59 5(6,67Ç&,$(&$3$&,7Æ&,$ ÃÃ5(6,67Ç&,$Ã(Ã/(,Ã'(Ã+0 No pítulo 6 efinimos ução J σ omo seno um ensie e oente e onução. Multiplino mos os los po um áe S, el fiá: J.S σs (A (8. σs (A (8. Se o mpo elétio fo unifome, ele poe se efinio omo seno o quoiente ifeenç e potenil ente ois pontos, pel istâni ente eles. ntão: σs L (A (8.3 O temo σ S é o inveso esistêni o mteil. Potnto, ução 8.3 n mis é o L que onhei lei e Ohm: (A ; (8.4 ução J σ tmém poe se efini omo lei e Ohm n fom pontul. O temo σ S pemite lul esistêni e um most e mteil, em função e sus L teístis elétis e e su geometi. A ução 8.4 efine esistêni eléti omo seno o quoiente ente us gnezs esles, e. Se sustituimos ifeenç e potenil pel integl o longo e um minho o veto intensie e mpo elétio, e oente po um integl e supefíie o ensie e oente (tmém expesso em temos o veto intensie e mpo elétio, teemos um expessão p esistêni eléti em temos o mpo elétio. ss expessão é muito útil p o álulo e esistêni e onfiguções mis omplexs, omo veemos nos exemplos 8., 8., 8.3.
60.L σ.s (8.5 L[DGÃHÃ0HPUL]DGÃ Antes e possegui, efç em seu eno e estuos s pssgens p ote ução 8.5, ptino expessão p oente e onução. ([HPSOÃ Consiee ois ilinos onutoes onêntios e ios m e m (o oxil, onfome figu 8.. xiste um ifeenç e potenil ente eles, e em onsueni estelee-se-á um oente e fug ente o onuto inteno e o onuto exteno. Se oente e fug fo A/m, e onutivie o mteil igul σ, lule o vlo esistêni e fug. 6OXom figu 8. - Co Co-xil Pel simeti o polem, oente ente os ois onutoes se istiui ilmente. mos iniilmente lul ensie e oente J em um ponto istnte o ento o o. P um meto e o, oente e fug totl seá: J O mpo elétio potnto: J.S (A J.π. (A A m π. ( / $ em um ponto seá, J σ.â πσ ( / m ( / m A ifeenç e potenil ente os ois ilinos onutoes é:. (. ( πσ
6 πσ ( Potnto, esistêni e fug po meto seá: πσ ([HPSOÃ Consiee go que o ielétio ente os ois onutoes é fomo po ois meios, onfome figu 8.. lule esistêni e fug po meto e o o-xil. 6OXom σ σ figu 8. - Co o-xil om ielétios em plelo + +. + A oente se istiui ilmente. Como há ois meios ifeente, poemos onsie que el é som e us oentes e. + (A A ifeenç e potenil ente os ois onutoes é onstnte. Potnto: ; Po nlogi om o exemplo nteio poemos eseve s expessões p e : ; πσ πσ A esistêni uivlente seá: π( σ +σ ([HPSOÃ Consiee go onfigução most n figu 8.3. Clul esistêni e fug. 6OXom σ σ
6 figu 8.3 - Co o-xil om ielétios em séie As oentes nos meios e são iguis : (A A ifeenç e potenil ente os onutoes é: + (. ( ;. (.+. +. ( πσ. ( πσ πσ (. ( ( ; πσ ( Ω + π σ σ ÃÃ&$3$&,7Æ&,$ Sejm ois onutoes imesos em um ielétio homogêneo. O onuto M é ego om um g e Couloms positivos. Consuentemente, o um g e mesm mgnitue, poém e sinl ontáio seá inuzi no onuto M. Potnto um ifeenç e potenil seá estelei ente esses ois onutoes. A pitâni C este sistem é efini omo : C (F (8.6 Ou, temos o veto intensie e mpo elétio: C ε.s sup inf.l (F (8.7 ntene-se po pitâni pie e um sistem em mzen enegi em um mpo eletostátio. M M
63 figu 8.4 - Dois onutoes egos, imesos em um ielétio ([HPSOÃ O pito e pls plels. Dus pls plels iguis e áe S, são seps po um istâni. O ielétio ente els tem pemissivie ε. Clul pitâni C. 6OXom + σ s - σ s C (F figu 8.5 - Cpito e pls plels ρ s ε ( sup inf ρ s.s (C 0 s.l ρ.z ( ε C ρss εs ( ρ ε inepenente e e. s (F ([HPSOÃ Suponh go que ielétio tenh onfigução most n figu 8.6. Clul pitâni C. 6OXom figu 8.6 - Cpito om ielétios em plelo. Pels onições e fontei: t t
64 D D ε ε Pel lei e Guss: s s s ε (C / m ε (C / m D.S (C D.S (C D.S (C s + D.S D.S (C s D S + D S (C ε.s +ε.s (C ( ε +ε S (C S εs εs + C + C (F C (F + (C ([HPSOÃ Suponh go que o ielétio tenh onfigução figu 8.7. Clul C. 6OXom D figu 8.7 - Cpito om ielétios em séie Pels onições e fontei : D D n ε ε n D (C / m ( ; ( + ( Pel lei e Guss: D.S (C D.S (C D Sε S + Sε (C / m ( D D + ε ε ( + ε S ε S
65 C C + C (/ F (;(5&Ë&,6 - Clule esistêni ente us supefíies uvs onentis, um e io 0. m, out e io 0.4 m, limits po um ângulo e 30º, se o mteil ente els possui onutivie σ 6,7 0 7 S/m. - Clule esistêni e um onuto e lumínio e m e ompimento, seção et qu, seno S mm em um extemie, e umentno linemente té S 4 mm n out extemie. 3 - Po um efeito e fição, um o oxil possui um eslomento ente os entos os onutoes inteno e exteno onfome mosto n figu. Detemine esistêni e isolção po meto esse o. O ielétio possui pemissimive eltiv igul. 4 - esolve o polem nteio, onsieno os os onêntios. Compe os esultos. 5 - nonte pitâni ente s supefíies onutos exten e inten most n figu. 0.8 m m 4 m figu - figu o polem 3 6 - Clule pitâni po unie e ompimento ente um onuto ilinio e 6 m e iâmeto e um po onuto, plelo o eixo esse ilino, istnte 0 m o mesmo. ε 5,5 30º 60 mm 5 mm
66 figu - figu o polem 5 7 - Um pito e pls plels om áe e 0,30 m e sepção 6 mm ontém tês ielétios ssim istiuíos : ε 3.0, om espessu e mm. ε 4.5 om espessu e mm e ε 3 6,0 om espessu e 3 mm. Aplino-se um p e 00 soe o pito, enonte ifeenç e potenil e o giente o potenil (intensie o mpo elétio em ielétio. 8 - A figu 3 most um o oxil ujo onuto inteno possui io e 0,6 mm e o onuto exteno io e 6 mm. Clule pitâni po unie e ompimento om os espçoes omo inio.5mm 50 mm figu 3 - figu o polem 8 9 - Um o e potêni lino ope num tensão e,5 k no onuto inteno em elção à p ilíni. xistem us isolções: pimei tem pemeilie eltiv igul 6,0, e é o onuto inteno em 0,8 m,0 m, enqunto que segun tem pemeilie eltiv igul 3,0 e vi e,0 m 3,0 m, que oespone à supefíie inten p exten. nonte o máximo giente e tensão em isolção empeg. 0 - Um eto o e potêni lino tem isolção e polietileno p o qul ε 3,6 e igiez ieléti 8, M/m. ul é o limite supeio soe o onuto inteno em elção à lingem quno o onuto inteno possui io e m e o lo inteno lingem onênti pesent io e 8,0 m?