infinito. Mostre que V contém infinitos elementos. 2. Sejam

Leia mais

Lista 8 de Análise Funcional - Doutorado 2018

Lista 8 de Análise Funcional - Doutorado 2018 Lista 8 de Análise Funcional - Doutorado 2018 Professor Marcos Leandro 17 de Junho de 2018 1. Sejam M um subespaço de um espaço de Hilbert H e f M. Mostre que f admite uma única extensão para H preservando

Leia mais

Exercícios de topologia geral, espaços métricos e espaços vetoriais

Exercícios de topologia geral, espaços métricos e espaços vetoriais Exercícios de topologia geral, espaços métricos e espaços vetoriais 9 de Dezembro de 2009 Resumo O material nestas notas serve como revisão e treino para o curso. Estudantes que nunca tenham estudado estes

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS IFPB» Concurso Público Professor Efetivo de Ensino Básico, Técnico e Tecnológico» Edital Nº 136/011 CONHECIMENTOS ESPECÍFICOS» MATEMÁTICA (Perfil ) «1. Considere as afirmações a seguir acerca das funções

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -

Leia mais

Compacidade de conjuntos e operadores lineares

Compacidade de conjuntos e operadores lineares Compacidade de conjuntos e operadores lineares Roberto Imbuzeiro Oliveira 13 de Janeiro de 2010 No que segue, F = R ou C e (X, X ), (Y, Y ) são Banach sobre F. Recordamos que um operador linear T : X Y

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

3.3 Retrato de fase de sistemas lineares de 1 a ordem

3.3 Retrato de fase de sistemas lineares de 1 a ordem MAP 2310 - Análise Numérica e Equações Diferenciais I Continuação - 25/05/2006 1 o Semestre de 2006 3.3 Retrato de fase de sistemas lineares de 1 a ordem O espaço de fase de um sistema da forma ẏ = Ay,

Leia mais

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por:

de adição e multiplicação por escalar definidas por: 2. Mostre que o conjunto dos polinômios da forma a + bx com as operações definidas por: Lista de Exercícios - Espaços Vetoriais. Seja V o conjunto de todos os pares ordenados de números reais e considere as operações de adição e multiplicação por escalar definidas por: i. u + v (x y) + (s

Leia mais

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário 23 e 24 Forma Quadrática e Equação do Segundo Grau em R 3 Sumário 23.1 Introdução....................... 2 23.2 Autovalores e Autovetores de uma matriz 3 3.. 2 23.3 Mudança de Coordenadas no Espaço........

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A

MAT Cálculo Diferencial e Integral para Engenharia II 2 o semestre de Prova Substitutiva - 03/12/2012. Gabarito - TURMA A MAT 25 - Cálculo Diferencial e Integral para Engenaria II 2 o semestre de 2012 - Prova Substitutiva - 0/12/2012 Gabarito - TURMA A Questão 1. pontos) Seja a função fx,y) = ) x5 sen x +y x 2 +y 2, se x,y)

Leia mais

MAT Resumo Teórico e Lista de

MAT Resumo Teórico e Lista de MAT 0132 - Resumo Teórico e Lista de Exercícios April 10, 2005 1 Vetores Geométricos Livres 1.1 Construção dos Vetores 1.2 Adição de Vetores 1.3 Multiplicação de um Vetor por um Número Real 2 Espaços Vetoriais

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-458 Álgebra Linear para Engenharia II Terceira Lista de Eercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Seja V um espaço vetorial

Leia mais