Geometria Diferencial II 2 0 Lista de Exerccios (2 0 semestre 2017)

Tamanho: px
Começar a partir da página:

Download "Geometria Diferencial II 2 0 Lista de Exerccios (2 0 semestre 2017)"

Transcrição

1 Prof. Marcos Alexandrino Monitor: Pablo Diaz Geometria Diferencial II 2 0 Lista de Exerccios (2 0 semestre 2017) 1. Geodesicas, parte I Ao longo desta sec~ao (M; g) denotara variedade Riemanniana com metrica g. Problema 1.1. Seja M uma superfcie mergulhada de revoluc~ao em R 3, onde g e metrica induzida. Demonstre que sua curva geratriz e geodesica de M. Conclua que os grandes crculos s~ao geodesicas de S 2. Problema 1.2. Dado q 2 M demonstre que existe > 0 tal que exp q : B (0)! M e difeomorsmo sobre um aberto de M: Problema 1.3. Seja e ( ) : T e SO(n)! SO(n) a aplicac~ao exponencial de matrizes, i.e., e A = P 1 A i. i=0 i! (a) Verique que t! e ta e linha integral do campo invariante a esquerda ~ A(g) = ga. (b) Dado uma metrica bi-invariante g de SO(n) mostre que t! e ta e a geodesica com (0) = e e 0 (0) = A. Conclua que exp e A = e A ou seja a exponencial Riemanniana em e (com respeito a g ) coincide com a exponencial matricial. Problema 1.4. Suponha que M e variedade Riemanniana compacta. Mostre que toda geodesica esta denida para todos valores de R: Dica: Considere o campo geodesico ~ G 2 X(T M) restrito ao brado tangente unitario T 1 (M) := fv x 2 T x M; kv x k = 1g x2m e aplique o resultado que arma que todo campo suave denido em variedade compacta gera um grupo a 1 parametro de difeomorsmos. Problema 1.5 (Lema de Gauss). Sejam exp q : B (0)! M bem denida, S n 1 (0) esfera contida em ~ B (0) com ~ < e v : ( ; )! S n 1 (0) curva suave. Dena f(s; t) := exp ~ q (tv(s)). Demonstre @t ) = 0: Problema 1.6. Seja B (q) uma bola normal. Dena : [0; 1]! B (q) como (t) := exp q (tv) com kvk < : Seja : [0; 1]! M curva suave por partes tal que (0) = (0) e (1) = (1): Demonstre que L() L(). Se a igualdade vale mostre que [0; 1] = [0; 1]. Problema 1.7 (*). Dado q 2 M demonstre que existe vizinhanca W de q tal que, se x; y pertencem a W ent~ao existe uma unica geodesica minimizante ligando x a y: 1

2 2 Problema 1.8. Seja : [0; 1]! M uma curva suave por partes tal que d((0); (1)) = L(): Mostre que e imagem de uma geodesica. Problema 1.9. (a) Demonstre que a curva C := fx = c; y > 0g e imagem de uma geodesica do espaco hiperbolico H 2 (modelo do semi-plano). (b) Utlizando o fato que aplicac~oes z! T (z) = az+b com ad bc = 1 (a; b; c; d reais) levam C ou cz+d em semi-circulos (com centro 2 ) ou em semi retas x = x 0, y > 0 conclua que tais curvas s~ao imagens de geodesicas de H 2. Problema 1.10 (referencial geodesico em p 0 ). Seja p 0 um ponto xo de M. Demonstre que: (a) existe uma vizinhanca U de p 0 e um referencial ortonormal f~e i g (para i = 1 n) suave em U tal que r ( ) ~e i (p 0 ) = 0 (b) grad f(p 0 ) = P i ~e i f(p 0 ) ~e i (p 0 ) (c) div ~v(p 0 ) = P i ~e i v i (p 0 ), onde ~v = P i v i~e i (d) 4f(p 0 ) = P i ~e i (~e i f) (p 0 ) (e) 4 fg (x) = f(x) 4 g(x) + g(x) 4 f(x) + 2hgrad f; grad gi(x), para qualquer x 2 M, onde f; g 2 C 1 (M) (f) d i ~w vol = div ~w vol onde vol e forma volume de M (supondo M orientavel) e ~w 2 X(M) Problema Sejam M variedade compacta orientavel, sem bordo e f 2 C 1 (M). Demonstre que se 4f 0 ent~ao f e constante. Problema 1.12 (*). Sejam ~ F campo n~ao nulo em p e S uma hipersuperfcie transversal a ~ F (p), i.e., p 2 S e T p M = T p S fr ~ F p g: Reduzindo S se necessario seja ^ : ( ; ) S! M a reticac~ao do uxo de ~ F com respeito a S. Dena A = ( ^) vol: Mostre que div ~ F (p) = d d t [ln A (t ; p )] j t=0 :

3 3 2. Geodesica Parte II Ao longo desta sec~ao (M; g) denotara variedade Riemanniana com metrica g. Problema 2.1. Suponha que M e variedade Riemanniana compacta. Demonstre que: (a) para todo q 2 M a aplicac~ao exponencial exp q : T q M! M esta bem denida; (b) dados q e p em M, existe um segmento de geodesica : [0; R]! M (parametrizado por comprimento de arco) ligando q a p (i.e., (0) = q e (R) = p) que realiza dist^ancia, i.e, L() = R = d(q; p). que realiza dist^ancia (i.e, Dica: (a) Considere o campo geodesico ~ G 2 X(T M) restrito ao brado tangente unitario T 1 (M) := fv x 2 T x M; kv x k = 1g x2m e aplique o resultado que arma que todo campo suave denido em variedade compacta gera um grupo a 1 parametro de difeomorsmos. (b) Utilize os seguintes ingredientes: uma sequencia de cuvas n (cada n concatenac~ao de segmentos de geodesicas) com L( n )! R; exitencia das vizinhancas completamente normais (vide Problema 1.7); o fato de M ser compacto, i.e., sequencias de pontos fx i ng n (e.,g x i n 2 n ) admite subsequencia convergente. Problema 2.2 (*). Seja M variedade Riemanniana compacta n~ao simplesmente conexa. Demonstre que por cada q existe um loop geodesico (i.,e uma geodesica : [0; 1]! M tal que (0) = (1), porem 0 (0) n~ao precisa ser igual a 0 (1)). Problema 2.3. Seja f : ( ; ) [a; b]! M uma aplicac~ao suave tal que f(s 0 ; ) e geodesica para todo s 0 2 ( ; ). Demonstre que J(t) (0; t) e campo de Jacobi ao longo da geodesica (t) := f(0; Problema 2.4. Seja tal que exp p : B (p)! M esta bem denida. Dena a curva (t) := exp p (tv 0 ) com kv 0 k = 1 e jtj <. Para w 2 T p M considere o campo tw ao longo do segmento t! tv 0. Demonstre que J(t) := d(exp p ) tv 0 tw e campo de Jacobi com J(0) = 0 e r J(0) = w: dt Problema 2.5 (*). Suponha que M e geodesicamente completa, i.e, exp p : T p M! M esta bem denida para todo p 2 M: Seja : ( ; )! M geodesica e J campo de Jacobi ao longo de. Demonstre que (0; t) para f(s; t) = exp (s) (tv(s)) onde : ( ; )! M e uma curva tal que 0 (0) = J(0) e v : ( ; )! M e um campo ao longo de com v(0) = 0 (0) e r ds v(0) = r dt J(0): Problema 2.6. Sejam M variedade Riemanniana com curvaturas seccionais constantes K e : [0; a]! M geodesica com vetor velocidade 1. Demonstre que o campo de Jacobi J ao longo de com condic~oes iniciais J(0) = 0 e r dt J(0) = w para w perpendicular a 0 (0) e J(t) = c K (t)w(t) onde w( ) e o transporte paralelo de w ao longo de e c K e a func~ao denida como c K (t) := sin(tp K) p K K = 0 e c K (t) := sinh(tp K) p K se K < 0: se K > 0, c K (t) := t se

4 4 Problema 2.7. Sejam (M n ; g) variedade Riemanniana com curvaturas seccionais constantes K e : (0; ) S n 1! B (p) parametrizac~ao geodesica polar, i.e., (r; v) := exp p (rav) onde A : (R n ; g 0 )! (T p M; g) e isometria linear. Demonstre que a metrica g em coordenadas geodesicas polares e dr 2 + (c k (r)) 2 ds 2 onde ds 2 e a metrica can^onica da esfera S n 1 e a func~ao c K foi denida na Proposic~ao 2.6. Em particular conclua que duas variedades Riemannianas com mesma dimens~ao e mesmas curvaturas seccionais constantes iguais a K s~ao localmente isometricas. Problema 2.8. Sejam tal que exp p : B (p)! M esta bem denida. Dena (t) = exp p (tv) com jtj < e kvk = 1. Ent~ao (t 0 ) e ponto conjugado a (0) ao longo de (i.e, existe campo de Jacobi J com J(0) = 0 e J(t 0 ) = 0) se e somente se dim(ker d(exp p ) t 0v) > 0. Problema 2.9. Sejam U : M! R func~ao suave (pot^encial) e (s; t)! f(s; t) uma variac~ao suave propria (i.e, f(s; 0) = f(0; 0) e f(s; 1) = f(0; 1)) onde t! (t) R = f(0; t) atende m r0 = ru((t)) (equac~ao dt de Newton). Verique que d ds A(0) = 0 onde A(s) := 1 (s; t) dt e L(V x ) := m g(v 2 x; V x ) U(x); Problema 2.10 (*). Seja curva atendendo a equac~ao de Newton r0 = ru((t)). Demonstre que dt (a) E( 0 (t)) = c onde E(V x ) = 1 g(v 2 x; V x ) + U(x). (b) existe uma func~ao h e um intervalo I tal que = hj I e geodesica para a metrica ~g = (c U)g Dica: compare e r com r e lembre que er dt 0 (t) = 0 (h(t))h 00 (t) + e r dt 0 (h(t))(h 0 (t)) 2

5 5 3. Imers~oes isometricas, equac~ao de Gauss e teorema de Gauss-Bonnet Problema 3.1. Uma subvariedade Riemanniana M de uma variedade Riemanniana ( ~ M; h ; i) e chamada totalmente geodesica, se a segunda forma se anula ao longo de M: Mostre que M e totalmente geodesica se e somente se toda geodesica de M e geodesica de ~ M: Problema 3.2. Seja V um subespaco de R n e dena M := V \ S n 1. Mostre que M e subvariedade totalmente geodesica de S n 1. Problema 3.3. Seja G um grupo de Lie com metrica bi-invariante e H G subgrupo fechado. Mostre que H e subvariedade totalmente geodesica. Problema 3.4 (*). Sejam M 1 e M 2 variedades Riemannianas e M = M 1 M 2 variedade com a metrica produto. Mostre que: (a) M 1 fp 2 g e totalmente geodesica em M (b) K(X; Y ) = 0 se X, Y s~ao vetores ortonormais tais que X e tangente a M 1 fp 2 g e Y e tangente a fp 1 g M 2 Problema 3.5. Seja M subvariedade Riemanniana de uma variedade Riemanniana ( ~ M; h ; i) e denote R, ~ R os tensores curvaturas de M e ~ M e B o (1; 2) tensor segunda forma de M. Demonstre que: hr(x; Y )X; Y i h ~ R(X; Y )X; Y i = hb(x; X); B(Y; Y )i hb(x; Y ); B(X; Y )i Problema 3.6. Seja M hipersuperfcie de ( ~ M; ~g). Conclua que K(e 1 ; e 2 ) ~ K(e1 ; e 2 ) = 1 2 onde e 1 ; e 2 s~ao direc~oes principais de T p M associadas as curvaturas principais 1 e 2. Problema 3.7. Mostre que as curvaturas seccionais de S n s~ao 1. Problema 3.8. Seja M o graco em R 3 de uma func~ao f : R 2! R suave tal que (0; 0) 2, f(0; 0) = 0 e rf(0; 0) = (0; 0) Verique: (a) T (0;0;0) M = R 2 f0g, (b) se (0; 0; 0) = (0; 0; 1) ent~ao S (v; 0) = (Hessf(0; 0)v; 0), onde S e o operador forma. (c) curvaturas principais s~ao auto-valores 1 e 2 do Hessf(0; 0) e assim que M pode ser aproximado por um paraboloide (respectivamente hiperboloide) se 1 2 > 0 (respectivamente se 1 2 < 0).

6 6 Problema 3.9. Seja M uma superfcie mergulhada em R 3 e vetor normal unitario a M. Dena r : M! R 3 como r (x) = x + r (a) Sejam e 1 e e 2 direc~oes principais em T p M com curvaturas principais 1 e 2. Verique que d r e i = (1 r i )e i (b) Conclua que se r 6= 1 i em vizinhanca U ~ de p, ent~ao existe vizinhanca U U ~ de p tal que r (U) e superfcie mergulhada. Problema Enuncie o teorema de Gauss-Bonnet. Problema Considere um triangulo geodesico contido em um disco convexo de uma superfcie M. Seja P 3 i=1 ' i a soma dos angulos internos. Verique: (a) Se K > 0 ent~ao P 3 i=1 ' i > (b) Se K = 0 ent~ao P 3 i=1 ' i = (c) Se K < 0 ent~ao P 3 i=1 ' i < Problema 3.12 (*). Seja M superfcie compacta conecta, orientavel e g(m) seu genus. Demonstre que: (a) M admite metrica com K = 1 se e somente se g(m) = 0. (b) M admite metrica com K = 0 se e somente se g(m) = 1. (c) M admite metrica com K = 1 se e somente se g(m) > 1. Obs: A direc~ao da esquerda para direita segue facilmente do Teorema de Gauss-Bonnet e pode cair em prova ou teste. Problema 3.13 (**). Demonstre o teorema de Gauss-Bonnet.

1 Variedades e metricas Riemannianas

1 Variedades e metricas Riemannianas 1 0 Lista de Exerccio de MAT5771 (1 0 semestre 2013) Esta lista cont^em problemas cuja soluc~ao podera ser cobrada em prova. Ela tambem cont^em proposic~oes e teoremas, alguns enunciados e outros demonstrados

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008

LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 LISTA 6 DE GEOMETRIA DIFERENCIAL 2008 RICARDO SA EARP (1) Considere a esfera unitária S 2 = {x 2 + y 2 + z 2 = 1} em R 3. (a) Mostre que a projeção estereográfica usual do pólo norte é dada por Π N (x,

Leia mais

1 Resultados básicos sobre grupos de Lie

1 Resultados básicos sobre grupos de Lie 1 0 Lista de Exercício de MAT6416 (1 0 semestre 2014) Esta lista contêm problemas cuja solução poderá ser cobrada em prova. Ela também contêm proposições e teoremas, alguns enunciados e outros demonstrados

Leia mais

MAT Geometria Diferencial 1 - Lista 2

MAT Geometria Diferencial 1 - Lista 2 MAT036 - Geometria Diferencial 1 - Lista Monitor: Ivo Terek Couto 19 de outubro de 016 1 Superfícies - parte ; Exercício 1. Mostre que, em um ponto hiperbólico, as direções principais bissectam as direções

Leia mais

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO

SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO SUBVARIEDADES RIEMANNIANAS DO ESPAÇO EUCLIDEANO PROFESSOR RICARDO SÁ EARP (1) Superfícies regradas. Seja I um intervalo aberto da reta. Uma superfície imersa regrada S em R 3 é a imagem de uma imersão

Leia mais

1 Imers~oes isometricas

1 Imers~oes isometricas 2 0 Lista de Exerccio de MAT5771 (1 0 semestre 2013) Esta lista cont^em problemas cuja soluc~ao podera ser cobrada em prova. Ela tambem cont^em proposic~oes e teoremas, alguns enunciados e outros demonstrados

Leia mais

CURVATURA DE CURVAS PLANAS

CURVATURA DE CURVAS PLANAS CURVATURA DE CURVAS PLANAS PROFESSOR RICARDO SÁ EARP (1) A tractrix. Vamos continuar com o traçado das curvas planas, agora incluindo o estudo da curvatura ao roteiro sugerido no exercício 1 da lista sobre

Leia mais

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007

LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 LISTA 5 DE GEOMETRIA RIEMANNIANA 2007 RICARDO SA EARP (1) Considere S 3 = {(z 1, z 2 ) C 2 ; z 1 2 + z 2 2 = 1}. seja q um inteiro q > 1. Seja Γ = {1, e 2π1/q,..., e 2π(q 1)/q }, o grupo finito agindo

Leia mais

Introdução à geometria riemanniana

Introdução à geometria riemanniana LISTA DE EXERCÍCIOS Introdução à geometria riemanniana 1. Seja M uma variedade diferenciável e Diff(M) o grupo de difeomorfismos de M (via composição de funções). Seja então G Diff(M) um subgrupo. Diz-se

Leia mais

LISTA 7 DE GEOMETRIA DIFERENCIAL Vamos continuar o nosso estudo sobre superfícies de R 3. Vamos explorar

LISTA 7 DE GEOMETRIA DIFERENCIAL Vamos continuar o nosso estudo sobre superfícies de R 3. Vamos explorar LITA 7 DE GEOMETRIA DIFERENCIAL 2007 RICARDO A EARP Vamos continuar o nosso estudo sobre superfícies de R 3. Vamos explorar certas superfícies especiais, tais como superfícies mínimas, superfícies de curvatura

Leia mais

Processamento de Malhas Poligonais

Processamento de Malhas Poligonais Processamento de Malhas Poligonais Tópicos Avançados em Computação Visual e Interfaces I Prof.: Marcos Lage www.ic.uff.br/~mlage mlage@ic.uff.br Conteúdo: Notas de Aula Curvas 06/09/2015 Processamento

Leia mais

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011

LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 LISTA 3 DE INTRODUÇÃO À TOPOLOGIA 2011 RICARDO SA EARP Limites e continuidade em espaços topológicos (1) (a) Assuma que Y = A B, onde A e B são subconjuntos abertos disjuntos não vazios. Deduza que A B

Leia mais

CURVAS REGULARES NO PLANO

CURVAS REGULARES NO PLANO CURVAS REGULARES NO PLANO PROFESSOR RICARDO SÁ EARP (1) Considere os exemplos de curvas parametrizadas planas α(t) = (f(t), g(t)), t I R 2 exibidas em seguida. Analise os itens abaixo, em cada exemplo

Leia mais

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007

LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 LISTA 6 DE GEOMETRIA DIFERENCIAL 2007 RICARDO SA EARP Vamos tratar a Geometria Diferencial das curvas e superfícies de R 3. Vamos aplicar as equações de compatibilidade; equação de curvatura de Gauss e

Leia mais

4 Teorema de Anosov. 4.1 O Teorema de comparação de Rauch

4 Teorema de Anosov. 4.1 O Teorema de comparação de Rauch 4 Teorema de Anosov O teorema de Anosov é um resultado sobre o comportamento das geodésicas em variedades com curvatura negativa. Basicamente, ele diz que o fluxo geodésico em uma variedade riemanniana

Leia mais

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado

EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Programa de Pós-Graduação em Matemática Instituto de Matemática e Estatística - IME Universidade Federal de Goiás - UFG EXAME DE QUALIFICAÇÃO em Álgebra - Mestrado Aluno: 1) Seja G um grupo e a, b G tais

Leia mais

Prova Escrita - ÁLGEBRA

Prova Escrita - ÁLGEBRA Ministério da Educação Programa de Pós-Graduação em Matemática Prova Escrita - ÁLGEBRA - 208 Aluno: ) Seja G um grupo finito, tal que G = mn, com mdc(m,n) =. Suponha que existe um subgrupo H de G, tal

Leia mais

Variedades Riemannianas Bidimensionais Carlos Eduardo Rosado de Barros, Romildo da Silva Pina Instituto de Matemática e Estatística, Universidade

Variedades Riemannianas Bidimensionais Carlos Eduardo Rosado de Barros, Romildo da Silva Pina Instituto de Matemática e Estatística, Universidade Variedades Riemannianas Bidimensionais Carlos Eduardo Rosado de Barros, Romildo da Silva Pina Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus II- Caixa Postal 131, CEP 74001-970

Leia mais

Variedades diferenciáveis e grupos de Lie

Variedades diferenciáveis e grupos de Lie LISTA DE EXERCÍCIOS Variedades diferenciáveis e grupos de Lie 1 VARIEDADES TOPOLÓGICAS 1. Seja M uma n-variedade topológica. Mostre que qualquer aberto N M é também uma n-variedade topológica. 2. Mostre

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

VARIEDADES COMPACTAS COM CURVATURA POSITIVA

VARIEDADES COMPACTAS COM CURVATURA POSITIVA VARIEDADES COMPACTAS COM CURVATURA POSITIVA Janaína da Silva Arruda 1, Rafael Jorge Pontes Diógenes 2 Resumo: O presente trabalho descreve o estudo das superfícies compactas com curvatura positiva. Um

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

MAT 112 Vetores e Geometria. Prova SUB C

MAT 112 Vetores e Geometria. Prova SUB C MAT 112 Vetores e Geometria Prof. Paolo Piccione 02 de julho de 2019 Prova SUB C Turmas: 2019146 e 2019134 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos.

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática. Exame de Qualificação

Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática. Exame de Qualificação Universidade Federal de Goiás Instituto de Matemática e Estatística Mestrado em Matemática Nome: Exame de Qualificação Banca Examinadora: Romildo (Pres.), Mário e Ronaldo. Observação: Das 7 questões propostas

Leia mais

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica

MAT CÁLCULO 2 PARA ECONOMIA. Geometria Analítica MT0146 - CÁLCULO PR ECONOMI SEMESTRE DE 016 LIST DE PROBLEMS Geometria nalítica 1) Sejam π 1 e π os planos de equações, respectivamente, x + y + z = e x y + z = 1. Seja r a reta formada pela interseção

Leia mais

Lista de Exercícios de Cálculo Infinitesimal II

Lista de Exercícios de Cálculo Infinitesimal II Lista de Exercícios de Cálculo Infinitesimal II 10 de Setembro de 2003 Questão 1 Determine as representações explícitas em coordenadas polares das seguintes curvas: a) O círculo de raio a centrado em (a,

Leia mais

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014

Cálculo Vetorial. Prof. Ronaldo Carlotto Batista. 20 de novembro de 2014 Cálculo 2 Cálculo Vetorial ECT1212 Prof. Ronaldo Carlotto Batista 20 de novembro de 2014 Integrais de linha Podemos integrar uma função escalar f = f (x, y, z) em um dado caminho C, esta integral é dada

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

3 A estrutura simplética do fluxo geodésico

3 A estrutura simplética do fluxo geodésico 3 A estrutura simplética do fluxo geodésico A partir do ponto de vista da mecânica classica, a geodésica é uma solução da equação de Euler-Lagrange considerando-se o lagrangeano L(x v) = 1 v 2 x O objetivo

Leia mais

5 O Teorema de Classificação

5 O Teorema de Classificação 5 O Teorema de Classificação Na Seção 5.2, demonstraremos parcialmente o teorema de classificação das geometrias modelo de dimensão três devido a W. Thurston (Teorema 5.2.1). Antes disso porém, devemos

Leia mais

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B =

3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão e B = 3 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008. (a) Ache os auto-valores e auto-vetores de A = 3 4 2 0 2 0 0 0 e B = 0 0 2 0 2 0 2 0 0 (b) Mostre que λ + λ 2 + λ 3 é igual ao

Leia mais

2 A métrica de Sasaki

2 A métrica de Sasaki 2 A métrica de Sasaki Para dar inicio ao estudo do fluxo geodésico em variedades de curvatura negativa ou sem pontos conjugados é preciso definir alguns conceitos básicos. O sistema de equações diferenciais

Leia mais

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares

Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Universidade Federal do Paraná Centro Politécnico ET-DMAT Prof. Maria Eugênia Martin Tópicos de Álgebra Linear Verão 2019 Lista 2: Transformações Lineares Exercício 1. Prove que cada uma das transformações

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

1 Ac~oes Proprias. 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009)

1 Ac~oes Proprias. 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009) ~ p = d dt (exp(t) p) t=0 2 0 Lista de Exerccio de MAT6416 (1 0 semestre 2009) Esta lista cont^em problemas cuja soluc~ao podera ser cobrada em prova. Ela tambem cont^em proposic~oes e teoremas, alguns

Leia mais

Nesta seção as referências utilizadas são [11], [16] e as notas de aulas do Professor Ricardo Sá Earp.

Nesta seção as referências utilizadas são [11], [16] e as notas de aulas do Professor Ricardo Sá Earp. 1 Preliminares 1.1 Teoria básica da Geometria Riemanniana 1.1.1 Métricas Riemannianas Nesta seção as referências utilizadas são [11], [16] e as notas de aulas do Professor Ricardo Sá Earp. Iniciaremos

Leia mais

Turma: Referências principais (nas quais a lista foi baseada): 1. J. Stewart, Cálculo II Pioneira Thomson Learning,

Turma: Referências principais (nas quais a lista foi baseada): 1. J. Stewart, Cálculo II Pioneira Thomson Learning, 2 0 Lista MAT3210 - Cálculo Diferencial e Integral II (2 0 semestre 2015) Turma: 2015226 Referências principais (nas quais a lista foi baseada): 1. J. Stewart, Cálculo II Pioneira Thomson Learning, 2.

Leia mais

Objetos Gráficos Planares

Objetos Gráficos Planares Universidade Federal de Sergipe Departamento de Matemática Objetos Gráficos Planares Profª. Maria Andrade 2016 Objetos Gráficos Computação Gráfica é a área que estuda a síntese, o processamento e a análise

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Notas de Aula. Geometria Diferencial

Notas de Aula. Geometria Diferencial Notas de Aula Geometria Diferencial Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais (UFMG) Notas de aula do curso Geometria Diferencial

Leia mais

Geometria Intrínseca das Superfícies

Geometria Intrínseca das Superfícies Geometria Intrínseca das Superfícies Paula Gonçalves Correia Romildo da Silva Pina Goiânia 15 de Junho de 2011 Resumo Neste trabalho foi realizado um estudo sobre superfícies regulares, geometria intrínseca

Leia mais

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO

Analise Matematica III A - 1 o semestre de 2006/07 FICHA DE TRABALHO 6 - RESOLUC ~AO ecc~ao de Algebra e Analise, Departamento de Matematica, Instituto uperior Tecnico Analise Matematica III A - o semestre de 6/7 FIHA DE TRABALHO 6 - REOLU ~AO ) Indique se as formas diferenciais seguintes

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

EDSON LOPES DE SOUZA

EDSON LOPES DE SOUZA UNIVERSIDADE FEDERAL DO AMAZONAS - UFAM INSTITUTO DE CIÊNCIAS EXATAS - ICE PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA RIGIDEZ E CONVEXIDADE DE HIPERSUPERFÍCIES NA ESFERA EDSON LOPES DE SOUZA MANAUS 2007 UNIVERSIDADE

Leia mais

INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano

INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano 1 INSTITUTO DE MATEMÁTICA - UFRJ DEPARTAMENTO DE MATEMÁTICA APLICADA CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Professor Felipe Acker parte 1 - o plano Exercícios - transformações lineares determinante e

Leia mais

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora.

2 - f: R R: y = x 2 Classicação: Nem injetora, nem sobrejetora. Apostila de Métodos Quantitativos - UERJ Professor: Pedro Hemsley Funções: f: X Y : Associa a cada elemento do conjunto X um único elemento do conjunto Y. Existem tres tipos especícos de funções: Sobrejetora,

Leia mais

GEOMETRIA EXTRÍNSECA DAS SUPERFÍCIES DE R 3

GEOMETRIA EXTRÍNSECA DAS SUPERFÍCIES DE R 3 GEOMETRIA EXTRÍNSECA DAS SUPERFÍCIES DE R 3 PROFESSOR RICARDO SÁ EARP Vamos focar agora no estudo da geometria extrínseca das superfícies de R 3. Vamos explorar certas superfícies especiais, tais como

Leia mais

Universidade Federal de Alagoas

Universidade Federal de Alagoas Universidade Federal de Alagoas Programa de Pós-Graduação em Matemática DISSERTAÇÃO DE MESTRADO Fórmulas Integrais para a Curvatura r-média e Aplicações Rio São Francisco Viviane de Oliveira Santos MATEMÁTICA

Leia mais

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning.

Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning. 1 0 Lista de Exercício de Mat 116- Álgebra Linear para Química Turma: 01410 ( 0 semestre 014) Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição,

Leia mais

Minicurso: Algumas generalizaçoes do Teorema: A soma dos ângulos internos de um triângulo no plano é π - (Versão preliminar e incompleta)

Minicurso: Algumas generalizaçoes do Teorema: A soma dos ângulos internos de um triângulo no plano é π - (Versão preliminar e incompleta) Minicurso: Algumas generalizaçoes do Teorema: A soma dos ângulos internos de um triângulo no plano é π - (Versão preliminar e incompleta) Ryuichi Fukuoka: DMA-UEM 18 de outubro de 2006 1 Introdução Comecemos

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

Uma breve história da Geometria Diferencial (até meados do s

Uma breve história da Geometria Diferencial (até meados do s Uma breve história da Geometria Diferencial (até meados do século XIX) 29 de novembro de 2006 Os postulados de Euclides ( 300 a.c.) Os postulados de Euclides ( 300 a.c.) 1- Dois pontos distintos determinam

Leia mais

MAT0326 Geometria Diferencial I

MAT0326 Geometria Diferencial I MAT036 Geometria Diferencial I Segunda Prova 06/11/01 Soluções Questão 1 Valor: 3.0 pontos. Considere a superfície S, de Enneper, parametrizada por Xu, v = u u3 3 + uv, v v3 3 + u v, u v. a. Determine

Leia mais

equação paramêtrica/vetorial da superfície: a lei

equação paramêtrica/vetorial da superfície: a lei 1 Superfícies Definição Chamamos Superfície parametrizada em R n : uma função contínua : B R n (n 3) onde B R 2. Superfície: a imagem de, equação paramêtrica/vetorial da superfície: a lei Seja p 0 = (s

Leia mais

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo

Leia mais

7. O Teorema Egregium de Gauss

7. O Teorema Egregium de Gauss 138 SUPERFÍCIES EM R3 7. O Teorema Egregium de Gauss Estamos agora em condições de provar um dos teoremas mais importantes do século XIX. Os matemáticos no final do século XVIII, como Euler e Monge, já

Leia mais

MAT ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006

MAT ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006 MAT 2458 - ÁLGEBRA LINEAR PARA ENGENHARIA II 1 a Lista de Exercícios - 2 o semestre de 2006 1. Sejam u = (x 1, x 2 ) e v = (y 1, y 2 ) vetores de R 2. Para que valores de t R a funcão u, v = x 1 y 1 +

Leia mais

Justifique convenientemente as suas respostas e indique os principais cálculos

Justifique convenientemente as suas respostas e indique os principais cálculos Ano lectivo 006/07 Exame de Geometria Diferencial 5/7/07 Justifique convenientemente as suas respostas e indique os principais cálculos Duração: h30m Soluções 1. Determine: a) Uma parametrização da curva

Leia mais

Produtos internos (Axiomas) com R e com C. Matriz de Gram G B. Duas Desigualdades: Cauchy-Schwarz e triangular. e v.

Produtos internos (Axiomas) com R e com C. Matriz de Gram G B. Duas Desigualdades: Cauchy-Schwarz e triangular. e v. Produtos internos (Axiomas) com R e com C Matriz de Gram G B Norma de u: kuk = q hu; ui Duas Desigualdades: Cauchy-Schwarz e triangular Ângulo entre u 6=0 e v 6=0 : = arccos hu;vi kukkvk Projecção ortogonal

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n

Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n Universidade Federal de Viçosa Centro de Ciências Exatas - CCE Departamento de Matemática Primeira Lista de MAT641 - Análise no R n 1. Exercícios do livro Análise Real, volume 2, Elon Lages Lima, páginas

Leia mais

6. A aplicação de Gauss e a segunda forma fundamental

6. A aplicação de Gauss e a segunda forma fundamental 116 SUPERFÍCIES EM R3 6. A aplicação de Gauss e a segunda forma fundamental Nesta secção estudaremos a chamada aplicação de Gauss e introduziremos diversas maneiras de medir a curvatura de uma superfície.

Leia mais

1 R n, propriedades, topologia

1 R n, propriedades, topologia 1 R n, propriedades, topologia Lembrete: Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Em particular, R R = R 2 = {(x, y) : x, y R}: podemos representar

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,

Leia mais

Cálculo II. Resumo Teórico Completo

Cálculo II. Resumo Teórico Completo Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos

Leia mais

Superfícies Parametrizadas

Superfícies Parametrizadas Universidade Estadual de Maringá - epartamento de Matemática Cálculo iferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit Superfícies Parametrizadas Prof.

Leia mais

Teoria Local das Curvas

Teoria Local das Curvas Teoria Local das Curvas Márcio Nascimento da Silva Departamento de Matemática Universidade Estadual Vale do Acaraú de setembro de 007 mharcius@gmail.com pré-prints do Curso de Matemática de Sobral no.

Leia mais

Tópicos de Álgebra Linear

Tópicos de Álgebra Linear Tópicos de Álgebra Linear - 2010 Prof Dr Pedro Levit Kaufmann Lista I 1. Em R n dena as operações a b = a b e a = a. As operações à direita são as usuais. Quais axiomas, que denem um espaço vetorial, estão

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

Geometria Diferencial Superfícies no espaço tridimensional

Geometria Diferencial Superfícies no espaço tridimensional Geometria Diferencial Superfícies no espaço tridimensional Prof. Ulysses Sodré Londrina-PR, 20 de Setembro de 2007. Conteúdo 1 Topologia de Rn 3 1.1 Bola aberta em Rn................................. 3

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-458 Álgebra Linear para Engenharia II Terceira Lista de Eercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Seja V um espaço vetorial

Leia mais

Equação da reta. No R 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05

Equação da reta. No R 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 05 Assunto:Equações da reta no R 2 e no R 3, equações do plano, funções de uma variável real a valores em R n Palavras-chaves: Equação da reta,

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

GEOMETRIAS NÃO- EUCLIDIANAS E SUAS MÉTRICAS

GEOMETRIAS NÃO- EUCLIDIANAS E SUAS MÉTRICAS GEOMETRIAS NÃO- EUCLIDIANAS E SUAS MÉTRICAS Fernando da Costa Gomes (bolsista do PIBIC/UFPI), Newton Luís Santos (Orientador, Depto. de Matemática UFPI) RESUMO Neste trabalho, exibimos os modelos clássicos,

Leia mais

Topologia geral Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR

Topologia geral Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Topologia geral Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR LISTA 1: Métricas, Espaços Topológicos e Funções Contínuas 1 Métricas Exercício 1 Sejam M um espaço métrico e A M um

Leia mais

2 Propriedades geométricas de curvas parametrizadas no R 4

2 Propriedades geométricas de curvas parametrizadas no R 4 2 Propriedades geométricas de curvas parametrizadas no R 4 Nesse capítulo trataremos dos conceitos básicos de geometria diferencial referentes à curvas parametrizadas no R 4. 2.1 Curvas Parametrizadas

Leia mais

1 Introdução. Ricci Sóliton Gradiente Shrinking, Completo e Não- Compacto

1 Introdução. Ricci Sóliton Gradiente Shrinking, Completo e Não- Compacto Ricci Sóliton Gradiente Shrinking, Completo e Não- Compacto NETO, Benedito Leandro; PINA, Romildo da Silva Instituto de Matemática e Estatística, Universidade Federal de Goiás, Campus II- Caixa Postal

Leia mais

Lista de Exercícios de Cálculo 3 Terceira Semana

Lista de Exercícios de Cálculo 3 Terceira Semana Lista de Exercícios de Cálculo 3 Terceira Semana Parte A 1. Reparametrize as curvas pelo parâmetro comprimento de arco medido a partir do ponto t = 0 na direção crescente de t. (a) r(t) = ti + (1 3t)j

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula Matéria Dada Exercícios Recomendados Obs 1 06/08 Sequências, definição, exemplos, convergência e divergência, propriedades,

Leia mais

2 Conceitos Básicos da Geometria Diferencial Afim

2 Conceitos Básicos da Geometria Diferencial Afim 2 Conceitos Básicos da Geometria Diferencial Afim Antes de iniciarmos o estudo das desigualdades isoperimétricas para curvas convexas, vamos rever alguns conceitos e resultados da Geometria Diferencial

Leia mais

1 Aula Espaços Métricos e Topológicos

1 Aula Espaços Métricos e Topológicos 1 Aula 1 1.1 Espaços Métricos e Topológicos De nition 1 Uma métrica sobre um conjunto X é uma aplicação d : X X! R veri cando, para quaiquer x; y; z 2 X, as seguintes condições: 1. d (x; y) = "distância

Leia mais

Universidade de Trás-os-Montes e Alto Douro. Mestrado...

Universidade de Trás-os-Montes e Alto Douro. Mestrado... Universidade de Trás-os-Montes e Alto Douro Mestrado... Complementos de Matemática - I Guião de Estudo 2012 2013 Primeiro semestre Américo Bento Outono, 2012 1 Conteúdo I 6 1 Cónicas 6 1.1 Caracterização

Leia mais

Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações

Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações π 1 : x 2y + 3z = 1 e π 2 : x + z = 2 no sistema de coordenadas

Leia mais

Instituto de Fıśica UFRJ Mestrado em Ensino profissional

Instituto de Fıśica UFRJ Mestrado em Ensino profissional Instituto de Fıśica UFRJ Mestrado em Ensino profissional Tópicos de Fıśica Clássica II 1 a Lista de Exercıćios egundo emestre de 2008 Prof. A C Tort Exercıćio 1 O operador nabla Começamos definindo o operador

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

de modo que γ (t) 2 = 3e t. Pelo Proposição 6.3, γ é retificável no intervalo [0, T], para cada T > 0 e lim γ (t) 2 dt = 3, )) se t 0 0 se t = 0

de modo que γ (t) 2 = 3e t. Pelo Proposição 6.3, γ é retificável no intervalo [0, T], para cada T > 0 e lim γ (t) 2 dt = 3, )) se t 0 0 se t = 0 Solução dos Exercícios Capítulo 6 Exercício 6.1: Seja γ: [, + [ R 3 definida por γ(t) = (e t cos t, e t sen t, e t ). Mostre que γ é retificável e calcule seu comprimento. Solução: γ é curva de classe

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista.

MCTB Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares. Os Exercícios 3 e 4 são os exercícios bônus dessa lista. MCTB002-13 Álgebra Linear Avançada I Claudia Correa Exercícios sobre transformações lineares Os Exercícios 3 e 4 são os exercícios bônus dessa lista. Definição 1. Dados conjuntos X e Y, uma função ϕ :

Leia mais

Generalizações do Teorema: A soma dos ângulos internos de um triângulo é π

Generalizações do Teorema: A soma dos ângulos internos de um triângulo é π Generalizações do Teorema: A soma dos ângulos internos de um triângulo é π Ryuichi Fukuoka Universidade Estadual de Maringá Departamento de Matemática São José do Rio Preto 26 de fevereiro de 2007 Ryuichi

Leia mais

Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123

Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123 Provável ordem de Assuntos das Aulas e Exercícios Recomendados Cálculo II- MAC 123 Número da Data da Matéria Dada Exercícios Recomendados Obs Aula Aula 1 11/03 Sequências Numéricas, definição, exemplos,

Leia mais

Instituto de Matemática - IM-UFRJ Geometria Riemanniana Lista 2 de exercícios, para entregar na aula de 5/9/2018

Instituto de Matemática - IM-UFRJ Geometria Riemanniana Lista 2 de exercícios, para entregar na aula de 5/9/2018 Instituto de Matemática - IM-UFRJ 1. Seja V um espaço vetorial real de dimensão finita, dim R V = n. Para quaisquer bases {e i } e {f i } de V, sabemos que existe uma matriz invertível A = (a ij ) GL(n,R)

Leia mais

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016

1 a Lista de Exercícios de MAT3458 Escola Politécnica 2 o semestre de 2016 1 a Lista de Exercícios de MAT3458 Escola Politécnica o semestre de 16 1 Para que valores de t R a função definida por (x 1, x ), (y 1, y ) = x 1 y 1 + tx y é um produto interno em R? Para cada par de

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Exame/Teste de Recuperação v2-8h - 29 de Junho de 215 Duração: Teste - 1h3m; Exame -

Leia mais

3 Superfícies Spacelike em IR 2,1

3 Superfícies Spacelike em IR 2,1 Superfícies Spacelike em IR,. Fórmula de Representação para Spacelike no espaço de Lorentz.. O espaço de Minkowski Seja IR, = IR, ḡ o espaço de Minkowski de dimensão com a métrica de Lorentz ḡ =(dx ) +(dx

Leia mais

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)

MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP) MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Forma polar geral de uma secção cônica Teorema Seja F um ponto fixado no plano ( foco ) e l uma reta fixada ( diretriz ) e e

Leia mais