Cinemática. s... distância percorrida v s... velocidade instantânea dv a v s v... aceleração instantânea

Tamanho: px
Começar a partir da página:

Download "Cinemática. s... distância percorrida v s... velocidade instantânea dv a v s v... aceleração instantânea"

Transcrição

1 Trslção recilíe s... disâci percorrid v s... velocidde isâe dv v s v... celerção isâe dx Ciemáic, s s v d s, sds v v s v v d iorme, v cos, s s v iormemee celerdodescelerdo cos, v v, Trslção crvilíe r... vecor de posição dr v, v s, v se ( e d versor gecil) s s v dv d r v se e ( e d d R versor orml, po pr o cero de crvr, R rio de crvr) Roção, Movimeo circlr plo... âglo percorrido... velocidde glr isâe d... celerção glr isâe d d, d, d iorme:, cos, iormemee celerdodescelerdo: cos,, Ligção o movimeo crvilíeo circlr v v, v v r, r, r (o seido rel po pr o cero de movimeo) Roção em oro de m eixo ixo em 3D... versor do eixo de roção v v, v r, r v r r, Movimeo relivo rb r rb, vb v vb, B B recilíeo iorme B, vb cos, sb sb, vb recilíeo iormemee celerdodescelerdo B cos, vb vb, B, sb sb, vb, B e B o mesmo corpo -> o movimeo relivo correspode à roção do B em oro de Por isso é válido B B B r, r B B B B Propgção de deslocmeos elemeres drb dr d B Propgção de velociddes vb v B Propgção de celerções B B B

2 Disco: IG mr Eser: IG mr 5 Brr: IG ml Diâmic Forçs de iérci rslção: m roção: I G G Rolmeo sem deslizmeo: F N e, G r, orç de rio ão cs perc de eergi Rolmeo com deslizmeo F N c, r, orç de rio cs perc de eergi G Eergi ciéic: T mvg IG Qidde de movimeo: H mv G IG Implso ds orçs: I Fd Pricípio de coservção d eergi: No sisem coservivo som de Eergi ciéic + eergi poecil mém-se cose Pricípio do implso e d qidde de movimeo: Qidde de movimeo o ise () +implso ds orçs de () é () = Qidde de movimeo o ise ()

3 Frêci circlr: (rds), ode é rêci cíclic em Hz=s, período: T Vibrções livres ão-morecids Eqção do movimeo (ilíbrio diâmico): m k Solção: si Bcos, ode Frêci rl (circlr): e B ds codições iiciis: deslocmeo iicil, v velocidde iicil v si cos, v : si pr, ode mplide: v Âglo de se: pr v é, pr v é, ode rc v v : pr cos, o sej, pr é Vibrções livres morecids Eqção do movimeo (ilíbrio diâmico): m c k Coeiciee do morecimeo críico: c m cr c Frcção de morecimeo o Fcor de morecimeo: c Movimeo em regime sbcríico e si Bcos Solção: ode Frêci rl morecid (circlr): cr, pr é e B ds codições iiciis: deslocmeo iicil, v velocidde iicil v e si cos, Crvs de evolvimeo: e : e si pr v, ode mplide: Vibrções k m v Âglo de se: pr v é, pr v é, ode rc v pr v : cos e, o sej, pr é, pr é Movimeo em regime críico: v e Movimeo em regime sper-críico: v v e e e

4 Vibrções orçds ão-morecids (ídice omiido por rzões de simpliicção) Rzão ere rêcis: Forç de excição hrmóic: m k F si Coeiciee de mpliicção diâmic R d, deslocmeo esáico ivlee F E k Solção: H P H P : solção homogée, vibrção rl, vibrção em regime livre : solção priclr, vibrção orçd, vibrção em regime orçdo si, ode P F Solção comple: F R k E F d E si cos v cos si si F F F o: si F si cos si si cos ode e mém-se como pre d vibrção livre ão-morecid Codições iiciis homogées e : si si Crvs de evolvimeo: F cos F Excição pelo movimeo de bse hrmóico: b si Movimeo ol: b, ção do movimeo: m k m si b m Solção logmee como o cso erior, pes em vez de F sr m Deslocmeo relivo: si cos v cos si si Deslocmeo ol: si cos v cos si si o si cos v cos si si ode, deslocmeo iicil e v velocidde iicil são reerees o deslocmeo relivo deslocmeo iicil e v velocidde iicil são reerees o deslocmeo ol rsmissibilidde de deslocmeos relivos: T, e bsolos T

5 Vibrções orçds morecids (ídice omiido por rzões de simpliicção) m c k F si Forç de excição hrmóic: coeiciee de mpliicção diâmic Solção: H P H P R d : solção homogée, vibrção rl, vibrção em regime livre, coribi o regime rsiee : solção priclr, vibrção em regime orçdo, vibrção em regime escioário si P F P, ode F ERd Âglo de se: pr é P P, pr é P P, ode P rc E pr é P cos Excição pelo movimeo de bse hrmóico: b si Movimeo ol: b, ção do movimeo: m c k m si b m Solção: H P H P : solção homogée, vibrção rl, vibrção em regime livre, coribi o regime rsiee : solção priclr, vibrção em regime orçdo, vibrção em regime escioário si, ode P P Âglo de se: pr é P P, pr é P P, ode P rc pr é P cos si, ode P P Âglo de se: pr P 3 rc pr é P P é P cos rsmissibilidde de deslocmeos: T é P P, ode, pr Solção homogée Em odos os csos bs lerr s codições iiciis pr P, v v v P e sr s solções de vibrções livres. e T

Mecânica da partícula

Mecânica da partícula 10-11-010 Mecâic d prícul Movieos de corpos sujeios ligções rof. Luís. er orçs s forçs rduze e ede iercções ere corpos e esss iercções pode ser de coco ou à disâci (Q o 1). orçs de coco à disâci U vez

Leia mais

CONVERSORES CC-CA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável

CONVERSORES CC-CA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável CONVERSORES ELECTRÓNCOS DE POTÊNCA A ALTA FREQUÊNCA CONVERSORES CC-CA - versores CONVERSORES CC-CA CA Aplicções: Coversores CC-CA de frequêci vriável corolo de velocidde de moores de idução foes de limeção

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Matrizes Uiversidde Federl de Pelos Veores e Álgebr Lier Prof : Msc. Merhy Heli Rodrigues Mrizes. Mrizes. Defiição: Mriz m x é um bel de m. úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis)..

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como

Integrais. A integral indefinida de uma função f(t) é representada como. Por outro lado, a integral definida, representada como J. A. M. Flipp d Soz Igris (rsmo l) Igris A igrl idfiid d m fção f() é rprsd como f ( τ) Por oro ldo, igrl dfiid, rprsd como f ( τ), f ( τ) τ o f ( τ) dτ 3 d fz Som d Rim q clcl ár so crv m m irvlo m dfiido

Leia mais

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável

ELECTRÓNICA DE POTÊNCIA. CA Aplicações: Inversor monofásico em meia ponte. Inversor monofásico em ponte. Conversores CC-CA de frequência variável ELECRÓNCA DE POÊNCA CA Aplicções: versores Coversores CC-CA de frequêci vriável corolo de velocidde de moores de idução foes de limeção iierrupíveis (UPS) vridores de frequêci foes de limeção móveis quecimeo

Leia mais

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar:

F6D370 - CONTROLE E SERVOMECAMISMOS II. pode ser baseada na solução da equação escalar: F6D - CONTROLE E SERVOMECAMISMOS II Prof. Crlo Rimdo Erig Lim SOLUÇÃO DAS EQUAÇÕES DE ESTADO. - Solção d eqção elr e d eqção mriil A eqção de edo A B ode er ed olção d eqção elr: Por Lle: A B X AX BU A

Leia mais

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan No epliciv grdeço os professores João lves José Lís Fchd mrino Lere Roger Picken e Pedro Snos qe me fclrm mvelmene eercícios d s ori e recolhs de emes d cdeir. revemene (ind ese no) serão crescends solções

Leia mais

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química Cpítulo VIII Equilíbrio de istribuição Alyticl Chemistry - Robert V. ilts. V Nostrd, ISBN 0-44-158-4 eprtmeto de Químic 1 As váris técics de extrção e cromtogrfi de prtição, evolvem prtição dos solutos

Leia mais

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation). 4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica. /Coroa

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Departamento de Engenharia Mecânica. /Coroa UNIVERSIDDE FEDERL DO RIO DE JNEIRO Deprmeo de Egehri Mecâic Elemeos de Máquis II Trsmissão Sem-fim/ /oro 1 2 3 4 5 6 5.1. rcerísics d rsmissão 1. GRNDES reduções (i > 100). 2. ios redimeos, devidos s

Leia mais

t AB s = s 0 (1) / 2 / 2 y y v t gt Cinemática de uma Partícula Cap. 12 v oya v oa v oya v oa

t AB s = s 0 (1) / 2 / 2 y y v t gt Cinemática de uma Partícula Cap. 12 v oya v oa v oya v oa Poblem 1.88 MECÂNIC - DINÂMIC O sowmobile deix o oto m elocidde de 10m/s. Detemie o temo de ôo de té e o lcçe d tjetói. Ciemátic de m Ptícl C. 1 Pof D. Cládio Cotto dtdo o: Pof D. oldo Medeios-Jio TC07

Leia mais

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES

NOTAS DE AULA - ÁLGEBRA LINEAR MATRIZES, DETERMINANTES E SISTEMAS DE EQUAÇOES LINEARES NOTS DE U - ÁGER INER TRIZES, DETERINNTES E SISTES DE EQUÇOES INERES ISE C C EITE SVDOR Profª Isel Crisi C eie Álger ier TRIZES Um mri é um grupmeo regulr de úmeros ri de ordem m por é um reâgulo de m

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

Lista de Exercícios Volumes de Sólidos de Revolução

Lista de Exercícios Volumes de Sólidos de Revolução UNEMAT Universidde do Estdo de Mto Grosso Cmpus Universitário de Sinop Fculdde de Ciêncis Exts e Tecnológics Curso de Engenhri Civil Disciplin: Cálculo Diferencil e Integrl I List de Exercícios Volumes

Leia mais

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u.

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u. Grio lis e MAT A forç resle em iesie N ireção o prir o semi-eio posiio os A eloie resle é m/h m âglo e -6 o sese O ião ee segir ireção -6 o soese Ese proo iero represe o lor o esoqe represeo pelo eor m

Leia mais

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS Universidde ederl Rurl do Semi-Árido ENÔMENOS DE TRANSPORTE MECÂNICA DOS LUIDOS ESTÁTICA DOS LUIDOS UERSA Universidde ederl Rurl do Semi-Árido Prof. Roberto Vieir Pordeus Nots de ul enômenos de Trnsorte

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

(rad/s), onde f é frequência cíclica em Hz=1/s, período: Vibrações livres não-amortecidas Equação do movimento (equilíbrio dinâmico): m & u

(rad/s), onde f é frequência cíclica em Hz=1/s, período: Vibrações livres não-amortecidas Equação do movimento (equilíbrio dinâmico): m & u SISEMAS DE GRA DE IBERDADE êc ccl: π (/s, oe é êc cíclc e Hz/s, peíoo: Vções lves ão-oecs Eqção o oveo (lío âco: + k Solção: As( + Bcos(, A e B s coções cs: esloceo cl, v veloce cl v s( + cos( o ecee:

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias Eercícios de Cálclo Nmérico Eqações Diereciais Ordiárias. Deermie a solção mérica aproimada da segie Eqação Dierecial Ordiária com o passo.: { ( ( [ ] ( (a Méodo de Eler ( Méodo das Tagees (b Méodo de

Leia mais

ELETRÔNICA DE POTÊNCIA CIRCUITOS COM FORMAS DE ONDAS PERIÓDICAS NÃO SENOIDAIS APLICAÇÃO DA SÉRIE DE FOURIER (REVISÃO)

ELETRÔNICA DE POTÊNCIA CIRCUITOS COM FORMAS DE ONDAS PERIÓDICAS NÃO SENOIDAIS APLICAÇÃO DA SÉRIE DE FOURIER (REVISÃO) ELEÔNC DE POÊNC CCUOS COM FOMS DE ONDS PEÓDCS NÃO SENODS PLCÇÃO D SÉE DE FOUE (ESÃO PMEO SEMESE DE 5 CCUOS COM FOMS DE OND PEÓDCS NÃO SENODS. FUNÇÕES PEÓDCS Um ução ( é periódic se: SÉE DE FOUE (ESÃO (

Leia mais

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos

Capítulo 4: Derivada A Reta Tangente. y = uma curva definida no intervalo ( a, ) e sejam ( x, y ) e Q( x y ) P dois pontos Isio d Ciêcis Es - Dprmo d Mmáic Cálclo I Proª Mri Jli Vr Crlo d Arjo Cpílo : Drid - A R T Sj b disios d cr Sj s r sc q pss plos poos P Q Cosidrdo o riâlo râlo PMQ, ir o ldo, mos q iclição d r s, o coici

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

Medidas Mecânicas UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA. Prof. Leopoldo de Oliveira

Medidas Mecânicas UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA. Prof. Leopoldo de Oliveira UNIVRSIDAD D SÃO PAULO SCOLA D NGNHARIA D SÃO CARLOS DPARTAMNTO D NGNHARIA MCÂNICA Medids Mecânics Prof. Leopoldo de Oliveir Revisão st prte do curso se destin estudr dinâmic dos sensores mis comumente

Leia mais

CAPÍTULO 4 - DERIVADAS

CAPÍTULO 4 - DERIVADAS CAPÍTULO 4 - DERIVADAS 4.- Icremetos e Rão Icremetl Sej m ção rel de vriável rel, cotí em m ddo itervlo do ql em prte os úmeros reis e e esses úmeros são mito próimos etre si, isto é, < δ o tede ero. Nests

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Diurno Segundo semestre de /10/2004 Prov de F-8 urms do Diurno Segundo semestre de 004 8/0/004 ) No instnte em que luz de um semáforo fic verde, um utomóvel si do repouso com celerção constnte. Neste mesmo instnte ele é ultrpssdo por um

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fundmentos d físic 1 Unidde D Cpítulo 11 Os princípios d Dinâmic 1 P.230 prtícul está em MRU, pois resultnte ds forçs que gem nel é nul. P.231 O objeto, livre d ção de forç, prossegue por inérci em

Leia mais

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha)

Exercícios de Dinâmica - Mecânica para Engenharia. deslocamento/espaço angular: φ (phi) velocidade angular: ω (ômega) aceleração angular: α (alpha) Movimento Circulr Grndezs Angulres deslocmento/espço ngulr: φ (phi) velocidde ngulr: ω (ômeg) celerção ngulr: α (lph) D definição de Rdinos, temos: Espço Angulr (φ) Chm-se espço ngulr o espço do rco formdo,

Leia mais

Transformadas de Laplace

Transformadas de Laplace Trformd de plce O MÉTODO O méodo de rformd de plce é um méodo muio úil pr reolver equçõe diferecii ordiári EDO. Com rformd de plce, pode-e coverer mui fuçõe comu, i como, eoidi e morecid, em equçõe lgébric

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

MATRIZES ... Exemplos: 1) A representação de um tabuleiro de xadrez pode ser feita por meio de uma matriz 8 8.

MATRIZES ... Exemplos: 1) A representação de um tabuleiro de xadrez pode ser feita por meio de uma matriz 8 8. MTRIZES Defiição Couo de úmeros reis ou complexos disposos em form de bel, iso é, disribuídos em m lihs e colus, sedo m e úmeros uris ão ulos m m m Noção: com i,,, m e,,, - elemeo geérico d mriz i - ídice

Leia mais

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t)

CAPÍTULO 1. , e o vetor r representa a posição desta mesma partícula no instante t, indicado por. r P(t) 1 CPÍTULO 1 CINEMÁTIC VETORIL D PRTÍCUL Feqüeemee eg lei e Newo é eci fom cláic qe elcio foç ele com celeção pícl. O eo ciemáic pícl em como objeio obe elçõe memáic ee ge poição, elocie e celeção, m eemio

Leia mais

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA

CAPÍTULO 3 DINÂMICA DA PARTÍCULA: TRABALHO E ENERGIA CAPÍLO 3 DINÂMICA DA PARÍCLA: RABALHO E ENERGIA Neste capítulo será analisada a lei de Newton numa de suas formas integrais, aplicada ao movimento de partículas. Define-se o conceito de trabalho e energia

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1

Definição Definimos o dominio da função vetorial dada em (1.1) como: dom(f i ) i=1 Cpítulo 1 Funções Vetoriis Neste cpítulo estudremos s funções f : R R n, funções que descrevem curvs ou movimentos de objetos no espço. 1.1 Definições e proprieddes Definição 1.1.1 Um função vetoril, é

Leia mais

Física e Química A Tabela de Constantes Formulário Tabela Periódica

Física e Química A Tabela de Constantes Formulário Tabela Periódica Física e Quíica A Tabela de Constantes Forulário Tabela Periódica http://fisicanalixa.blogspot.pt/ CONSTANTES Velocidade de propagação da luz no vácuo c = 3,00 10 8 s 1 Módulo da aceleração gravítica de

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores

4.4 - Acelerômetros Combinados. Montagem: x 2. referência. Circuito: - + S v. a 1 = E 1 + E 2. a 2 -E 1 = E 2. Características de Sensores 4.4 - Acelerômetros ombindos Montgem: G θ x x x ircuito: reerênci R R v R R R R R - + 0 + v R - + R 0-7 rcterístics de ensores Deslocmento liner médio: x x + x && x + Deslocmento ngulr médio: θ && θ x

Leia mais

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM Progrmção de Computdores I BCC 701 01- List de Exercícios 01 Sequêci Simples e Prte A Exercício 01 Um P. A., Progressão Aritmétic, fic determid pel su rzão (r) e pelo seu primeiro termo ( 1 ). Escrev um

Leia mais

MEF Aplicado à Dinâmica

MEF Aplicado à Dinâmica PR 4 ecâic ompuciol EF Aplico à Diâmic Problems e iâmic esruurl são represeos por equções o ipo: U com s coições iiciis: V ; U U. [ ]{ U } [ ]{ U } [ ]{ U} { F} A mriz é eomi mriz e morecimeo e s emis

Leia mais

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCE DEPARAMENO DE ENGENHARIA ELÉRICA Disciplia de Pricípios de elecomuicações Pro. MC. Leoardo Gosioroski da Silva Séries e rasormadas de Fourier Aálise de um sial seoidal o empo

Leia mais

Somatórios e Recorrências

Somatórios e Recorrências Somtórios e Recorrêcis Uiversidde Federl do Amzos Deprtmeto de Eletrôic e Computção Exemplo: MxMi () Problem: Ddo um vetor de iteiros A, ecotrr o mior e o meor elemetos de A O úmero de comprções etre elemetos

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS PROFESSOR: MARCOS AGUIAR CÁLCULO I. FUNÇÕES

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

CMC INTRODUÇÃO AO ESTUDO DE SISTEMAS DE CONTROLE. Aulas: 3 e 4 SISTEMAS LINEARES E EQUAÇÕES DIFERENCIAIS (ED)

CMC INTRODUÇÃO AO ESTUDO DE SISTEMAS DE CONTROLE. Aulas: 3 e 4 SISTEMAS LINEARES E EQUAÇÕES DIFERENCIAIS (ED) CMC-- - INTRODUÇÃO AO ESTUDO DE SISTEMAS DE CONTROLE Auls: 3 4 SISTEMAS LINEARES E EQUAÇÕES DIFERENCIAIS (ED). Iroução Sisms, sisms físico sisms ghri Excição & rspos um sism Diâmic - Aális iâmic sus ságios:

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Sistemas Dinâmicos. Sistema massa-mola-atrito. O que é um sistema? Sistemas Lineares e Invariantes no Tempo

Sistemas Dinâmicos. Sistema massa-mola-atrito. O que é um sistema? Sistemas Lineares e Invariantes no Tempo Sisemas Diâmicos Sisemas Lieares e Ivariaes o Tempo O que é um sisema? Sisema massa-mola-ario Um sisema é um objeco ou grupo de objecos que ieragem com o mudo. Essa ieracção é represeada aravés de eradas

Leia mais

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ;

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ; TÍTULO: NÚMEROS COMPLEXOS INTRODUÇÃO: Os números complexos form desenvolvidos pelo mtemático K Guss, prtir dos estudos d trnsformção de Lplce, com o único ojetivo de solucionr prolems em circuitos elétricos

Leia mais

Métodos de decomposição LU

Métodos de decomposição LU Métodos de decomposição LU A decomposição LU é ds técnics mis sds pr resover sistems de eqções gébrics. Vmos bordr dois tipos de decomposição LU: por eiminção de Gss e peo método de Crot.. Eiminção de

Leia mais

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias J.L. de Medeiros & Oféli Q.F. rújo DISCILI Métodos Mtemáticos plicdos rocessos Químicos e Bioquímicos Cpítulo III : Equções Difereciis Ordiáris José Luiz de Medeiros e Oféli Q.F. rújo Egehri Químic FRJ

Leia mais

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781

Programa de engenharia biomédica. Princípios de instrumentação biomédica cob 781 Programa de engenharia biomédica Princípios de instrumentação biomédica cob 781 5 Circuitos de primeira ordem 5.1 Circuito linear invariante de primeira ordem resposta a excitação zero 5.1.1 O circuito

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

Decreto-Lei n.º 74/2004, de 26 de março. Decreto-Lei n.º 74/2004, de 26 de março

Decreto-Lei n.º 74/2004, de 26 de março. Decreto-Lei n.º 74/2004, de 26 de março EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de março Decreto-Lei n.º 74/2004, de 26 de março Prova Escrita de Física e Química A Prova Escrita

Leia mais

Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the

Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the -4-6 -8 - - -4-6 -8 Frequecy khz Hammig kaiser Chebyshev Siais e Sisemas Power Specral Desiy Ev B F CS CS B F CS Groud Revolue Body Revolue Body Power/frequecy db/hz Sie Wave Joi Acuaor Joi Sesor Revolue

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

onde a notação "x 3" indica x tende a 3 e "lim" significa o limite de. Generalizando, se f é uma função e a é um número, entende-se a notação

onde a notação x 3 indica x tende a 3 e lim significa o limite de. Generalizando, se f é uma função e a é um número, entende-se a notação CAPÍTULO - LIMITE E CONTINUIDADE.- Noção Iiiv A idéi de ie é ácil de ser cpd iiivmee. Por eemplo, imgie m plc meálic qdrd qe se epde iormemee porqe esá sedo qecid. Se é o comprimeo do ldo, áre d plc é

Leia mais

5. Vibrações livres amortecidas

5. Vibrações livres amortecidas Sebeta de Disciplia DCR, Zzaa Dimitrovová, DEC/FCT/NL, 6 5. Vibrações livres amortecidas Em qalqer movimeto vibratório há perdas de eergia, casadas pricipalmete pelas orças de atrito itero o extero, chamadas

Leia mais

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet VETORES Cristinegedesprobr/cefet Espço R 3 Exercício: Sej P m prlelepípedo com fces prlels os plnos coordendos Sbendo qe A = () e B = (345) são dois dos ses értices determine os otros értices 3 Distânci

Leia mais

Método das Características na Solução de Problemas de Propogação de Ondas de Amplitude Finita

Método das Características na Solução de Problemas de Propogação de Ondas de Amplitude Finita Método ds rcterístics n Solção de Problems de Propogção de Onds de mplitde Finit Estner lro Romão, Liz Felipe Mendes de Mor Fcldde de Engenri Mecânic, Depto de Térmic e Flidos, UNIMP 383-97, mpins, SP

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtmento de ngenhri létric Aul 6. Máquins íncrons Prof. João Américo ilel Máquins íncrons Crcterístics vzio e de curto-circuito Curv d tensão terminl d rmdur vzio em função d excitção de cmpo. Crctéristic

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

MÓDULO 2 MATRIZ DA PROVA

MÓDULO 2 MATRIZ DA PROVA ESCOLA SECUNDÁRIA FERREIRA DIAS AGUALVA - SINTRA FÍSICA E QUÍMICA A (10º ANO) Programa iniciado 2015/2016 TIPO DE PROVA: ESCRITA DURAÇÃO: 90 minutos Cursos Científico - Humanísticos de Ciências e Tecnologias

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Utilize apenas caneta ou esferográfica, de tinta azul ou preta.

Utilize apenas caneta ou esferográfica, de tinta azul ou preta. Teste Itermédio Mtemátic A Versão Drção do Teste: 90 mitos 30.04.04.º Ao de Escolridde Idiqe de form legível versão do teste. Utilize pes cet o esferográfic, de tit zl o pret. É permitido o so de mteril

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016 aculdade de Egeharia Aálise Maemáica 2 MEEC 25/26 ucioameo aculdade de Egeharia Teórico-práicas exposição e discussão da maéria resolução de exercícios Trabalho exra-aula resolução dos exercícios proposos

Leia mais

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin

Partícula na Caixa. Química Quântica Prof a. Dr a. Carla Dalmolin Partícula na Caixa Química Quântica Prof a. Dr a. Carla Dalmolin Caixa unidimensional Caixa tridimensional Degenerescência Partícula no anel (mov. de rotação) Partícula na Caixa Partícula numa caixa unidimensional

Leia mais

Capítulo 1 ( ) ( ) 1. Iniciação à lógica bivalente { } ( ) ( ) { } ( ) Pág { } { }

Capítulo 1 ( ) ( ) 1. Iniciação à lógica bivalente { } ( ) ( ) { } ( ) Pág { } { } Cítlo Iicição à lógic bivlete 4 5 6 4 + 6,desigção 4 + 6 6,roosição 8,desigção 8 >,roosição { },,5,desigção { } ˇ,,5,roosição Pág 9 8 8 84 { } { } { } { },, É fls,, É verddeir 6 É verddeir 6 É fls Not:

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM SEPARÁVEIS, HOMOGÊNEAS, EXATAS, FATORES

Leia mais

121,8 127,6 126,9 131,3. Sb Te I Xe 27,0 28,1 31,0 32,1 35,5 39,9 69,7 72,6 74,9 79,0 79,9 83, Ga Ge As Se Br Kr. In Sn 114,8 118,7.

121,8 127,6 126,9 131,3. Sb Te I Xe 27,0 28,1 31,0 32,1 35,5 39,9 69,7 72,6 74,9 79,0 79,9 83, Ga Ge As Se Br Kr. In Sn 114,8 118,7. PRVA DE QUÍMICA º 2º 3º 4º 5º 6º 7º TABELA PERIÓDICA DS ELEMENTS (IA),0 3 Li 6,9 Na 23,0 9 K 39, 2 (IIA) 4 Be 9,0 2 Mg 24,3 3 (III B) 4 5 6 7 8 9 0 2 20 2 22 23 24 25 26 27 28 29 30 Ca Sc Ti V Cr Mn Fe

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA

TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO DOS ESTADOS E FUNÇÃO DE TRANSFERÊNCIA Edrdo Loo Lo Crl TRANSFORMAÇÃO ENTRE AS FORMAS ESPAÇO OS ESTAOS E FUNÇÃO E TRANSFERÊNCIA. Moição e eeidde Eie iee d for de repreer diâi de ie: Epço do Edo SS; Fção de Trferêi TF. O o d d for de repreer

Leia mais

Operadores diferenciais em coordenadas curvilíneas ortogonais

Operadores diferenciais em coordenadas curvilíneas ortogonais 1 Operadores difereciais em coordeadas curvilíeas ortogoais Qualquer poto P do espaço R pode ser descrito de forma uívoca por um sistema de coordeadas q,..., 1 q. Esse poto está a extremidade do respectivo

Leia mais

PVP PEÇAS PARA PEDALEIROS ESTRADA

PVP PEÇAS PARA PEDALEIROS ESTRADA 1/10 PEÇAS PARA PEDALEIROS ESTRADA CC-R002 Parafuso fix. roda pedaleira 4,90 CC-R005 Parafuso fix. roda pedaleira 6,60 CC-R034 Roda pedaleira 34T 55,20 CC-R039 Roda pedaleira 39T 55,40 CC-R050 Roda pedaleira

Leia mais

A apresentação foi elaborada com base na bibliografia básica do curso.

A apresentação foi elaborada com base na bibliografia básica do curso. Informações A apresentação foi elaborada com base na bibliografia básica do curso. BEER, F. P; JOHNSTON JR, E. R. Mecânica Vetorial para Engenheiros: Dinâmica. São Paulo: TECMED. 010 HIBBELER, R. C.. Mecânica

Leia mais

FEP Física para Engenharia II. Prova P1 - Gabarito

FEP Física para Engenharia II. Prova P1 - Gabarito FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

Matrizes - Teoria ...

Matrizes - Teoria ... Mrzs - Tor Mrz Rgulr Mrz Rgulr d ord por é u qudro fordo por los dsposos lhs olus ou s Rprsros u rz d lhs olus por Os los d rz srão dfdos por u lr o dos íds o prro íd d lh o sgudo íd olu à qu pr o lo Iguldd

Leia mais

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1

MAC122 Princípios de Desenvolvimento de Algoritmos EP no. 1 MAC122 Pricípios de Desevolvimeto de Algoritmos EP o. 1 Prof. Dr. Paulo Mirada 1 Istituto de Matemática e Estatística (IME) Uiversidade de São Paulo (USP) 1. Estrutura dos arquivos de images o formato

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

Dinâmica de uma partícula material de massa constante

Dinâmica de uma partícula material de massa constante ísc Gel Dâc de u ícul el de ss cose Dâc de u ícul el de ss cose Iodução Dâc É o esudo d elção esee ee o oeo de u coo e s cuss desse oeo. Ese oeo é o esuldo d ecção co ouos coos que o cec. s ecções são

Leia mais

Cálculo de Volumes por Cascas Cilíndricas. Cálculo de Volumes por Cascas Cilíndricas

Cálculo de Volumes por Cascas Cilíndricas. Cálculo de Volumes por Cascas Cilíndricas UNIERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Cálculo de olumes por

Leia mais

Momento Linear, Impulso e Colisões (Cap. 8)

Momento Linear, Impulso e Colisões (Cap. 8) Mometo Liear, Impulso e Colisões (Cap. 8) Defiição de mometo liear d v F =m m costate: d m v F= Mometo liear = quatidade de movimeto Mometo liear: =m v p lei de Newto: a m v dp F= A força é igual à taxa

Leia mais