3.3 Retrato de fase de sistemas lineares de 1 a ordem

Tamanho: px
Começar a partir da página:

Download "3.3 Retrato de fase de sistemas lineares de 1 a ordem"

Transcrição

1 MAP Análise Numérica e Equações Diferenciais I Continuação - 25/05/ o Semestre de Retrato de fase de sistemas lineares de 1 a ordem O espaço de fase de um sistema da forma ẏ = Ay, onde A M n n é o R n, ou seja, é o conjunto de estados (ou condições iniciais) desse sistema. Se φ : R R n é uma solução desse sistema, o conjunto Im(φ) = {φ(t) R n t R} é dito uma trajetória do sistema. O retrato de fase de um sistema é seu espaço de fase juntamente com suas trajetórias, que devem estar orientadas no sentido de percurso quando a varável independente cresce. Exercício 52 Esboce ( ) o retrato de fase dos ( seguintes ) sistemas: (a) ẏ = y (e) ẏ = y ( 0 3 ) ( 0 2 ) (b) ẏ = y (f) ẏ = y ( 0 3) ( 0 2 ) (c) ẏ = y (g) ẏ = y ( 0 3 ) ( 1 3 ) (d) ẏ = y (h) ẏ = y Exercício 53 Esboce ( o ) retrato de fase dos ( seguintes ) sistemas: (a) ẏ = y (d) ẏ = y ( 0 3 ) ( 1 0 ) (b) ẏ = y (e) ẏ = y ( 0 3) ( 1 2 ) (c) ẏ = y (f) ẏ = y

2 4 Mais sobre estudo qualitativo 4.1 Estabilidade de Liapunov Seja F : Ω = Ω R n R n, de classe C 1 e considere ẏ = F (y). (26) Como F não depende da variável independente t, essa equação é dita autônoma. Definição 11 Um ponto y 0 Ω é um ponto de equilíbrio de (26) se a função constante φ(t) = y 0, t R, é solução dessa equação. Proposição 11 y 0 Ω é um ponto de equilíbrio de (26) se e somente se F (y 0 ) = O. Exercício 54 Prove a proposição anterior. Exercício 55 Ache os pontos de equilíbrio de onde F : R 2 R 2 é dada por ẏ = F (y), (a) F (y) = F (y 1, y 2 ) = (2y 1 + y 2, y 1 y 2 ). (b) F (y) = F (y 1, y 2 ) = (2y 1 + y 2, y 1 y 2 2). (c) F (y) = F (y 1, y 2 ) = (y y 2 2 1, y 1 y 2 ). (d) F (y) = F (y 1, y 2 ) = (y y 2 2 1, 0). (e) F (y) = F (y 1, y 2 ) = (e y 1 cos y 2, e y 1 sin y 2 ). Notação: Dado y Ω, denotaremos por φ(t, y), t I y, a solução maximal de (26) que em t 0 = 0 passa pelo ponto y. Assim, I y denota o intervalo maximal dessa solução. Definição 12 Um ponto de equilíbrio y 0 Ω de (26) é estável segundo Liapunov se 2

3 (i) existe δ 0 > 0 tal que se y Ω e y y 0 < δ 0 então [0, [ I y, (ii) para cada ε > 0, existe δ > 0 (δ δ 0 ) tal que se y Ω e y y 0 < δ então φ(t, y) φ(t, y 0 ) < ε, t [0, [. Caso contrário, dizemos que y 0 é instável segundo Liapunov. Definição 13 Um ponto de equilíbrio y 0 Ω de (26) é dito atrator se existe δ 1 > 0 tal que se y Ω e y y 0 < δ 1 então (i) [0, [ I y, (ii) lim t φ(t, y) = y 0. Definição 14 Um ponto de equilíbrio y 0 Ω de (26) é assintoticamente estável segundo Liapunov se for estável segundo Liapunov e atrator. Teorema 9 Se φ(., y) : I y R n é solução de (26) e sua imagem para t I y [0, [ está contida num compacto de Ω, então [0, [ I y. Exercício 56 Mostre que, em consequência do teorema anterior, podemos dispensar a exigência (i) da definição 12 e a exigência (i) da definição 13. Exercício 57 Reveja os retratos de fase dos sistemas lineares dados no exercício 52. Em cada caso, decida se o ponto de equilíbrio (0, 0) é ou não estável segundo Liapunov. Em quais casos temos estabilidade assintótica? 4.2 Duas técnicas para estudar estabilidade de Liapunov Duas técnicas são bastante usadas para o estudo da estabilidade de Liapunov de pontos de equilíbrio e para estudar o comportamento de soluções perto de pontos de equilíbrio. Uma delas faz uso de funções auxiliares convenientes, outra faz uso da linearização da equação perto do ponto de equilíbrio em questão. A seguir apresentaremos alguns resultados para ilustrar esses métodos. 3

4 4.2.1 Uso de funções auxiliares Proposição 12 (função de Liapunov p/ estabilidade) Seja y 0 um ponto de equilíbrio de (26). Sejam U Ω aberto tal que y 0 U e V : U R de classe C 1. Suponha que V satisfaz: (i) V (y) > V (y 0 ), y U, y y 0, (ii) V (y) := JV (y)f (y) 0, y U. Então y 0 é estável segundo Liapunov. Exercício 58 Considere o sistema ẏ = F (y) onde F (y) = ( 2y 1, 4y 2 ). (a) Mostre que a origem (0, 0) é um ponto de equilíbrio desse sistema. (b) Mostre que a origem (0, 0) é um ponto de equilíbrio estável segundo Liapunov. Sugestão: V (y) = y y 2 2. Exercício 59 Considere o sistema ẏ = F (y) onde F (y) = ( 2y 1 + y 1 y 2, 4y 2 + 3y 1, y 2 ). (a) Mostre que a origem (0, 0) é um ponto de equilíbrio desse sistema. (b) Mostre que a origem (0, 0) é um ponto de equilíbrio estável segundo Liapunov. Sugestão: V (y) = y y 2 2. Exercício 60 Considere o sistema ẏ = F (y) onde F (y) = (y 2, y 1 ). (a) Mostre que a origem (0, 0) é um ponto de equilíbrio desse sistema. (b) Mostre que a origem (0, 0) é um ponto de equilíbrio estável segundo Liapunov. Sugestão: V (y) = 1 2 (y2 1 + y 2 2). 4

5 Proposição 13 (função de Liapunov p/ estabilidade assintótica) Seja y 0 um ponto de equilíbrio de (26). Sejam U Ω aberto tal que y 0 U e V : U R de classe C 1. Suponha que V satisfaz: (i) V (y) > V (y 0 ), y U, y y 0, (ii) V (y) := JV (y)f (y) < 0, y U, y y 0. Então y 0 é assintoticamente estável segundo Liapunov. Exercício 61 Considere o sistema dado no exercício 58. origem é um ponto de equilíbrio assintoticamente estável. Exercício 62 Considere o sistema dado no exercício 59. origem é um ponto de equilíbrio assintoticamente estável. Mostre que a Mostre que a Proposição 14 (função de Liapunov p/ instabilidade) Seja y 0 um ponto de equilíbrio de (26). Sejam U Ω aberto tal que y 0 U e V : U R de classe C 1. Suponha que V satisfaz: (i) V (y) > V (y 0 ), y U, y y 0, (ii) V (y) := JV (y)f (y) > 0, y U, y y 0. Então y 0 é instável segundo Liapunov. Exercício 63 Considere o sistema ẏ = F (y) onde F (y) = (2y 1, 4y 2 ). (a) Mostre que a origem (0, 0) é um ponto de equilíbrio desse sistema. (b) Mostre que a origem (0, 0) é um ponto de equilíbrio instável segundo Liapunov. Sugestão: V (y) = y y 2 2. Exercício 64 Considere o sistema ẏ = F (y) onde F (y) = (2y 1 + y 1 y 2, 4y 2 + 3y 1, y 2 ). (a) Mostre que a origem (0, 0) é um ponto de equilíbrio desse sistema. (b) Mostre que a origem (0, 0) é um ponto de equilíbrio instável segundo Liapunov. Sugestão: V (y) = y y

6 4.2.2 Uso da linearização Se y 0 é um ponto de equilíbrio de (26) então podemos desenvolver F (y) ao redor de y 0 usando seu polinômio de Taylor de 1 a ordem: F (y) = F (y 0 ) + JF (y 0 )(y y 0 ) + R(y) = JF (y 0 )(y y 0 ) + R(y), onde R(y) y y 0 0 quando y y 0, Portanto podemos aproximar F (y) ao redor de y 0 pelo seu polinômio de Taylor de 1 a ordem: F (y) F (y 0 ) + JF (y 0 )(y y 0 ) = JF (y 0 )(y y 0 ). Uma pergunta natural é se o sistema linear ẏ = JF (y 0 )(y y 0 ) (27) aproxima bem o sistema (26) perto de y 0. Mais explicitamente, gostaríamos de saber se o comportamento das soluções de (27) que começam perto de y 0 representam bem o comportamento das soluções de (26) que começam perto de y 0. É claro que podemos chamar z = y y 0, reescrever (27) como ż = JF (y 0 )z (28) e passar a perguntar se o comportamento das soluções de (28) que começam perto de z 0 = O representam bem o comportamento das soluções de (26) que começam perto de y 0. Os resultados a seguir respondem parcialmente essas perguntas. Proposição 15 (linearização) Seja y 0 um ponto de equilíbrio de (26). (a) Se todos os autovalores de JF (y 0 ) têm parte real < 0 então y 0 é assintoticamente estável segundo Liapunov. (b) Se JF (y 0 ) tem um autovalor com parte real > 0 então y 0 é instável segundo Liapunov. 3,4,8,9 Exercício 65 Use a proposição anterior para estudar a estabilidade da origem dos sistemas dos exercícios 58, 59, 63 e 64. 6

7 Exercício 66 Use a proposição anterior para estudar a estabilidade da origem do sistema ẏ = F (y) onde F (y) = ( 2y 1 + y 1 y 2, 4y 2 + 3y 1, y 2 ). Proposição 16 (parte do teorema de Hartman) Seja y 0 um ponto de equilíbrio de (26). Se todos os autovalores de JF (y 0 ) têm parte real 0 então o retrato de fase de (26) perto de y 0 é essencialmente igual ao retrato de fase de (28) perto de z 0 = O no seguinte sentido: (a) o conjunto das condições iniciais y cujas soluções de (26) tendem para o ponto de equilíbrio y 0 no futuro tem como espaço tangente em y 0 o espaço das condições iniciais z cujas soluções de (28) tendem a z 0 = 0 no futuro, e (b) o conjunto das condições iniciais y cujas soluções de (26) tendem para o ponto de equilíbrio y 0 no passado tem como espaço tangente em y 0 o espaço das condições iniciais z cujas soluções de (28) tendem a z 0 = 0 no passado. 7

8 Complemento: Pontos de máximo, de mínimo, de sela Em muitas situações, teremos candidatas a função auxiliar V a serem usadas como nas proposições 12, 13 e 14, e precisaremos descobrir se V satisfaz a propriedade (i), e se V satisfaz a propriedade (ii) de uma dessas proposições. Em qualquer dos casos, o problema pode ser resumido em: como descobrir se um certo ponto y 0 é ponto crítico de uma função G (G = V ou G = V ) e, em caso afirmativo, como descobrir se ele é um ponto de máximo, de mínimo ou de sela (i.é, nem máximo nem mínimo) de G. Ser um ponto crítico de G significa anular o gradiente de G, ou seja, y 0 é ponto crítico de G G(y 0 ) = O JG(y 0 ) = [0 0 0]. Para descobrir se um determinado ponto crítico é ponto de máximo, de mínimo ou de sela de G podemos usar algumas ferramentas apresentadas a seguir. Formas Quadráticas Seja A uma matriz real n n, simétrica. A função Q(y) = Q A (y) := Ay y = y t Ay, y R n, é uma forma quadrática. Ela satisfaz: Q(ty) = t 2 Q(y), t R, y R n. Se Q(y) > 0, y R n, Q é dita uma forma quadrática definida positiva (neste caso, Q tem mínimo estrito global em O). Se Q(y) < 0, y R n, Q é dita uma forma quadrática definida negativa (neste caso, Q tem máximo estrito global em O). Se existem y + e y tais que Q(y + ) > 0 e Q(y ) < 0, Q é dita uma forma quadrática indefinida (neste caso, Q tem sela em O). Proposição 17 Seja S(y) uma função definida numa vizinhança Ω 0 de O, satisfazendo S(y) lim y O y = 0. 2 Então (a) se Q = Q A é uma forma quadrática definida positiva, existe δ > 0 tal que B δ (O) Ω 0 e a função G = Q + S satisfaz G(y) > 0, y B δ (O), y O (isto é, O é ponto de mínimo estrito de G em B δ (O). 8

9 (b) se Q = Q A é uma forma quadrática definida negativa, existe δ > 0 tal que B δ (O) Ω 0 e a função G = Q + S satisfaz G(y) < 0, y B δ (O), y O (isto é, O é ponto de máximo estrito de G em B δ (O). (c) se Q = Q A é uma forma quadrática indefinida, então para cada δ > 0 existem y δ+, y δ B δ (O) tais que a função G = Q + S satisfaz G(y δ+ ) > 0 e G(y δ ) < 0 (isto é, O é ponto de sela de G. Proposição 18 Seja A uma matriz real n n, simétrica, e considere as submatrizes [ a11 a A 1 = [a 11 ], A 2 = 12 a 21 a 22 ],..., A k = a 11 a 12 a 1k a 21 a 22 a 2k......,..., A n = A. a k1 a k2 a kk (a) Se det A k > 0, k = 1, 2,..., n, então Q A é definida positiva. (b) Se det A 1 < 0, det A 2 > 0,..., sgn det A k = ( 1) k,..., então Q A é definida negativa. (c) Se det A k > 0, k = 1, 2,..., s e det A s+1 < 0, então Q A é indefinida. Seja Ω 0 R n aberto. Se G : Ω 0 R é de classe C 2 e tem um ponto crítico y 0 (isto é, G(y 0 ) = O, ou seja, JG(y 0 ) = [0 0 0]), então podemos desenvolver G ao redor de y 0 usando seu polinômio de Taylor de 2 a ordem, obtendo G(y) = G(y 0 ) + JG(y 0 )(y y 0 ) + 1 2! (y y 0) t Hess G(y 0 )(y y 0 ) + R(y) = G(y 0 ) + 1 2! (y y 0) t Hess G(y 0 )(y y 0 ) + R(y) onde Hess G(y 0 ) é a matriz hessiana de G no ponto y 0 e lim y y 0 Corolário 10 Nas condições acima: R(y) y y 0 2 = 0. 9

10 (a) se Hess G(y 0 ) é definida positiva então y 0 é um ponto de mínimo local estrito de G, isto é, existe δ > 0 com B δ (y 0 ) Ω 0 tal que G(y) > G(y 0 ), y B δ (y 0 ), y y 0. (b) se Hess G(y 0 ) é definida negativa então y 0 é um ponto de máximo local estrito de G, isto é, existe δ > 0 com B δ (y 0 ) Ω 0 tal que G(y) < G(y 0 ), y B δ (y 0 ), y y 0. Este corolário pode ser usado para mostrar, sob certas circunstâncias, que uma candidata V serve como função auxiliar para mostrar estabilidade assintótica de um ponto de equilíbrio de (26), ou para mostrar instabilidade. 10

25/05/06 MAP Análise Numérica e Equações Diferenciais I 1 o Semestre de EDO linear homogênea a coeficientes constantes - Continução

25/05/06 MAP Análise Numérica e Equações Diferenciais I 1 o Semestre de EDO linear homogênea a coeficientes constantes - Continução 25/05/06 MAP 2310 - Análise Numérica e Equações Diferenciais I 1 o Semestre de 2006 Continuação 185 EDO linear homogênea a coeficientes constantes - Continução Exercício 36 Ache a solução geral complexa

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ

Leia mais

10 Estabilidade de Métodos de Passo Simples

10 Estabilidade de Métodos de Passo Simples MAP 2310 - Análise Numérica e Equações Diferenciais I 1 o Semestre de 2008 Análise Numérica NÃO REVISADO! 10 Estabilidade de Métodos de Passo Simples Continuamos interessados em estudar Métodos de Discretização

Leia mais

1 Equações Diferenciais Ordinárias: Sistemas de Equações

1 Equações Diferenciais Ordinárias: Sistemas de Equações Equações Diferenciais Ordinárias: Sistemas de Equações O sistema geral de duas equações diferenciais pode ser escrito como: ẋ = F x,y,t ẏ = Gx,y,t Uma Solução de é um par x t e y t de funções de t tais

Leia mais

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias MAP2310 14/03/2005 Análise Numérica e Equações Diferenciais I 1 o Semestre de 2005 1 1 Equações Diferenciais Ordinárias 1.1 Introdução Equações envolvendo uma variável independente real t, uma função desconhecida

Leia mais

MATRIZES POSITIVAS DEFINIDAS

MATRIZES POSITIVAS DEFINIDAS MATRIZES POSITIVAS DEFINIDAS Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 7 de novembro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Por que saber se uma matriz é definida positiva? Importância do sinal

Leia mais

Linearização de Modelos e Teoremas Locais

Linearização de Modelos e Teoremas Locais Modelos e Teoremas Locais Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 05 de janeiro de 2017. Sumário Introdução => Uma grande parte

Leia mais

A (u + iv) = (a + ib) (u + iv) = (au bv) + i (av + bu).

A (u + iv) = (a + ib) (u + iv) = (au bv) + i (av + bu). DICAS E RESPOSTAS DA LISTA DE EXERCÍCIOS 4 EDO II - MAP 036 PROF: PEDRO T P LOPES WWWIMEUSPBR/ PPLOPES/EDO Os exercícios a seguir foram selecionados dos livros dos autores Claus Doering-Artur Lopes e Jorge

Leia mais

Lista de Exercícios Equações Diferenciais Ordinárias I MAT 871

Lista de Exercícios Equações Diferenciais Ordinárias I MAT 871 Lista de Exercícios Equações Diferenciais Ordinárias I MAT 871 1 de abril de 2017 Esta lista contém exercícios de [1], [2], [3] e [4]. separados por aulas em ordem decrescente de aula. Os exercícios estão

Leia mais

Retratos de Fase de Sistemas Lineares Homogêneos 2 2

Retratos de Fase de Sistemas Lineares Homogêneos 2 2 Retratos de Fase de Sistemas Lineares Homogêneos 2 2 Reginaldo J Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 2 de novembro de 20 2 Eemplo Considere

Leia mais

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 4 EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN () Determine

Leia mais

FUNDAMENTOS DE CONTROLE - EEL 7531

FUNDAMENTOS DE CONTROLE - EEL 7531 14 de maio de 2015 Introdução a sistemas não-lineares Embora modelos lineares sejam muito usados, sistemas reais apresentam algum tipo de não-linearidade Em muitos casos a faixa de operação limitada faz

Leia mais

Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2

Cálculo 1 Fuja do Nabo. Resumo e Exercícios P2 Cálculo 1 Fuja do Nabo Resumo e Exercícios P2 Fórmulas e Resumo Teórico Limites Exponenciais e Logarítmicos lim $ &' 1 + 1 x $ = e ou lim $ 0 1 + h 2 3 = e a $ 1 lim $ 0 x = ln a, a > 0 Derivadas Exponenciais

Leia mais

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

Modelagem em Sistemas Complexos

Modelagem em Sistemas Complexos Modelagem em Sistemas Complexos Bifurcação local de campos vetoriais Marcone C. Pereira Escola de Artes, Ciências e Humanidades Universidade de São Paulo São Paulo - Brasil Abril de 2012 Nesta aula discutiremos

Leia mais

Equações Diferenciais (M2011)

Equações Diferenciais (M2011) Equações Diferenciais (M2011) ICruz - FCUP Aula 16-16 abr 18 (ICruz - FCUP) Equações Diferenciais (M2011) Aula 16-16 abr 18 1 / 12 Estabilidade de pontos de equilíbrio de sistemas LHCC No caso de sistemas

Leia mais

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov

Estabilidade Interna. 1. Estabilidade Interna. 2. Análise de Estabilidade Segundo Lyapunov. 3. Teorema de Lyapunov Estabilidade Interna 1. Estabilidade Interna 2. Análise de Estabilidade Segundo Lyapunov 3. Teorema de Lyapunov 4. Teorema de Lyapunov Caso Discreto pag.1 Teoria de Sistemas Lineares Aula 13 Estabilidade

Leia mais

Notas de Aula - Parte 6. Estabilidade Estrutural e Bifurcações

Notas de Aula - Parte 6. Estabilidade Estrutural e Bifurcações FGE417- Fenômenos Não-Lineares em Física: Introdução ao Caos Determinístico e aos Sistemas Dinâmicos Prof. Reynaldo Daniel Pinto Notas de Aula - Parte 6 Estabilidade Estrutural e Bifurcações 1972 - René

Leia mais

Método dos gradientes (ou método de máxima descida)

Método dos gradientes (ou método de máxima descida) Método dos gradientes (ou método de máxima descida) Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 14 de setembro de 2010 1 / 16 Método dos gradientes

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método

Leia mais

Cap. 5 Estabilidade de Lyapunov

Cap. 5 Estabilidade de Lyapunov Cap. 5 Estabilidade de Lyapunov 1 Motivação Considere as equações diferenciais que modelam o oscilador harmônico sem amortecimento e sem força aplicada, dada por: M z + Kz = 0 Escolhendo-se x 1 = z e x

Leia mais

1 Diferenciabilidade e derivadas direcionais

1 Diferenciabilidade e derivadas direcionais UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Nosso objetivo nestas notas é provar alguns resultados

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

derivadas parciais até a ordem k existem e são contínuas em todo A. derivadas parciais de todas as ordens existem e são contínuas em todo A.

derivadas parciais até a ordem k existem e são contínuas em todo A. derivadas parciais de todas as ordens existem e são contínuas em todo A. 1 Funções de várias variáveis - 3 1.1 Classes de derivabilidade e derivadas mistas Definição. Seja f : D R e A D: dizemos que f é de classe C k em A (f C k (A)) se f e todas suas derivadas parciais até

Leia mais

Controle Não LInear. CEFET/RJ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro

Controle Não LInear. CEFET/RJ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro Controle Não LInear CEFET/RJ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro 1 2. SISTEMAS DE 2ª ORDEM 2.1. INTRODUÇÃO 2.2. ANÁLISE QUALITATIVA DOS SISTEMAS LINEARES 2.2.1.

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

Mini-teste 1 (Licenciatura em Matemática) 12/01/2007 Duração: 15 mn (Sem consulta)

Mini-teste 1 (Licenciatura em Matemática) 12/01/2007 Duração: 15 mn (Sem consulta) Mini-teste 1 (Licenciatura em Matemática) 12/01/2007 1. O campo de direcções (na região rectangular [ 4, 4] [ 4, 4]) representado na figura 1 corresponde à equação diferencial Figure 1: y = t(1 y) ; y

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

Bifurcações da região de estabilidade de sistemas dinâmicos autônomos não lineares: Bifurcação Sela-Nó do Tipo-1

Bifurcações da região de estabilidade de sistemas dinâmicos autônomos não lineares: Bifurcação Sela-Nó do Tipo-1 Bifurcações da região de estabilidade de sistemas dinâmicos autônomos não lineares: Bifurcação Sela-Nó do Tipo-1 Fabíolo Moraes Amaral Departamento de Ensino, IFBA Campus Eunápolis 45.822-000, Eunápolis,

Leia mais

Sistemas Dinâmicos. Ferramentas e Aplicações

Sistemas Dinâmicos. Ferramentas e Aplicações Sistemas Dinâmicos Ferramentas e Aplicações y()= 3 Discreto 4 Discreto 5 Contínuo 6 Contínuo 7 8 9 Campos: modelos espaço-temporais 0 Sistemas Lineares Este sistema é linear? u(t) S y(t)=s(u) 3 4 Sistemas

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

1 Máximos e mínimos. Seja f : D f R e p D f. p é ponto de mínimo global (absoluto) de f se. x D f vale f(x) f(p) f(p) é mínimo global (absoluto) de f.

1 Máximos e mínimos. Seja f : D f R e p D f. p é ponto de mínimo global (absoluto) de f se. x D f vale f(x) f(p) f(p) é mínimo global (absoluto) de f. Cálculo I June 12, 2015 1 1 Máximos e mínimos Seja f : D f R e p D f p é ponto de máximo global (absoluto) de f se x D f vale f(x) f(p) f(p) é máximo global (absoluto) de f. p é ponto de máximo local de

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

Cálculo Diferencial e Integral II 2012/13 1 o semestre

Cálculo Diferencial e Integral II 2012/13 1 o semestre Cálculo Diferencial e Integral II 212/13 1 o semestre Modelo do 1 o Teste LEIC-TP, LEGI, LERC, LEE 6 de Novembro de 212 Justifique adequadamente todas as respostas. 1. Calcule V y dx dy dz em que V = {(x,

Leia mais

Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006.

Fórmulas de Taylor. Notas Complementares ao Curso. MAT Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006. Fórmulas de Taylor Notas Complementares ao Curso MAT0413 - Cálculo para Ciências Biológicas - Farmácia Noturno - 1o. semestre de 2006 Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares

Leia mais

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I

Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Fórmulas de Taylor - Notas Complementares ao Curso de Cálculo I Gláucio Terra Sumário 1 Introdução 1 2 Notações 1 3 Notas Preliminares sobre Funções Polinomiais R R 2 4 Definição do Polinômio de Taylor

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

IF-705 Automação Inteligente Controle Não Linear

IF-705 Automação Inteligente Controle Não Linear IF-705 Automação Inteligente Controle Não Linear Paulo Henrique Muniz Ferreira Aluízio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática Cin {phmf,aluizioa}@cin.ufpe.br Sumário

Leia mais

Matriz Hessiana e Aplicações

Matriz Hessiana e Aplicações Matriz Hessiana e Aplicações Sadao Massago Dezembro de 200 Sumário Introdução 2 Matriz Jacobiana 3 Matriz hessiana 2 4 Talor de primeira e segunda ordem 2 5 Classicação dos pontos críticos 3 A Procedimeno

Leia mais

Métodos de passo simples para equações diferenciais ordinárias. Nelson Kuhl

Métodos de passo simples para equações diferenciais ordinárias. Nelson Kuhl Métodos de passo simples para equações diferenciais ordinárias Nelson Kuhl 1. Solução Numérica de Equações Diferencias Ordinárias Métodos de Passo Simples Explícitos 1.1 Introdução Para a maioria das equações

Leia mais

INSTITUTO SUPERIOR TÉCNICO LEFT LEBL LQ LEAM LEMAT Ano Lectivo: 2006/2007 Semestre: 2 o

INSTITUTO SUPERIOR TÉCNICO LEFT LEBL LQ LEAM LEMAT Ano Lectivo: 2006/2007 Semestre: 2 o INSTITUTO SUPERIOR TÉCNICO LEFT LEBL LQ LEAM LEMAT Ano Lectivo: 2006/2007 Semestre: 2 o MATEMÁTICA COMPUTACIONAL Eercícios 1.1. Represente num sistema de ponto flutuante com 4 dígitos na mantissa e arredondamento

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Limites. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Limites Aula 0 208/ Projeto GAMA Grupo de Apoio em Matemática Ideia Intuitiva

Leia mais

MAT-330: Teoria dos Conjuntos

MAT-330: Teoria dos Conjuntos MAT-330: Teoria dos Conjuntos 1 a Lista de Exercícios 1 o Semestre de 2011 1 Explicações iniciais Importante: Cada exercício faz uso de alguns dos axiomas de ZF. Tente sempre declarar explicitamente quais

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

PEF-5737 Dinâmica Não Linear e Estabilidade. Prof. Dr. Carlos Eduardo Nigro Mazzilli

PEF-5737 Dinâmica Não Linear e Estabilidade. Prof. Dr. Carlos Eduardo Nigro Mazzilli PEF-5737 Dinâmica Não Linear e Estabilidade Prof. Dr. Carlos Eduardo Nigro Mazzilli Equações de movimento de segunda ordem Formulação Lagrangeana d T T V N, r r 1,,..., n dt qr qr qr q h q, q, t q h q,

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Equações não lineares

Equações não lineares DMPA IME UFRGS Cálculo Numérico Índice Raizes de polinômios 1 Raizes de polinômios 2 raizes de polinômios As equações não lineares constituídas por polinômios de grau n N com coeficientes complexos a n,a

Leia mais

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo

Leia mais

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V

Leia mais

Estimativa de Parte Relevante da Fronteira da Região de Estabilidade usando Função Energia Generalizada

Estimativa de Parte Relevante da Fronteira da Região de Estabilidade usando Função Energia Generalizada Trabalho apresentado no XXXVII CNMAC, S.J. dos Campos - SP, 2017. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Estimativa de Parte Relevante da Fronteira da Região

Leia mais

Matemática Aplicada à Economia I Lista 3 Cálculo a Várias Variáveis. 1) Use o método das fatias para esboçar os gráficos das seguintes funções:

Matemática Aplicada à Economia I Lista 3 Cálculo a Várias Variáveis. 1) Use o método das fatias para esboçar os gráficos das seguintes funções: Matemática Aplicada à Economia I Lista 3 Cálculo a Várias Variáveis 1) Use o método das fatias para esboçar os gráficos das seguintes funções: f) 2) Esboce conjuntos de nível de cada uma das seguintes

Leia mais

2 o TESTE DE DE CÁLCULO DIFERENCIAL E INTEGRAL II LCEIC-Taguspark, LCERC, LCEGI, LCEE 10 de Maio de 2008 (9:00) Teste 202.

2 o TESTE DE DE CÁLCULO DIFERENCIAL E INTEGRAL II LCEIC-Taguspark, LCERC, LCEGI, LCEE 10 de Maio de 2008 (9:00) Teste 202. Instituto Superior Técnico Departamento de Matemática 2 o semestre 07/08 2 o TESTE DE DE CÁLCULO DIFERENCIAL E INTEGRAL II LCEIC-Taguspark, LCERC, LCEGI, LCEE 10 de Maio de 2008 (9:00) Teste 202 Nome:

Leia mais

Sistemas Lineares Periódicos: Teoria de Floquet

Sistemas Lineares Periódicos: Teoria de Floquet Sistemas Lineares Periódicos: eoria de Floquet Considere o sistema linear homogêneo e periódico ẋ = A(t)x, (1) onde R t A(t) M n (R)(ou M n (C)) é contínua e periódica, isto é, existe > 0 tal que A(t +

Leia mais

INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o

INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o INSTITUTO SUPERIOR TÉCNICO Mestrado em Engenharia Electrotécnica e de Computadores Ano Lectivo: 2007/2008 Semestre: 2 o MATEMÁTICA COMPUTACIONAL Eercícios 1 1.1 Represente num sistema de ponto flutuante

Leia mais

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Programa de Pós-Graduação em Matemática Instituto de Matemática e Estatística - IME Universidade Federal de Goiás - UFG EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Aluno: 1) Seja G um grupo e a, b G tais

Leia mais

EES-20: Sistemas de Controle II

EES-20: Sistemas de Controle II EES-: Sistemas de Controle II 14 Agosto 17 1 / 49 Recapitulando: Estabilidade interna assintótica Modelo no espaço de estados: Equação de estado: ẋ = Ax + Bu Equação de saída: y = Cx + Du Diz-se que o

Leia mais

Controle Não Linear. CEFET/RJ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro

Controle Não Linear. CEFET/RJ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro Controle Não Linear CEFET/RJ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Rio de Janeiro 1 Fundamentos da Teoría de Lyapunov Dadas as características dos sistemas não-lineares características,

Leia mais

A Projeção e seu Potencial

A Projeção e seu Potencial A Projeção e seu Potencial Rolci Cipolatti Departamento de Métodos Matemáticos Instituto de Matemática, Universidade Federal do Rio de Janeiro C.P. 68530, Rio de Janeiro, Brasil e-mail: cipolatti@im.ufrj.br

Leia mais

LIMITES E CONTINIDADE

LIMITES E CONTINIDADE MATEMÁTICA I LIMITES E CONTINIDADE Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Parte 2 Limites Infinitos Definição de vizinhança e ite Limites laterais Limite de função

Leia mais

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane

x n+1 = 1 2 x n (2 valores) Considere a equação recursiva no modelo de Fisher, Wright e Haldane .9.8.7.6.5.4.3.2.1 1 22/11/211 1 o teste A41N1 - Análise Matemática - BIOQ Nome... N o... 1. (2 valores) Calcule a soma da série 9 1 + 9 1 + 9 1 +... 9 1 + 9 1 + 9 1 + = 9 1 1 + 1 1 + 1 1 + 1 «1 +... =

Leia mais

Listas de Exercícios

Listas de Exercícios MAT1154 Equações Diferenciais e de Diferenças Listas de Exercícios Período 2004.1 George Svetlichny Sumário 1 Lista de Exercícios N o 1 2 2 Lista de Exercícios N o 2 8 3 Lista de Exercícios N o 3 12 4

Leia mais

1 Auto vetores e autovalores

1 Auto vetores e autovalores Auto vetores e autovalores Os autovalores de uma matriz de uma matriz n n são os n números que resumem as propriedades essenciais daquela matriz. Como esses n números realmente caracterizam a matriz sendo

Leia mais

DINÂMICA DO SISTEMA CARRO-PÊNDULO

DINÂMICA DO SISTEMA CARRO-PÊNDULO DINÂMICA DO SISTEMA CARRO-PÊNDULO Rafael Alves Figueiredo 1, Márcio José Horta Dantas 2 Faculdade de Matemática FAMAT Universidade Federal de Uberlândia UFU Resumo O objetivo principal desse trabalho é

Leia mais

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof.

CURSO DE RESOLUÇÃO DE PROVAS de MATEMÁTICA da ANPEC Tudo passo a passo com Teoria e em sequência a resolução da questão! Prof. Prof. Chico Vieira MATEMÁTICA da ANPEC Tudo Passo a Passo Teoria e Questões FICHA com LIMITES, DERIVADAS, INTEGRAIS, EDO, SÉRIES Integrais Dupla e Tripla LIMITES ANPEC QUESTÕES JÁ GRAVADAS DERIVADAS ANPEC

Leia mais

FUNDAMENTOS DE CONTROLE - EEL 7531

FUNDAMENTOS DE CONTROLE - EEL 7531 Soluções periódicas e ciclos limite Funções descritivas FUNDAMENTOS DE CONTROLE - EEL 7531 Professor: Aguinaldo S. e Silva LABSPOT-EEL-UFSC 9 de junho de 2015 Professor: Aguinaldo S. e Silva FUNDAMENTOS

Leia mais

Cálculo Diferencial e Integral 2 Formas Quadráticas

Cálculo Diferencial e Integral 2 Formas Quadráticas Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral 2 Formas Quadráticas 1 Formas quadráticas Uma forma quadrática em R n é um polinómio do

Leia mais

Resumo dos resumos de CDI-II

Resumo dos resumos de CDI-II Resumo dos resumos de DI-II 1 Topologia e ontinuidade de Funções em R n 1 Limites direccionais: Se lim f(x, mx) x 0 não existe, ou existe mas depende de m, então não existe lim f(x, y) (x,y) (0,0) 2 Produto

Leia mais

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de

DANIEL V. TAUSK. se A é um subconjunto de X, denotamos por A c o complementar de O TEOREMA DE REPRESENTAÇÃO DE RIESZ PARA MEDIDAS DANIEL V. TAUSK Ao longo do texto, denotará sempre um espaço topológico fixado. Além do mais, as seguintes notações serão utilizadas: supp f denota o suporte

Leia mais

Lista 3 Prof. Diego Marcon

Lista 3 Prof. Diego Marcon Lista 3 Prof. Diego Marcon Métodos Aplicados de Matemática I 9 de Maio de 7 Lista de eercícios referente ao restante da primeira área da nossa disciplina: Equações lineares de ordem mais alta Sistemas

Leia mais

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto.

f(x) f(a), x D. O ponto a é então chamado ponto de máximo absoluto ou maximizante absoluto. Capítulo 4 Problemas de Extremo 41 Extremos Seja f : D R m R uma função real de n variáveis reais, de domínio D e a D Definição 1 Diz-se que: A função f tem um máximo absoluto em a se f(x) f(a), x D O

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA D

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA D MAT 103 Turma 011118 Complementos de matemática para contabilidade e administração Prof. Paolo Piccione 9 de Junho de 011 PROVA D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora

Leia mais

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA E

MAT 103 Turma Complementos de matemática para contabilidade e administração PROVA E MAT 103 Turma 011118 Complementos de matemática para contabilidade e administração Prof. Paolo Piccione 9 de Junho de 011 PROVA E Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora

Leia mais

LISTA 8. Resolva os seguintes sistemas de EDOLÑH pelo método dos operdores e, quando possível, y = 4x 4y. x = 2x + 2y y = 2x 5y.

LISTA 8. Resolva os seguintes sistemas de EDOLÑH pelo método dos operdores e, quando possível, y = 4x 4y. x = 2x + 2y y = 2x 5y. MAT 01167 LISTA 8 Equações Diferenciais 1. Resolva as seguintes equações de ordem superior: (a) y (4) 3y + y = 0 (b) y 5y + 8y 4y = 0 (c) y (4) y + y y = 0 (d) y y = 0. Resolva as seguintes equações de

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I LIMITE. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I LIMITE Profa. Dra. Amanda L. P. M. Perticarrari amanda@fcav.unesp.br Parte 1 Limites Definição de vizinhança e ite Limites laterais Limite de função real com uma variável real Teorema da existência

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná Cálculo Numérico - Zeros de Funções Prof a Dr a Diane Rizzotto Rossetto Universidade Tecnológica Federal do Paraná 13 de março de 2016 D.R.Rossetto Zeros de Funções 1/81 Problema Velocidade do pára-quedista

Leia mais

Variedades diferenciáveis e grupos de Lie

Variedades diferenciáveis e grupos de Lie LISTA DE EXERCÍCIOS Variedades diferenciáveis e grupos de Lie 1 VARIEDADES TOPOLÓGICAS 1. Seja M uma n-variedade topológica. Mostre que qualquer aberto N M é também uma n-variedade topológica. 2. Mostre

Leia mais

Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas

Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas ) a) (t) = e t (t) = e t b) c) (t) = e t ( cos t + sin t) (t) = e t cos t (t) = + 9t (t) = 6t ) Substitua (t) e (t) na equação e resolva

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional MEEC 1 ạ Parte/ 1 ọ Teste 019/01/ 18h30 (+1h30) Apresente todos os cálculos e justifique convenientemente as respostas. 1. Nas duas alíneas seguintes apresente os resultados num

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo II. Aula 27 e 28, Segunda 03/11/2014. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo II Aula 27 e 28, Segunda 03/11/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo 1 Derivadas parciais: seja f : R 2 R, a derivada parcial f x (a, b) é o limite (quando existe) lim h 0 f (a

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

32 a Aula AMIV LEAN, LEC Apontamentos

32 a Aula AMIV LEAN, LEC Apontamentos 32 a Aula 2429 AMIV LEAN, LEC Apontamentos (RicardoCoutinho@mathistutlpt) 32 Fórmula da variação das constantes Temos então pela fórmula dos da variação das constantes (para sistemas de equações - Teorema

Leia mais

Norma em matrizes e condicionamento de sistemas lineares

Norma em matrizes e condicionamento de sistemas lineares Norma em matrizes e condicionamento de sistemas lineares Laura Goulart UESB 11 de Fevereiro de 2019 Laura Goulart (UESB) Norma em matrizes e condicionamento de sistemas 11 de Fevereiro lineares de 2019

Leia mais

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler

Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Métodos Numéricos em Equações Diferenciais Aula 02 - Método de Euler Profa. Vanessa Rolnik curso: Matemática Aplicada a Negócios Introdução Método de Diferenças: { w0 = α w i+1 = w i + h φ(t i, w i ),

Leia mais

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira

MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira MAT140 - Cálculo I - Máximos e Mínimos Locais e Globais, Pontos Críticos e o Teste da Derivada Primeira 4 de novembro de 2015 Vimos que a derivada de uma função em um ponto é a inclinação da reta tangente

Leia mais

Um Estudo da Dinâmica da Equação Logística

Um Estudo da Dinâmica da Equação Logística Um Estudo da Dinâmica da Equação Logística Conconi, T.; Silva Lima, M.F. Resumo: Equações diferenciais são adequadas para representar sistemas discretos por grandezas cujos valores variam apenas em determinados

Leia mais

Resolução do exame de matemática computacional

Resolução do exame de matemática computacional Resolução do exame de matemática computacional 0 de Janeiro de 00 GRUPO I f x_ : x^ x 1 g1 x_ : x^ 1 x^ g x_ : x 1 g x_ x^ 1 1 1 x Plot f x, x,, - -1 1 - -4 Graphics 1 Método de Newton Quando se procura

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

PGF Mecânica Clássica Prof. Iberê L. Caldas

PGF Mecânica Clássica Prof. Iberê L. Caldas PGF 55 - Mecânica Clássica Prof. Iberê L. Caldas Terceiro Estudo Dirigido o semestre de 18 Os estudos dirigidos podem ser realizados em duplas. Apenas os exercícios marcados com asteriscos precisam ser

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

de modo que γ (t) 2 = 3e t. Pelo Proposição 6.3, γ é retificável no intervalo [0, T], para cada T > 0 e lim γ (t) 2 dt = 3, )) se t 0 0 se t = 0

de modo que γ (t) 2 = 3e t. Pelo Proposição 6.3, γ é retificável no intervalo [0, T], para cada T > 0 e lim γ (t) 2 dt = 3, )) se t 0 0 se t = 0 Solução dos Exercícios Capítulo 6 Exercício 6.1: Seja γ: [, + [ R 3 definida por γ(t) = (e t cos t, e t sen t, e t ). Mostre que γ é retificável e calcule seu comprimento. Solução: γ é curva de classe

Leia mais

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Diferencial e Integral I Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Diferencial e Integral I Faculdade de Engenaria, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling Parte 1 - Limites Definição e propriedades; Obtendo limites; Limites laterais. 1) Introdução

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012

MAT 111 Cálculo Diferencial e Integral I. Prova 2 14 de Junho de 2012 MAT 111 Cálculo Diferencial e Integral I Prof. Paolo Piccione Prova 2 14 de Junho de 2012 Nome: Número USP: Assinatura: Instruções A duração da prova é de duas horas. Assinale as alternativas corretas

Leia mais