Matemática (e geometria) para CG
|
|
|
- Débora Borges Back
- 8 Há anos
- Visualizações:
Transcrição
1 Licencitur em Engenhri Informátic e de Computdores Computção Gráfic Mtemátic (e geometri) pr CG 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL Edwrd Angel, Cp. 3
2 Questão 1, exme de 06/06/11 [1.0v] Explique, no contexto d computção gráfic interctiv, o que é um frme e como est se relcion com o desempenho de um sistem gráfico. Frme: imgem estátic gerd no finl do pipeline contêm vist ser representd no dispositivo de visulizção Animção:? crid trvés d presentção em sequênci rápid deste frmes. tão mis fluid qunto mis frmes se conseguirem presentr por unidde de tempo. Pr se medir o desempenho de um sistem gráfico us-se o número de frmes por segundo (fps) Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
3 Licencitur em Engenhri Informátic e de Computdores Computção Gráfic Mtemátic (e geometri) pr CG 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL Edwrd Angel, Cp. 3
4 Nots As definições mtemátics qui presentds são descrits n perspectiv de CG Vmos evitr definições genérics demsido formis Trlhmos no espço tridimensionl (3D) Ms miori do que qui presentmos é válido pr espços n-dmensionis 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
5 LEIC CG Mtemátic pr CG Esclres, Pontos e Vectores 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
6 Ojectos Geométricos Linhs Polígonos Poliedros 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
7 Ojectos Geométricos Ojectoscomplexos podem ser definidos prtir de um conjunto limitdo de ojectos mis simples 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
8 Ojectos geométricos Ojectos e sus relções podem ser descritos usndo Esclres Pontos p = [ p p p ] T x y z Vectores T = [ d d d ] T x y z 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
9 Esclres Considermos esclres os números reis Operções sore esclres: Adição Multiplicção Proprieddes dests operções Comuttividde Associtividde Distriutividde Identidde Esclr D dição (0) D multiplicção (1) Inversos Esclr D dição (-α) D multiplicção (α -1 ), Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
10 Vectores no Espço Euclideno Espço Euclideno contém esclres e vectores Vectores têm s seguintes operções (neste espço) Som de vectores Multiplicção de esclr por vector Produto interno Produto externo Não se pode somr um esclr um vector! Não se multiplicm vectores (só mtrizes) 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
11 Vectores Conhecimentos Básicos Vector descreve um comprimento e um direcção 3 = = 2 2 [ 3 ] T Não esquecer: Vector unitário é um vector de comprimento Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
12 Vectores Conhecimentos Básicos = 1 1 Pergunt: Vector é unitário? 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
13 Vectores Conhecimentos Básicos = x y r 2 2 Comprimento = do + vector? x y 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
14 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL Vectores Conhecimentos Básicos = = + z z y y x x z y x z y x
15 Vectores Conhecimentos Básicos k k esclr k x y z = k k k x y z 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
16 Vectores Conhecimentos Básicos k esclr k k< 0 k x y z = k k k x y z 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
17 Produto Interno (dot product) φ = cosφ Ou melhor: = x x + y y 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
18 Produto externo 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
19 Produto Externo 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL = x y y x z x x z y z z y sinφ =
20 Produto Externo 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL = z y x z y x z y x det sinφ =
21 Produto Externo Regr d mão direit 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
22 Produto Externo Regr d mão esquerd 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
23 Atenção! É produto interno de dois vectores! Não é multiplicção de vectores! É produto externo de dois vectores! Não é multiplicção de vectores! Se d for esclr, isto não existe! 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
24 LEIC CG Mtemátic pr CG Espço Crtesino 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
25 Bse Ortonormd Mnipulção de sistems de coordends é um ds trefs se de computção gráfic Sistems de coordends são ses ortonormds Bse ortonormd em 3D Formd por três vectores unitários ortogonis entre si u = v = w = 1 u v = v w = u w = 0 w = u v 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
26 Espço Crtesino 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
27 Bse Ortonormd Crtesin 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
28 Bse Ortonormd Crtesin Existe um origem implícit A loclizção O e os vectores x, y e z não são explicitmente representdos 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
29 Plno Superfície idimensionl plnr Definido por Três pontos Dois vectores Dois vectores no plno Um vector no plno e outro norml o plno Um ponto e um vector norml 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
30 Polígono Figur geométric definid trvés de list de vértices ligdos entre si por segmentos de linh 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
31 Polígonos Regulres Polígonos convexos com ldos iguis 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
32 Sólido Definição forml Figur tridimensionl que represent um porção do espço limitd pels sus superfícies Kern nd Blnd, Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
33 Sólidos Regulres Figurs geométrics: fces são definids por polígonos regulres idênticos mesmo número de fces convergir em cd vértice Tetrtedro Cuo Octedro Dodecedro 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
34 LEIC CG Enqudrmento e Conceitos Fundmentis Trigonometri 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
35 Trigonometri Conhecimentos ásicos 180 grus = rdinos π π rdinos = grus 180 φ 2π φ 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
36 Trigonometri Conhecimentos ásicos θ = α + β α = θ β β = θ α θ β α 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
37 Trigonometri Conhecimentos ásicos o h φ sin φ =? o cos φ = tn φ =?? o h h sin cos ( φ ) =? sin( ( φ ) =? cos( φ ) φ ) 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
38 LEIC CG Enqudrmento e Conceitos Fundmentis Mtrizes 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
39 Mtrizes Operções mtrizes intensmente usds em CG Revejm com tenção est mtéri (Álger Liner) Prtiquem multiplicção de mtrizes 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
40 Multiplicção de Mtrizes!!!!!!!!!!!! 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
41 Multiplicção de Mtrizes Não é comuttiv " É ssocitiv # # # 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL
42 Multiplicção de Mtrizes 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL = = O M M L K O M M L K O M M L K 2,2 2,1 1,2 1,1 2,2 2,1 1,2 1,1 2,2 2,1 1,2 1,1 c c c c AB = = n r j r r i j i c 1,,,
43 Multiplicção de Mtrizes 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL? =
44 Multiplicção de Mtrizes 2014 Corpo docente de Computção Gráfic / CG&M / DEI / IST / UTL? =
Álgebra Linear e Geometria Analítica. Espaços Vectoriais
Álgebr Liner e Geometri Anlític Espços Vectoriis O que é preciso pr ter um espço vectoril? Um conjunto não vzio V Um operção de dição definid nesse conjunto Um produto de um número rel por um elemento
Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA
Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics
Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo: Reta vertical é uma reta paralela ao eixo das ordenadas, é do tipo:
mta0 geometri nlític Referencil crtesino no plno Referencil Oxy o.n. (ortonormdo) é um referencil no plno em que os eixos são perpendiculres (referencil ortogonl) s uniddes de comprimento em cd um dos
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON
MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON [email protected] MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos
ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS
EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre
Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos
Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos
xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0
EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos
QUESTÃO 01. QUESTÃO 02.
PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções
Capítulo 4. Matrizes e Sistemas de Equações Lineares
------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,
Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;
Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I
scol Secundári com º ciclo. inis 0º no de Mtemátic TM MTRI N PLN N SPÇ I s questões 5 são de escolh múltipl TP nº 5 entregr no di 0 ª prte Pr cd um dels são indicds qutro lterntivs, ds quis só um está
CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.
CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe
1 INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF(2 m )
INTRODUÇÃO À ÁLGEBRA EM CAMPOS DE GALOIS GF m.. INTRODUÇÃO O propósito deste texto é presentr conceitução básic d álgebr em Cmpos de Glois. A bordgem usd pr presentção deste ssunto é descritiv e com vários
3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença
Exponencição e Logrítmos - PRO HELO /06/ ) Pr que vlores reis se verific sentenç x x x x x4 < 4 : ) { x / x } [, ] ) { x / x } ], [ ) Se, e c são reis positivos, então simplificndo ) ) 4 log c log c..
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Mtemátic Versão Teste Intermédio Mtemátic Versão Durção do Teste: 90 minutos 09.0.0.º no de Escolridde Decreto-Lei n.º 74/004, de 6 de mrço N su folh de resposts, indique de form legível
Profª Cristiane Guedes VETORES. Cristianeguedes.pro.br/cefet
VETORES Cristinegedesprobr/cefet Espço R 3 Exercício: Sej P m prlelepípedo com fces prlels os plnos coordendos Sbendo qe A = () e B = (345) são dois dos ses értices determine os otros értices 3 Distânci
Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo
Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos
Exercícios. setor Aula 25
setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7
Modelos de Computação -Folha de trabalho n. 2
Modelos de Computção -Folh de trlho n. 2 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin
8/6/2007. Dados os conjuntos: A={0,1} e B={a,b,c},
8/6/7 Orgnizção Aul elções clássics e relções Fuzz Prof. Dr. Alendre d ilv imões Produto Crtesino elções Crisp Produto crtesino Forç d relção Crdinlidde Operções em relções Crisp Proprieddes de relções
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prov Escrit de MATEMÁTICA A - 1o Ano 017-1 Fse Propost de resolução GRUP I 1. s números nturis de qutro lgrismos que se podem formr com os lgrismos de 1 9 e que são múltiplos de, são constituídos por 3
Simulado EFOMM - Matemática
Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,
a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =
List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (
Coordenadas cartesianas Triedro direto
Coordends crtesins Triedro direto Coordends crtesins Loclizção de pontos (P e Q) Coordends crtesins Elemento de volume diferencil Coordends crtesins Componentes,, z do vetor r Coordends crtesins Vetores
Conjuntos Numéricos. Conjuntos Numéricos
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA.. Proprieddes dos números
Aula 5 Plano de Argand-Gauss
Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto
IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:
IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três
Vectores e Geometria Analítica
Capítulo 1 Vectores e Geometria Analítica 1.1 Vectores em R 2 e R 3. Exercício 1.1.1 Determine um vector unitário que tenha a mesma direcção e sentido que o vector u e outro que que tenha sentido contrário
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e
Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES
Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis
AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles
AULA - GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Rets prlels cortds por um trnsversl São queles que possuem dois ldos iguis. Ligndo o vértice A o ponto médio d bse BC, germos dois triângulos
Conhecendo-se os valores aproximados dos logaritmos decimais, log = 1,114 e log = 1,176, então, o valor de log 10
MATEMÁTICA Considere os conjuntos A e B: A = { 0, 0, 0, 0,0, 0, 0} e B = {00,00,00,00,500,600,700,800,900,000}, e função f : A B, f(x) = x + 00. O conjunto imgem de f é, ) { 0, 0, 0,0,0,0,0}. ) {00,00,500,000}.
Progressões Aritméticas
Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo
Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1
Pltão Coment Prov Específic de Mtemátic UEM julho de Grito QUESTÃO: GRITO: ) Corret q 6 6 6 6 6. q 6 6 6 6 8 ) Corret q n com *. n n, q > e ) Incorret. n. n ( ). n S n n n. n n. n 6 8) Corret Como < então.
Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo
Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic [email protected] 18 de mrço de 014
FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x
FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)
Seu pé direito nas melhores faculdades
MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo
Material envolvendo estudo de matrizes e determinantes
E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este
Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1
Mrcus Vinícius Dionísio d Silv (Angr dos Reis) 9ª série Grupo 1 Tutor: Emílio Ruem Btist Júnior 1. Introdução: Este plno de ul tem o ojetivo gerl de mostrr os lunos um processo geométrico pr resolução
AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática
1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos
1. Prove a chamada identidade de Lagrange. u 1,u 3 u 2,u 3. u 1 u 2,u 3 u 4 = u 1,u 4 u 2,u 4. onde u 1,u 2,u 3 e u 4 são vetores em R 3.
Universidde Federl de Uberlândi Fculdde de Mtemátic Disciplin : Geometri Diferencil Assunto: Cálculo no Espço Euclidino e Curvs Diferenciáveis Prof. Sto 1 List de exercícios 1. Prove chmd identidde de
SERVIÇO PÚBLICO FEDERAL Ministério da Educação
SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:
IFRN Campus Natal/Central. Prof. Tibério Alves, D. Sc. FIC Métodos matemáticos para físicos e engenheiros - Aula 02.
IFRN Cmpus Ntl/Centrl Prof. Tibério Alves, D. Sc. FIC Métodos mtemáticos pr físicos e engenheiros - Aul 0 Séries de Fourier 3 de gosto de 08 Resumo Neste ul, vmos estudr o conceito de conjunto completo
Um corpo triangular, como mostrado na figura, sofre um deslocamento definido por:
Mecânic dos Sólidos I List de Exercícios I Exercício Um corpo tringulr, como mostrdo n figur, sofre um deslocmento definido por: u = y 5 e y () Configurção Deformd. A B C C Pr = cm e =. cm, pede -se: (b)
As fórmulas aditivas e as leis do seno e do cosseno
ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde
Recordando produtos notáveis
Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único
4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.
EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.
Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4
Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e
Lista 5: Geometria Analítica
List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no
Bhaskara e sua turma Cícero Thiago B. Magalh~aes
1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como
1 Assinale a alternativa verdadeira: a) < <
MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )
GABARITO IME DISCURSIVAS 2017/2018 MATEMÁTICA
GABARITO IME DISCURSIVAS 07/08 MATEMÁTICA DISCURSIVAS /0/7 Questão 0 Sej o número complexo z que stisfz relção ( z i) 07 ( + i)( iz ) 07. Determine z, sbendo- -se que z. Gbrito: ( z i) ( + i) ( i z ) 07
Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução
(9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se
5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:
MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics
Unidade 8 Geometria: circunferência
Sugestões de tividdes Unidde 8 Geometri: circunferênci 8 MTMÁTI Mtemátic. s dus circunferêncis n figur seguir são tngentes externmente. 3. N figur estão representdos um ângulo inscrito com vértice em P
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN-2005) Prova : Amarela MATEMÁTICA
MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (PROCESSO SELETIVO DE ADMISSÃO AO COLÉGIO NAVAL / PSA CN005) Prov : Amrel MATEMÁTICA 1) Num triângulo ABC, AB = AC, o ponto D interno o ldo AC é determindo
Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.
Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde
Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME
Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,
Teoria de Linguagens 2 o semestre de 2014 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 23/10.
Pós-Grdução em Ciênci d Computção DCC/ICEx/UFMG Teori de Lingugens 2 o semestre de 2014 Professor: Newton José Vieir Primeir List de Exercícios Entreg: té 16:40h de 23/10. Oservções: O uso do softwre JFLAP,
Matemática. Resolução das atividades complementares. M13 Progressões Geométricas
Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto
3 Teoria dos Conjuntos Fuzzy
0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy
