Métodos Numéricos. MEI - Logística e distribuição Programação quadrática sequencial 2004/2005. A. Ismael F. Vaz - Departamento de Produção e Sistemas

Tamanho: px
Começar a partir da página:

Download "Métodos Numéricos. MEI - Logística e distribuição Programação quadrática sequencial 2004/2005. A. Ismael F. Vaz - Departamento de Produção e Sistemas"

Transcrição

1 Métodos Numéricos MEI - Logística e distribuição Programação quadrática sequencial 2004/2005

2 Métodos Numéricos - MEI 1 Motivação Considere-se o seguinte exemplo de um problema de minimização com restrições de igualdade. A função Lagrangeana é min x R 2100(x 2 x 2 1) 2 + (1 x 1 ) 2 x 1 s.a 3 + x = 0 L(x, λ) = 100(x 2 x 2 1) 2 + (1 x 1 ) 2 λ ( x1 ) 3 + x

3 Métodos Numéricos - MEI 2 Condição de optimalidade de 1 a ordem Para calcular os pontos KT resolver-se o seguinte sistema (não linear) x1 L(x, λ) = 0 x2 L(x, λ) = 0 c(x) = 0 400x 1 (x 2 x 2 1) 2(1 x 1 ) λ 3 = 0 200(x 2 x 2 1) λ = 0 x x = 0 No entanto quase sempre o sistema não linear é de difícil resolução. Neste caso tem de se calcular os zeros de uma função cúbica. Após determinar os pontos KT ainda é necessário classificá-los.

4 Métodos Numéricos - MEI 3 Formulação geral min x R nf(x) s.a c(x) = 0 em que f(x) : R n R e c(x) : R n R m. n é o número de variáveis, m é o número de restrições de igualdade.

5 Métodos Numéricos - MEI 4 Função Lagrangeana L(x, λ, π) = f(x) λ T c(x) em que λ são os vectores dos multiplicadores de Lagrange associados às restrições de igualdade.

6 Métodos Numéricos - MEI 5 Equação iterativa Usando as condições de optimalidade de primeira ordem temos que L(x, λ) = 0 e aplicando o método de Newton (na iteração k) vem que ( ) x 2 L(x k, λ k k ) λ k = L(x k, λ k ) em que x k e λ k constituem a direcção de procura (Newton).

7 Métodos Numéricos - MEI 6 O sistema linear tem a forma Equação iterativa (cont.) ( 2 xx L( k, λ k ) c(x k ) c(x k ) T 0 ) ( x k λ k ) = ( x L(x k, λ k ) c(x k ) ) O sistema representa as condições de optimalidade de primeira ordem do problema 1 min ( d R n 2 dt 2 xxl(x k, λ k ) ) d + d T ( x L(x k, λ k ) ) s.a ( c(x k ) ) T d + c(x k ) = 0 em que d = x k e os multiplicadores de Lagrange são λ k.

8 Métodos Numéricos - MEI 7 Globalização O método de Newton determina um zero do sistema não linear L(x, λ) = 0 e tem convergência local. Para obtermos convergência global pode usar-se uma de duas estratégias: Regiões de confiança (trust region - fora do programa). Procura unidimensional (line search). A técnica da procura unidimensional consiste no uso da direcção Newton, mas com um determinado passo.

9 Métodos Numéricos - MEI 8 Função mérito Uma das possíveis técnicas de globalização consiste no uso de uma função mérito (outra seria, por exemplo, a técnica dos filtros). M(x) = f(x) + ρc(x) T c(x) m = f(x) + ρ c i (x) 2 onde ρ é um parâmetro calculado por forma a que a direcção de procura seja de descida para a função mérito ( M(x k ) T x k < 0). i=1

10 Métodos Numéricos - MEI 9 Procura unidimensional { x k+1 = x k + α k x k λ k+1 = λ k + λ k α k é o maior valor da sequência {1, 1 2, 1 4, 1 8,... } que satisfaz a condição de Armijo (decréscimo significativo) com µ << 1 (µ = ). M(x k+1 ) M(x k ) + µα k M(x k ) T x k

11 Métodos Numéricos - MEI 10 Possíveis critérios de paragem Admissibilidade c(x k+1 ) 2 ɛ 1 Estacionaridade L(x k+1, λ k+1 ) 2 ɛ 2

12 Métodos Numéricos - MEI 11 Considerações Existem algumas variantes do método PQS, nomeadamente, o problema quadrático é uma aproximação quadrática da função objectivo (e não da Lagrangeana); usam diferentes funções mérito e eventualmente considerando funções mérito que usam os multiplicadores de Lagrange.

13 Métodos Numéricos - MEI 12 Algoritmo 1. Dadas aproximações iniciais para x e λ. Dado o parâmetro µ e valores para o critério de paragem. 2. Formar e resolver o sistema linear para obter a direcção de procura. 3. Calcular o tamanho do passo por forma a obter uma redução significativa da função mérito. 4. Calcular novas aproximações à solução. 5. Se o critério de paragem for falso então voltar a 2, senão parar.

14 Métodos Numéricos - MEI Exemplo x L(x, λ) = ( x1 λ 2 3 x 2 + λ ) [x1,x2]=meshgrid(-10:0.5:10,-10:0.5:10); contour(x1,x2,0.5*x1.^2+(x2.^2)/3,100); hold on; plot((-10:0.5:10)-1,-10:0.5:10); plot(0,0, +k ); plot(-0.4,0.6, *k ); 1 min x R 2 2 x x2 2 s.a x 1 x = 0 ( ) xxl(x, λ) = 0 2 3

15 Métodos Numéricos - MEI 14 Exemplo (direcção) Para x 0 = ( 0.3, 0.5) T e λ 0 = 0.3 temos Resolvendo por EGPP temos x 0 = ( , ) T e λ 0 = O método de PQS encontra a solução exacta de um problema quadrático numa única iteração.

16 Métodos Numéricos - MEI 15 Exemplo (função mérito - ρ = 10) M(x 0 ) = 1 2 ( 0.3) (0.5) ( ) 2 = = Para x = x 0 + α x 0, com α = 1 vem M( x) = 1 2 ( 0.4) (0.6) ( ) 2 = = 0.2 Existindo um decréscimo simples (aumento da função objectivo compensado pela admissibilidade).

17 Métodos Numéricos - MEI 16 Exemplo (redução significativa - µ = ) ( ) ( ) ( 0.3) + 20( ) M(x ) = 2 = 3 (0.5) 20( ) ( ) ( x 0 ) T M(x ) = ( 0.1, 0.1) = < 0 (descida) α k = 1 aceite. M( x) M(x k ) + µα k M(x k ) T x k ( ) (decréscimo significativo)

18 Métodos Numéricos - MEI 17 Exemplo (nova aproximação) A nova aproximação à solução é x 1 1 = x x 0 1 = = 0.4 x 1 2 = x x 0 2 = = 0.6 λ 1 = λ 0 + λ 0 = = 0.4 x 1 é a solução do problema.

19 Métodos Numéricos - MEI 18 Programação quadrática sequencial quasi-newton A dificuldade do cálculo da Hessiana da Lagrangeana (existe software que fornece as derivadas) pode ser aliviado através do uso da versão quasi-newton. A versão quasi-newton calcula uma matriz H, aproximação à Hessiana da Lagrangeana (ou a sua inversa), através do uso de informação de primeira ordem (primeiras derivadas). As primeiras derivadas podem também ser estimadas por diferenças finitas.

20 Métodos Numéricos - MEI 19 MATLAB A função MATLAB para resolver problemas de minimização com restrições é a fmincon. A formulação do problema é min x R nf(x) s.a c(x) 0 c eq (x) = 0 Ax b A eq x = b eq lb x ub

21 Métodos Numéricos - MEI 20 Sintaxe fmincon [x,fval,exitflag,output,lambda,grad,hessian] = fmincon(fun,x0,a,b,aeq,beq,lb,ub,nonlcon,options,p1,p2,...) x - Solução do problema. fval - Valor da função objectivo na solução. exitflag - Condição final (>0 convergiu, =0 número máximo de iterações atingido, <0 não convergiu). output - Informação acerca do algoritmo (número de iterações, número de cálculo da função objectivo, etc). lambda - Multiplicadores de Lagrange (restrições lineares, não lineares e de limites simples). grad - Gradiente da função objectivo na solução. hessian - Hessiana da função objectivo na solução.

22 Métodos Numéricos - MEI 21 fun - Função objectivo (ficheiro.m ou inline). x0 - Aproximação inicial. A - Matriz dos coeficientes das restrições lineares de desigualdades. b - Vector dos termos independentes das restrições lineares de desigualdade. Aeq - Matriz dos coeficientes das restrições lineares de igualdades. beq - Vector dos termos independentes das restrições lineares de igualdade. lb - Vector dos limites simples inferiores. ub - Vector dos limites simples superiores. nonlcon - Função que calcula as restrições não lineares de igualdade e desigualdade. options - Opções para o algoritmo. P.. - Argumentos extra (opcionais) para passar às funções (objectivo e das restrições não lineares).

23 Métodos Numéricos - MEI 22 Um exemplo com derivadas Considere-se o seguinte problema 1 min x R 2 2 ( ) (x 1 1) 2 + x 2 2 s.a x x2 2 = 0 x x 2 0 x 1 + x 2 5 = 0 x 1 0 x 2 4

24 Métodos Numéricos - MEI 23 function [f,g,h]=myfun(x) f=0.5*((x(1)-1)^2+x(2)^2); Função objectivo - myfun.m if nargout > 1 % Devolver o gradiente g(1)=x(1)-1; g(2)=x(2); end if nargout > 2 % Devolver Hessiana h(1,1)=1; h(1,2)=0; h(2,1)=0; h(2,2)=1; end

25 Métodos Numéricos - MEI 24 function [c,ceq,gc,gceq]=mycon(x) % Apenas restrições não lineares Restrições - mycon.m c(1)=x(1)^2-5*x(2); % restrição de desigualdade <= 0 ceq(1)=-x(1)+0.25*x(2)^2; % restrição de igualdade if nargout > 2 GC(1,1)=2*x(1); % <= 0 GC(2,1)=-5; end GCeq(1,1)=-1; GCeq(2,1)=0.5*x(2);

26 Métodos Numéricos - MEI 25 Resolução com derivadas >> opt=optimset( GradObj, on, Jacobian, on ); >> [x,f,e,o,l,g,h]=fmincon( myfun,[ ],[],[],[1 1],[5],... [0 -Inf],[Inf 4], mycon,opt); Warning: Large-scale (trust region) method does not currently solve this type of problem, switching to medium-scale (line search). > In C:\MATLAB6p1\toolbox\optim\fmincon.m at line 213 Optimization terminated successfully: Search direction less than 2*options.TolX and maximum constraint violation is less than options.tolcon Active Constraints: 1 2

27 Métodos Numéricos - MEI 26 >> x x = >> f f = >> e e = 1 >> o o = iterations: 5 funccount: 23 stepsize: 1 algorithm: medium-scale: SQP, Quasi-Newton, line-search firstorderopt: [] cgiterations: [] >> l l = lower: [2x1 double] upper: [2x1 double] eqlin: eqnonlin: ineqlin: [0x1 double] ineqnonlin: 0 >> g g = >> h h =

28 Métodos Numéricos - MEI 27 Resolução sem derivadas >> opt=optimset( GradObj, off, Jacobian, off ); >> [x,f,e,o,l,g,h]=fmincon( myfun,[ ],[],[],[1 1],[5],... [0 -Inf],[Inf 4], mycon,opt); Warning: Large-scale (trust region) method does not currently solve this type of problem, switching to medium-scale (line search). > In C:\MATLAB6p1\toolbox\optim\fmincon.m at line 213 Optimization terminated successfully: Search direction less than 2*options.TolX and maximum constraint violation is less than options.tolcon Active Constraints: 1 2

29 Métodos Numéricos - MEI 28 >> x x = >> f f = >> e e = 1 >> o o = iterations: 5 funccount: 23 stepsize: 1 algorithm: medium-scale: SQP, Quasi-Newton, line-search firstorderopt: [] cgiterations: [] >> l l = lower: [2x1 double] upper: [2x1 double] eqlin: eqnonlin: ineqlin: [0x1 double] ineqnonlin: 0 >> g g = >> h h =

30 Métodos Numéricos - MEI 29 Instalação do solver. Excel

31 Métodos Numéricos - MEI 30 Introdução do problema

32 Métodos Numéricos - MEI 31 Adicionar restrições

33 Métodos Numéricos - MEI 32 Opções

34 Métodos Numéricos - MEI 33 Resolução do problema

35 Métodos Numéricos - MEI 34 Relatório com resposta

36 Métodos Numéricos - MEI 35 Relatório com sensibilidade

37 Métodos Numéricos - MEI 36 Relatório com limites

Métodos Numéricos. MEI - Logística e distribuição Optimização não linear com restrições de igualdade 2004/2005

Métodos Numéricos. MEI - Logística e distribuição Optimização não linear com restrições de igualdade 2004/2005 Métodos Numéricos MEI - Logística e distribuição Optimização não linear com restrições de igualdade 2004/2005 Métodos Numéricos - MEI 1 Apresentação - Docentes Aulas teóricas: A. Ismael F. Vaz - aivaz@dps.uminho.pt

Leia mais

Resoluções do pteste(matlab).pdf

Resoluções do pteste(matlab).pdf Resoluções do pteste(matlab).pdf 1. Resolução do pteste1 pelo fminsearch do MATLAB function [f] = pteste1(x) f=max((x(1)+x(2)),abs(x(1)*x(2))); >> x0=[1;1]; >> [x,fval,exitflag,output]=fminsearch('pteste1',x0)

Leia mais

Iury Steiner de Oliveira Bezerra

Iury Steiner de Oliveira Bezerra Algoritmos genéticos (Matlab) MATLAB Optimization Toolbox Iury Steiner de Oliveira Bezerra Tópicos Introdução Otimização de funções Optimization Toolbox Rotinas / Algoritmos Disponíveis Problemas de minimização

Leia mais

OPTIMIZAÇÃO NÃO LINEAR

OPTIMIZAÇÃO NÃO LINEAR OPTIMIZAÇÃO NÃO LINEAR Opção IV - LESI Método de penalidade para PSI 2004/2005 Optimização não linear - Opção IV - LESI 1 Formulação - Programação Semi-Infinita (PSI) min f(x) x R n s.t. g i (x, t) 0,

Leia mais

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B =

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B = Departamento de Matemática da Universidade de Coimbra Optimização Numérica Licenciatura em Matemática Ano lectivo 2006/2007 Folha 1 1. Considere as matrizes A = [ 1 1 1 2 ] e B = [ 1 3 1 2 (a) Verifique

Leia mais

Iury Steiner de Oliveira Bezerra

Iury Steiner de Oliveira Bezerra Algoritmos genéticos (Matlab) MATLAB Optimization Toolbox Iury Steiner de Oliveira Bezerra Msc. Iury Steiner Tópicos Introdução Otimização de funções Optimization Toolbox Rotinas / Algoritmos Disponíveis

Leia mais

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança

Optimização. Carlos Balsa. Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Optimização Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados Eng. Química e Industrial Carlos Balsa Matemática Aplicada

Leia mais

Capítulo 5 - Optimização Não-Linear

Capítulo 5 - Optimização Não-Linear Capítulo 5 - Optimização Não-Linear balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia

Leia mais

)XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD

)XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD )XQGDPHQWRVGHSURJUDPDomRPDWHPiWLFD,QWURGXomR A grande maioria dos problemas de engenharia pode ser solucionado de diferentes formas, uma vez que um número muito grande de soluções atende aos critérios

Leia mais

Optimização semi-infinita. Opção V. Licenciatura em Matemática Aplicada

Optimização semi-infinita. Opção V. Licenciatura em Matemática Aplicada Optimização semi-infinita Opção V Licenciatura em Matemática Aplicada EXERCÍCIOS TEÓRICO-PRÁTICOS Ano lectivo de 2006/2007 1 Condições de optimalidade - Optimização não linear finita 1.1 Detere e classifique,

Leia mais

II Seminário da Pós-graduação em Engenharia Elétrica

II Seminário da Pós-graduação em Engenharia Elétrica UMA INVESTIGAÇÃO DOS PARÂMETROS NOS MÉTODOS MISTOS DE OTIMIZAÇÃO NÃO LINEAR Ellen Cristina Ferreira Aluna do Programa de Pós-Graduação em Engenharia Elétrica Unesp Bauru Profa. Dra. Edméa Cássia Baptista

Leia mais

Método de Newton truncado

Método de Newton truncado Método de Newton truncado Marina Andretta ICMC-USP 8 de outubro de 2018 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear

Leia mais

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008 Métodos Numéricos C A. Ismael F. Vaz 1 1 Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN C 2007/2008

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

Otimização aplicada à Engenharia. Profa. Maíra Martins da Silva

Otimização aplicada à Engenharia. Profa. Maíra Martins da Silva Otimização aplicada à Engenharia Profa. Maíra Martins da Silva mairams@sc.usp.br 3373-8650 Objetivo Introduzir conceitos básicos de OTIMIZAÇÃO. Utilizar o MATLAB para explorar esses conceitos básicos.

Leia mais

Bioinformática Avançada e Biologia de Sistemas Optimização

Bioinformática Avançada e Biologia de Sistemas Optimização Bioinformática Avançada e Biologia de Sistemas Optimização A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado em Bioinformática

Leia mais

Lista de Exercícios de Métodos Numéricos

Lista de Exercícios de Métodos Numéricos Lista de Exercícios de Métodos Numéricos 1 de outubro de 010 Para todos os algoritmos abaixo assumir n = 0, 1,, 3... Bisseção: Algoritmo:x n = a+b Se f(a) f(x n ) < 0 então b = x n senão a = x n Parada:

Leia mais

Exercícios TP/P. 1 Condições de optimalidade - Restrições de igualdade

Exercícios TP/P. 1 Condições de optimalidade - Restrições de igualdade Campus de Gualtar Escola de Engenharia 4710-057 Braga - P Departamento de Produção e Sistemas Exercícios TP/P Mestrado e curso de especialização em Engenharia Industrial - MEI Ramo Logística e Distribuição

Leia mais

Optimização e Algoritmos (2004/2005)

Optimização e Algoritmos (2004/2005) Optimização e Algoritmos 2004/2005) Instituto Superior Técnico Engenharia Electrotécnica e de Computadores Série de Problemas 4 Minimização sem restrições algoritmos gradiente, Newton, quasi-newton BFGS)

Leia mais

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA

MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA MÉTODOS NEWTON E QUASE-NEWTON PARA OTIMIZAÇÃO IRRESTRITA Marlon Luiz Dal Pasquale Junior, UNESPAR/FECILCAM, jr.marlon@hotmail.com Solange Regina dos Santos (OR), UNESPAR/FECILCAM, solaregina@fecilcam.br

Leia mais

Método dos gradientes (ou método de máxima descida)

Método dos gradientes (ou método de máxima descida) Método dos gradientes (ou método de máxima descida) Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 14 de setembro de 2010 1 / 16 Método dos gradientes

Leia mais

Métodos para resolver problemas de otimização restrita

Métodos para resolver problemas de otimização restrita Métodos para resolver problemas de otimização restrita Marina Andretta ICMC-USP 22 de novembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 22 de novembro de 2010 1 / 13 Problema

Leia mais

Bioinformática Avançada e Biologia de Sistemas Optimização

Bioinformática Avançada e Biologia de Sistemas Optimização Bioinformática Avançada e Biologia de Sistemas Optimização A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado em Bioinformática

Leia mais

OPTIMIZAÇÃO DE ESTRUTURAS

OPTIMIZAÇÃO DE ESTRUTURAS OPTIMIZAÇÃO DE ESTRUTURAS Alvaro F. M. Azevedo Email: alvaro@fe.up.pt Faculdade de Engenharia da Universidade do Porto 1 OBJECTIVO Minimizar o custo de uma solução estrutural As restrições são os requisitos

Leia mais

SME0300 Cálculo Numérico Aula 6

SME0300 Cálculo Numérico Aula 6 SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz

Leia mais

Método do Lagrangiano aumentado

Método do Lagrangiano aumentado Método do Lagrangiano aumentado Marina Andretta ICMC-USP 23 de novembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 23 de novembro de 2010 1 / 17 Problema com restrições gerais Vamos

Leia mais

Resolução de problemas com apenas restrições lineares de igualdade

Resolução de problemas com apenas restrições lineares de igualdade Resolução de problemas com apenas restrições lineares de igualdade Marina Andretta ICMC-USP 14 de outubro de 2014 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de outubro de 2014 1 / 22

Leia mais

DEPARTAMENTO DE ENGENHARIA MECÂNICA

DEPARTAMENTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA Otimização: Algoritmos e Aplicações na Engenharia Mecânica ENG1786 & MEC2403 Ivan Menezes 2018-2 1 EMENTA 1. Introdução 1.1 Definições Básicas 1.2 Classificação dos

Leia mais

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h

Análise Matemática II - 1 o Semestre 2001/ o Exame - 25 de Janeiro de h Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Análise Matemática II - 1 o Semestre 2001/2002 2 o Exame - 25 de Janeiro de 2001-9 h Todos os cursos excepto Eng. Civil,

Leia mais

Métodos Numéricos C Apresentação da Disciplina

Métodos Numéricos C Apresentação da Disciplina Métodos Numéricos C Apresentação da Disciplina Isabel Espírito Santo Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho iapinho@dps.uminho.pt http://www.norg.uminho.pt/iapinho/

Leia mais

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. IV Modelo Dual

INVESTIGAÇÃO OPERACIONAL. Programação Linear. Exercícios. Cap. IV Modelo Dual INVESTIGAÇÃO OPERACIONAL Programação Linear Exercícios Cap. IV Modelo Dual António Carlos Morais da Silva Professor de I.O. i Cap. IV - Modelo Dual - Exercícios IV. Modelo Problema Dual 1. Apresente o

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Aula 10 Sistemas Não-lineares e o Método de Newton.

Aula 10 Sistemas Não-lineares e o Método de Newton. Aula 10 Sistemas Não-lineares e o Método de Newton MS211 - Cálculo Numérico Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

1 Otimização com restrições I: Condições de Primeira Ordem

1 Otimização com restrições I: Condições de Primeira Ordem Otimização com restrições I: Condições de Primeira Ordem Teorema 8: Seja f e h funções C de duas variáveis Suponha x = (x, x 2 ) é uma solução do problema: max f (x, x 2 ) sa h(x, x 2 ) = c Suponha também

Leia mais

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008

Métodos Numéricos C. A. Ismael F. Vaz 1. Escola de Engenharia Universidade do Minho Ano lectivo 2007/2008 Métodos Numéricos C A. Ismael F. Vaz 1 1 Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho) MN C 2007/2008

Leia mais

Parte 1: Exercícios Teóricos

Parte 1: Exercícios Teóricos Cálculo Numérico SME0104 ICMC-USP Lista 5: Zero de Funções Lembrete (informação que vai estar disponível na prova) Método de Newton Método da Secante x k+1 = x k f(x k) f (x k ), x k+1 = x k J 1 F (x k

Leia mais

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho

Métodos Numéricos I. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho Métodos Numéricos I A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Engenharia Mecânica Ano lectivo 2007/2008 A. Ismael F. Vaz (UMinho)

Leia mais

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright.

Marina Andretta. 17 de setembro de Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Métodos de regiões de confiança Marina Andretta ICMC-USP 17 de setembro de 2014 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear

Leia mais

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição

UNIVERSIDADE FEDERAL DO ABC. 1 Existência e unicidade de zeros; Métodos da bissecção e falsa posição UNIVERSIDADE FEDERAL DO ABC BC1419 Cálculo Numérico - LISTA 1 - Zeros de Funções (Profs. André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda) 1 Existência e unicidade de zeros; Métodos

Leia mais

OTIMIZAÇÃO E DESPACHO ECONÔMICO

OTIMIZAÇÃO E DESPACHO ECONÔMICO 7 OTIMIZAÇÃO E DESPACHO ECOÔMICO 7.1 ITRODUÇÃO este capítulo, o leitor encontrará informações básicas sobre procedimento geral de otimização e aplicação ao caso de despacho, considerado econômico, associado

Leia mais

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)

Leia mais

Métodos de Pesquisa Operacional

Métodos de Pesquisa Operacional Métodos de Pesquisa Operacional Programação Linear é a parte da Pesquisa Operacional que trata da modelagem e resolução de problemas formulados com funções lineares. Programação Linear } Métodos de Resolução

Leia mais

Bioinformática Avançada e Biologia de Sistemas Optimização

Bioinformática Avançada e Biologia de Sistemas Optimização Bioinformática Avançada e Biologia de Sistemas Optimização A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado em Bioinformática

Leia mais

Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões.

Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões. Edgard Jamhour Disciplina que estuda métodos analíticos para auxiliar na tomada de decisões. Procura encontrar soluções ótimas ou próximo de ótimas para problemas de engenharia industrial, economia e finanças,

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Área Interdepartamental de Matemática Análise Numérica Licenciaturas em Engenharia Ambiente,Civil e Química I - Equações Não Lineares.

Leia mais

Métodos Numéricos Zeros Posição Falsa e Ponto Fixo. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Zeros Posição Falsa e Ponto Fixo. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Zeros Posição Falsa e Ponto Fixo Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Método da Posição Falsa 2 Método da Posição Falsa O processo consiste em dividir/particionar

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 5 de Fevereiro de - Parte I (h3m). Considere

Leia mais

Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi

Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi Adriano A. G. Siqueira e Marco H. Terra Departamento de Engenharia Elétrica Universidade de São Paulo - São Carlos O problema de controle ótimo Considere

Leia mais

Um sistema de n equações não lineares a n incógnitas é toda expressão do tipo: [3 x 1. x 2 ) 3 3 ) 2 7] +2(x 2. 2 log(x1 +x 2

Um sistema de n equações não lineares a n incógnitas é toda expressão do tipo: [3 x 1. x 2 ) 3 3 ) 2 7] +2(x 2. 2 log(x1 +x 2 UFSC INE50 95 INE50 Cálculo Numérico Cap 4 Resolução de sistemas não lineares (Material retirado de: Faires Um sistema de n equações não lineares a n incógnitas é toda epressão do tipo: {f (,, n,, n f

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES

MÉTODOS NUMÉRICOS. ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA ELECTRÓNICA INDUSTRIAL e de COMPUTADORES EXERCÍCIOS PRÁTICOS- 1 a parte Ano lectivo de 2004/2005 Exercícios práticos - CONUM Solução de uma equação não

Leia mais

Notas de Aula de Cálculo Numérico

Notas de Aula de Cálculo Numérico IM-Universidade Federal do Rio de Janeiro Departamento de Ciência da Computação Notas de Aula de Cálculo Numérico Lista de Exercícios Prof. a Angela Gonçalves 3 1. Erros 1) Converta os seguintes números

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear Aula 7: Programação Não-Linear - Funções de Várias variáveis Vector Gradiente; Matriz Hessiana; Conveidade de Funções e de Conjuntos; Condições óptimas de funções irrestritas; Método

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu Programação Não Linear com Restrições Aula 30: Programação Não-Linear - Funções de Várias Variáveis com Restrições (Prática) Ponto Regular; Multiplicadores de Lagrange e Condições Necessárias; Condições

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios 1 o semestre de 2007/2008 - Engenharia Biológica Teoria de erros e Representação de números no computador Nos exercícios deste capítulo os números são representados

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Resolução do Exame Tipo

Resolução do Exame Tipo Departamento de Matemática e Engenharias Análise e Computação Numérica Resolução do Exame Tipo 1. O computador IBM 3090 possuía um sistema de vírgula flutuante F F(16, 5, 65, 62) (em precisão simples),

Leia mais

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ]

SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé. (α 1)z + 88 ] SME306 - Métodos Numéricos e Computacionais II Prof. Murilo F. Tomé 1 o sem/2016 Nome: 1 a Prova - 07/10/2016 Apresentar todos os cálculos - casas decimais 1. Considere a família de funções da forma onde

Leia mais

Método de restrições ativas para minimização em caixas

Método de restrições ativas para minimização em caixas Método de restrições ativas para minimização em caixas Marina Andretta ICMC-USP 20 de outubro de 2014 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 20 de outubro de 2014 1 / 25 Problema com

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Marina Andretta/Franklina Toledo ICMC-USP 13 de maio de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina Toledo (ICMC-USP) sme0301

Leia mais

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados

Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Resolução de sistemas de equações lineares: Método dos Gradientes Conjugados Marina Andretta/Franklina Toledo ICMC-USP 24 de março de 2015 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

exercícios de análise numérica II

exercícios de análise numérica II exercícios de análise numérica II lic. matemática aplicada e computação (4/5) aulas práticas - capítulo Exercício. Mostre que a soma dos polinómios base de Lagrange é a função constante. Exercício. Usando

Leia mais

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016

MAT Cálculo 2 para Economia 3 a Prova - 28 de novembro de 2016 MAT 0147 - Cálculo para Economia 3 a Prova - 8 de novembro de 016 Questão 1) Determine o máximo e o mínimo de f(x, y) = x 4 + y em D = {(x, y); x + y 1}. Soluç~ao: As derivadas parciais f x (x, y) = 4x

Leia mais

Capítulo 6 - Equações Não-Lineares

Capítulo 6 - Equações Não-Lineares Sistemas de Capítulo 6 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil e Electrotécnica Carlos Balsa Métodos Numéricos 1/

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Grupo I. 1. Seja tal que, onde e é a

Grupo I. 1. Seja tal que, onde e é a Matemática II 2010-2011 2º Semestre 1ª Frequência 31 de Março de 2011 Pedro Raposo; Maria João Araújo; Carla Cardoso; Vasco Simões O teste tem a duração de 2:30 horas. Deve resolver os grupos em folhas

Leia mais

Alocação de Unidades via Relaxação Lagrangeana

Alocação de Unidades via Relaxação Lagrangeana Alocação de Unidades via Relaxação Lagrangeana Prof. Antonio Simões Costa Grupo de Sistemas de Potência EEL - UFSC Relaxação Lagrangeana: Conceitos Iniciais 2 1 Alocação de Unidades via Relaxação Lagrangeana

Leia mais

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

UM ALGORITMO DE NEWTON DE PONTO INTERIOR E APLICAÇÕES NA FUNDIÇÃO ELETROMAGNÉTICA DE METAIS. Alfredo Canelas Botta

UM ALGORITMO DE NEWTON DE PONTO INTERIOR E APLICAÇÕES NA FUNDIÇÃO ELETROMAGNÉTICA DE METAIS. Alfredo Canelas Botta COPPE/UFRJ UM ALGORITMO DE NEWTON DE PONTO INTERIOR E APLICAÇÕES NA FUNDIÇÃO ELETROMAGNÉTICA DE METAIS Alfredo Canelas Botta Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Mecânica,

Leia mais

Desenho Óptimo de Estações de Águas Residuais Através da Modelação de Funções Custo

Desenho Óptimo de Estações de Águas Residuais Através da Modelação de Funções Custo Isabel A. C. P. Espírito Santo, 2 de Julho de 2007 1 Desenho Óptimo de Estações de Águas Residuais Através da Modelação de Funções Custo Isabel Alexandra Costa Pinho do Espírito Santo Orientação: Edite

Leia mais

Testes Formativos de Computação Numérica e Simbólica

Testes Formativos de Computação Numérica e Simbólica Testes Formativos de Computação Numérica e Simbólica Os testes formativos e 2 consistem em exercícios de aplicação dos vários algoritmos que compõem a matéria da disciplina. O teste formativo 3 consiste

Leia mais

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias

MAP Primeiro exercício programa Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias MAP-2121 - Primeiro exercício programa - 2006 Método de Diferenças Finitas para solução de problemas de contorno de equações diferenciais ordinárias Instruções gerais - Os exercícios computacionais pedidos

Leia mais

SME0300 Cálculo Numérico Aula 4

SME0300 Cálculo Numérico Aula 4 SME0300 Cálculo Numérico Aula 4 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 13 de agosto de 2015 Aula Passada Operações Aritméticas: Arredondamento a

Leia mais

MATEMÁTICA COMPUTACIONAL. Exercícios

MATEMÁTICA COMPUTACIONAL. Exercícios MATEMÁTICA COMPUTACIONAL Exercícios Filipe J. Romeiras Departamento de Matemática Instituto Superior Técnico Junho de 2008 1 1. REPRESENTAÇÃO DE NÚMEROS E TEORIA DE ERROS 1 [1.1] Represente x num sistema

Leia mais

Planejamento da Operação de Sistemas Hidrotérmicos. Parte III

Planejamento da Operação de Sistemas Hidrotérmicos. Parte III Universidade Federal de Paraná Setor de Tecnologia Departamento de Engenharia Elétrica Planejamento da Operação de Sistemas Hidrotérmicos Parte III Prof. Dr. Clodomiro Unsihua-Vila SISTEMA TERMELÉTRICO

Leia mais

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3].

f(1) = 6 < 0, f(2) = 1 < 0, f(3) = 16 > 0 x [2, 3]. 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Métodos Numéricos Para Solução

Leia mais

PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS TERMOELÉTRICOS DE GERAÇÃO. Prof.:Ivo Chaves da Silva Junior.

PLANEJAMENTO DA OPERAÇÃO DE SISTEMAS TERMOELÉTRICOS DE GERAÇÃO. Prof.:Ivo Chaves da Silva Junior. LANEJAMENTO DA OERAÇÃO DE SISTEMAS TERMOELÉTRICOS DE GERAÇÃO Despacho Econôico e Unit Coitent rof.:ivo Chaves da Silva Junior ivo.junior@ufjf.edu.br www.ufjf.br/ivo_junior de Agosto de DESACHO ECONÔMICO:

Leia mais

OPF - Optimal Power Flow

OPF - Optimal Power Flow OPF - Optimal Power Flow Manuel António Matos FEUP 1999 Despacho de reactiva > Decisões: fixação de valores de tensão especificada ou de potência reactiva (PV) posição das tomadas de transformadores (ou

Leia mais

Ana Paula. October 26, 2016

Ana Paula. October 26, 2016 Raízes de Equações October 26, 2016 Sumário 1 Aula Anterior 2 Método da Secante 3 Convergência 4 Comparação entre os Métodos 5 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Método de

Leia mais

Otimização Multiobjetivo

Otimização Multiobjetivo Otimização Multiobjetivo Otimização Restrita Prof. Frederico Gadelha Guimarães Lucas S. Batista Eduardo G. Carrano Universidade Federal de Minas Gerais Programa de Pós-Graduação em Engenharia Elétrica,

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 06 - sistemas não lineares Antonio Oliveira Ricardo Marroquim 1 / 38 laboratório de processamento de imagens tópicos RANSAC métodos iterativos (não-lineares) gradientes

Leia mais

Equações não lineares Universidade de Coimbra Professor João Soares 2008/2009

Equações não lineares Universidade de Coimbra Professor João Soares 2008/2009 Matemática Computacional Equações não lineares Universidade de Coimbra 13 pages Professor João Soares 2008/2009 1. Localize graficamente (à mão ou em matlab) as soluções das seguintes equações e demonstre,

Leia mais

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes

Raízes de Equações métodos delimitados. qual o problema? equações não lineares/raízes Raízes de Equações métodos delimitados Aula 5 (16/0/07) Métodos Numéricos Aplicados à Engenharia Licenciatura em Engenharia Alimentar Escola Superior Agrária de Coimbra qual o problema? Podemos calcular

Leia mais

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL

MÉTODOS NUMÉRICOS. ENGENHARIA e GESTÃO INDUSTRIAL UNIVERSIDADE DO MINHO MÉTODOS NUMÉRICOS ENGENHARIA e GESTÃO INDUSTRIAL EXERCÍCIOS PRÁTICOS Ano lectivo de 2005/2006 Métodos Numéricos - L.E.G.I. Exercícios práticos - CONUM Solução de uma equação não linear

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Solução aproximada de equações de uma variável

Solução aproximada de equações de uma variável Cálculo Numérico de uma variável Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Parte I Localização de zeros e Método da bissecção Motivação: Queda de um

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f)

1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d) 0.11 (e) (f) 1 a Lista de Exercícios de Cálculo Numérico Prof a. Vanessa Rolnik 1. Converta os seguintes números decimais para sua forma binária: (a) 22 (b) 255 (c) 256 (d).11 (e).8125 (f) 4.69375 2. Converta os seguintes

Leia mais

OPTIMIZAÇÃO NÃO LINEAR EM REDES

OPTIMIZAÇÃO NÃO LINEAR EM REDES OPTIMIZAÇÃO NÃO LINEAR EM REDES Luis Ernesto Torres Guardia Departamento de Engenharia de Produção Universidade Federal Fluminense Rua Passo da Pátria 156, São Domingos 24210-240, Niterói, R.J., Brasil

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros

Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros Resumo Filtragem Adaptativa Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Sistemas de filtragem adaptativa Conceitos de filtragem adaptativa Filtro de Wiener Algoritmo steepest descent

Leia mais

1 Receita básica. x + cos(x) = y + y 3 x 2 + y 2 = 1. E o escrevemos na forma. x + cos(x) y y. F 1 x F 2. x 1 x 2 x n J F = F n F n F n

1 Receita básica. x + cos(x) = y + y 3 x 2 + y 2 = 1. E o escrevemos na forma. x + cos(x) y y. F 1 x F 2. x 1 x 2 x n J F = F n F n F n Receitas para solução de sistemas de equações usando o método de Newton-Raphson no Scilab Prof. Fabio Azevedo - Cálculo Numérico - MAT01169 1 Receita básica Nesta receira básica, mostraremos como calcular

Leia mais

2 Métodologia para a Resolução do NEP

2 Métodologia para a Resolução do NEP Trabalho apresentado no CMAC-Sul, Curitiba-PR, 2014. Algoritmos para o Problema de Equilíbrio de Nash Euda Mara da Silva Ferreria Universidade Federal do Paraná, UFPR, Curitiba, PR E-mail: diretoria@facel.com.br

Leia mais

MATLAB. Aula 05. Cláudio R. Lucinda FEA-RP/USP. Aula 05

MATLAB. Aula 05. Cláudio R. Lucinda FEA-RP/USP. Aula 05 Bibliografia: Apresentação Estrutura da Aula 1 MATLAB Detalhes Operacionais Funções Matemática Simbólica Otimização Detalhes Operacionais MATLAB-Importando Dados readtable - Para importar dados organizados

Leia mais

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS

FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS FOLHAS DE PROBLEMAS DE MATEMÁTICA II CURSO DE ERGONOMIA PEDRO FREITAS Maio 12, 2008 2 Contents 1. Complementos de Álgebra Linear 3 1.1. Determinantes 3 1.2. Valores e vectores próprios 5 2. Análise em

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 10 Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Seja P(x) um polinômio

Leia mais