Circunferência e círculo
|
|
|
- Cármen Fidalgo Angelim
- 9 Há anos
- Visualizações:
Transcrição
1 Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg ( ), na lemanha, po volta de 1450, que pemitiu a disseminação dos conhecimentos em maio escala, po intemédio dos livos. Outas invenções, tais como a bússola, que facilitou as Gande Navegações, e a máquina a vapo, que pemitiu a incementação das feovias, possibilitaam uma consideável evolução do conhecimento humano.
2 Cicunfeência Se O é um ponto do plano e um númeo eal positivo, chama-se cicunfeência de cento O e aio o luga geomético dos pontos do plano que estão à distância do ponto O. P O C E D
3 Elementos P O O Q Coda PQ C= 2π Diâmeto D = 2
4 Elementos co M N M co N
5 cos e ângulos aco completo aco nulo
6 cos e ângulos O co de meia volta (Semicicunfeência)
7 Cículo O conjunto constituído po uma cicunfeência e pelos pontos inteioes a ela é chamado cículo ou disco. O
8 Áea do Cículo Áea: é dada po: S = πr 2 => R 2πR S = 2 πr.r => S = πr 2 2
9 Posições elativas de ponto e cicunfeências P O ponto é inteno à cicunfeência d O < O O ponto petence à cicunfeência d O = O ponto P é exteio à cicunfeência d OP >
10 Posições elativas de eta e cicunfeências O é tangente à cicunfeência d OP = P e a cicunfeência têm um único ponto comum.
11 Posições elativas de eta e cicunfeências s O P s é secante à cicunfeência d OP < s e a cicunfeência têm dois pontos comuns.
12 Posições elativas de eta e cicunfeências O t é exteio à cicunfeência d OP > P t e a cicunfeência não têm ponto comum. t
13 Popiedades da eta tangente à cicunfeência P O Uma eta é tangente a uma cicunfeência se, e somente se, ela é pependicula ao aio no ponto de tangência. Po um ponto de uma cicunfeência, podese taça uma única tangente a essa cicunfeência.
14 Popiedade da eta secante à cicunfeência s O Uma eta secante que passa pelo cento da cicunfeência é pependicula a uma coda se, e somente se, divide essa coda ao meio. M s po O M = M
15 Consequência C Um diâmeto pependicula a uma coda divide essa coda ao meio. O M D CD po O M = M
16 Posições elativas de duas cicunfeências C 1 C 2 R C 1 é extena C 2 Todos os pontos de C 1 são extenos a C 2 d > + R
17 Posições elativas de duas cicunfeências C 1 C 2 P R C 1 e C 2 são tangentes extenamente em P C 1 e C 2 têm um só ponto comum e não têm ponto inteio comum d = + R
18 Posições elativas de duas cicunfeências C 1 C 2 R C 1 e C 2 são secantes Têm dois pontos comuns R < d < R +
19 Posições elativas de duas cicunfeências C 1 C 2 P Têm um só ponto comum e os demais pontos de C 1 são inteioes a C 2 C 1 e C 2 são tangentes intenamente em P d = R
20 Posições elativas de duas cicunfeências C 1 C 2 C 1 é intena a C 2 Todos os pontos de C 1 são inteioes a C 2 0 d < R
21 Ângulos na cicunfeência
22 Ângulo cental Chama-se de ângulo cental de uma cicunfeência todo ângulo que tem como vétice o seu cento. C D β O γ α cada ângulo cental coesponde um aco, inteseção do ângulo com a cicunfeência. E F
23 Ângulo cental Um ângulo cental tem a mesma medida do aco coespondente. O α Ô é ângulo cental m(ô) = m() = α
24 Unidade de ângulo e aco Repesentação Medida em gaus co completo co de meia volta co de ¼ de volta 360º 180º 90º co nulo 0º
25 Ângulo Inscito Chama-se ângulo em uma cicunfeência todo ângulo cujo vétice é um de seus pontos e cujos lados são secantes a ele. P é ângulo inscito P α O m(p) = α = 2
26 Ângulo Inscito - Popiedade Ângulos inscitos em um mesmo aco são conguentes. P Q R Os ângulos inscitos de vétices P, Q e R são conguentes m(p) = m(q) = m(r) = 2
27 Ângulo Inscito - Popiedade Todo ângulo inscito numa semicicunfeência é eto. M N diâmeto da cicunfeência, os ângulos de vétices M, N e P são etos, poque o aco mede 180 o. P
28 Ângulo Inscito - Popiedade Todo tiangulo inscito numa semicicunfeência e etângulo. M Como conseqüência a mediana elativa a hipotenusa tem medida igual a metade da hipotenusa.
29 Conexão
30 Paa você faze p. 45 áea cicula da paça é de S =πr² = 3,14. 35² = 3846,5 m². Como a cada m deveiam esta quato pessoas, podemos multiplica a áea cicula da paça po 4 paa obte uma estimativa da quantidade de pessoas pesentes sobe a áea cicula: 3846,5. 4 = Logo, apoximadamente pessoas estaiam pesentes à apesentação e sobe a áea cicula.
31 Paa você faze p. 46 Em um cículo de cento O e aio medindo 4 cm, considee um seto cicula de 30º e um tiângulo O: set π set set 2 Áea do seto cicula(s áea ângulo 4 360º S 30º 16π 360º = S 30º 4π 2 S = cm 3 seg) Áeado tiângulo(s S S S ti ti ti ti 1 = OOsen.. ( Ô) 2 1 = 4.4. sen(30º) 2 2 = 4cm ) Áea do segmento cicula(s ) S = Sset Sti 4π 4π 12 S = 4 S = seg seg seg seg seg seg π 12 4( π 3) S = S = S = ( π 3) cm 3
32 Paa você faze p. 49 α α = 2β β = 2 α 160º β = 5θ = º 5θ = 80º θ = 5 θ = 16º
33 Paa você faze p. 49 Paa cada dois pontos escolhidos como vétices do tiângulo, que são também extemidades de um mesmo diâmeto, existem quato opções de escolha. Po exemplo, se escolhemos os pontos M e N como dois dos tês vétices do tiângulo etângulo (MN seá a hipotenusa), existem quato opções paa escolhe o teceio vétice:,, C ou D. Mas podemos escolhe a hipotenusa de tês maneias difeentes (, CD ou MN). Se paa cada escolha da hipotenusa existem possibilidades, podemos escolhe o teceio vétice de quato maneias difeentes. Então existem 3 x 4 = 12 tiângulos etângulos que podem se constuídos com vétices nos pontos destacados.
Aula 31 Área de Superfícies - parte II
MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.
UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1
UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam
AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS
L M NNI MINTL a U/USa epatamento de ngenhaia ivil da USa xpessão áfica paa ngenhaia T4 SN MÉTI SQUÊNI NSTUÇÕS MÉTIS ste texto teóico apesenta uma séie de constuções geométicas () que são consideadas básicas.
Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.
6 ENSINO FUNDMENTL 6- º ano Matemática tividades complementaes Este mateial é um complemento da oba Matemática 6 Paa Vive Juntos. Repodução pemitida somente paa uso escola. Venda poibida. Samuel Casal
suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur
Eta Geometia Plana Pof Eweton Paiva 01) (UFF 007) fim de elaboa um elemento de ua oba de ate, um eculto ua um pedaço de aame e contói uma cicunfeência, confome mota a figua P b) Pove que med(» ) med( E»
Desenho Geométrico 9º ano Prof. Jorge Marcelo. Lugares Geométricos
Desenho Geoético 9º ano of. Joge Macelo Lugaes Geoéticos Luga Geoético é o conjunto de pontos, de u eso plano, que possue a esa popiedade. Estudaeos aqui aqueles que são consideados os cindo pincipais
GEOMETRIA. Noções básicas de Geometria que deves reter:
Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou
). c) Por três pontos não colineares passam três retas não simultaneamente (P 3
Resolução das atividades complementaes Matemática M7 Geometia p. 6 Sejam tês pontos distintos, e não colineaes no espaço. a) Quantas etas passam po? infinitas b) Quantas etas passam po e po? uma única
GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO
GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ [email protected], [email protected], [email protected] INTRDUÇÃ: CÍRCULS,
COLÉGIO MILITAR BELO HORIZONTE
COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 3 DE OUTUBRO DE 004 DURAÇÃO: 10 MINUTOS CONCURSO DE ADMISSÃO 004 / 005 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO:
Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios
Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:
. B(x 2, y 2 ). A(x 1, y 1 )
Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
1.10 Sistemas de coordenadas cartesianas
7 0 Sistemas de coordenadas cartesianas Definição : Um sistema de coordenadas cartesianas no espaço é um v v conjunto formado por um ponto e uma base { } v3 Indicamos um sistema de coordenadas cartesianas
CPV O cursinho que mais aprova na GV
RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais
MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre
1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades
PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS
RAÍZES RECÍPROCAS Pof. Macelo Renato Equação Polinomial Recípoca, ou simplesmente "Equação ecípoca", é aquela que, se possui "x " como aiz, então seu ecípoco ("/x ") também seá aiz da equação. Exemplo:
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ
ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A
Áreas parte 2. Rodrigo Lucio Isabelle Araújo
Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que
19 - Potencial Elétrico
PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson [email protected] Última atualização:
TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...
1 TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO CIRCUNFERÊNCIA E DISCO Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 2 V - CIRCUNFERÊNCIA E DISCO V.1) Circunferência e Disco Elementos : a) Circunferência
Questão 1. Questão 2. Questão 3. alternativa C. alternativa E
Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa
singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)
1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:
Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio
Mateial Teóico - Cículo Tigonomético Radiano, Cículo Tigonomético e Conguência de acos Pimeio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto de setembo de
Capítulo 7. 1. Bissetrizes de duas retas concorrentes. Proposição 1
Capítulo 7 Na aula anterior definimos o produto interno entre dois vetores e vimos como determinar a equação de uma reta no plano de diversas formas. Nesta aula, vamos determinar as bissetrizes de duas
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE ENGENHARIA EXPRESSÃO GRÁFICA BÁSICA - ENG 1070
PONTIFÍI UNIVERSIDDE TÓLI DE GOIÁS DEPRTMENTO DE ENGENHRI EXPRESSÃO GRÁFI ÁSI - ENG 1070 I - Elementos Fundamentais da Geometia 1- Ponto: O ponto geomético é um ente ideal, isto é, só existe na nossa imaginação.
f(x) = Alternativa E f(-1) g(-2) = 6
Pincipis notções Z - o conjunto de todos os númeos inteios R - o conjunto de todos os númeos eis C - o conjunto de todos os númeos compleos [, b] = { R: b} ] -, b] = { R: b} [, b[ = { R: < b} ] -, b[ =
NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B
R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C
/(,'(%,276$9$57()/8;2 0$*1e7,&2
67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés
Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica
Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte
CIRCUNFERÊNCIA. Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência. O AB s CD t T s AB 2
CIRCUNFERÊNCIA ELEMENTOS DA CIRCUNFERÊNCIA N t T C A B D X s p Centro Diâmetro Secante Corda Tangente Ponto de tangência Normal Raio Distância do ponto P à circunferência O AB s CD t T s AB 2 PX / Algumas
Unidade 10 Trigonometria: Conceitos Básicos. Arcos e ângulos Circunferência trigonométrica
Unidade 10 Trigonometria: Conceitos Básicos Arcos e ângulos Circunferência trigonométrica Arcos e Ângulos Quando em uma corrida de motocicleta um piloto faz uma curva, geralmente, o traçado descrito pela
Técnico de Nível Médio Subsequente em Geologia. Aula 2. Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega
Técnico de Nível Médio Subsequente em Geologia 1 ula 2 Trigonometria no Triângulo Retângulo Professor Luciano Nóbrega 2 ELEMENTOS DE UM TRIÂNGULO RETÂNGULO a b ß c Lembre-se: soma das medidas dos ângulos
17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y.
Um navio dipõe de eeva uficiente paa alimenta homen duante dia, ma ecebe obevivente de um naufágio eeva de alimento daão paa no máimo quanto dia? LIST 0 XRÍIOS GOMTRI PLN PROF ROGRINHO º nino Médio (Razão
O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico
O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa
20 TANGÊNCIA E CONCORDÂNCIA 20.1 PROPRIEDADES DE TANGÊNCIA
144 20 TNGÊNI E ONORDÂNI 20.1 PROPRIEDDES DE TNGÊNI Definições: 1) tangente a uma curva é uma reta que tem um só ponto em comum com esta curva. 2) Duas curvas são tangentes num ponto dado T, quando as
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga Q distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.
GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua
3ª Aula do cap. 06 ATRITO E MOVIMENTO CIRCULAR.
3ª Aula do cap. 06 ATRITO E MOVIMENTO CIRCULAR. Moimento cicula e unifome Este moimento tem elocidade com módulo constante poem sua dieção muda continuamente. Exemplos: Moimento de satélites atificiais.
du mn qn( E u B) r dt + r
Aula 7 Nesta aula, continuaemos a discuti o caáte de fluido do plasma, analisando a equação de fluido que ege o movimento do plasma como fluido. 3.2 Equação de Fluido paa o Plasma Vimos no capítulo 2 que
Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais
Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:
Projeto Rumo ao ITA Exercícios estilo IME
EXERÍIOS DE GEOMETRI PLN REVISÃO 1991 PROF PULO ROERTO 01 (IME-64) Uma corda corta o diâmetro de um círculo segundo um ângulo de 45º Demonstrar que a soma do quadrado dos segmentos aditivos m e n, com
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ
INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona
Módulo Elementos Básicos de Geometria - Parte 3. Circunferência. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte Circunferência. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte. Circunferência. 1 Exercícios Introdutórios Exercício
O perímetro da circunferência
Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos
para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.
MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas
Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2
Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:
Ensino Médio. Nota. Aluno(a): Nº. Série: 3ª Turma: Data: / /2018. Lista 3 Potencial Elétrico
Ensino Médio Pofesso: Vilson Mendes Disciplina: Física I Aluno(a): Nº. Séie: 3ª Tuma: Data: / /2018 Lista 3 Potencial Elético N2 Nota 1. Em um campo elético, há um ponto P cujo potencial elético vale VP
Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.
8 ENSINO FUNMENTL 8-º ano Matemática tividade complementae Ete mateial é um complemento da oba Matemática 8 Paa Vive Junto. Repodução pemitida omente paa uo ecola. Venda poibida. Samuel aal apítulo 6 Ete
Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t
Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
Aula 6 Pontos Notáveis de um Triângulo
MODULO 1 - AULA 6 Aula 6 Pontos Notáveis de um Triângulo Definição: Lugar Geométrico é um conjunto de pontos que gozam de uma mesma propriedade. Uma linha ou figura é um lugar geométrico se: a) todos os
30's Volume 8 Matemática
30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,
1.2. Recorrendo a um diagrama em árvore, por exemplo, temos: 1.ª tenda 2.ª tenda P E E
Prova de Matemática do 3º ciclo do Ensino Básico Prova 927 1ª Chamada 1. 1.1. De acordo com enunciado, 50% são portugueses (P) e 50% são espanhóis (E) e italianos (I). Como os Espanhóis existem em maior
XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (13 de agosto de 2011) Nível α (6 o e 7 o anos do Ensino Fundamental) Gabaritos
XXXV OLIMPÍADA PAULISTA DE MATEMÁTICA Pova da Pimeia Fase (3 de agosto de 0) Nível α ( o e 7 o anos do Ensino Fundamental) Gabaitos www.opm.mat.b PROBLEMA a) Na sequência esnúfica, 3,, 3, o quinto temo
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
Triângulos e suas medidas Trigonometria
Resumos Matematik Triângulos e suas medidas Trigonometria Não é um manual escolar. Não dispensa a consulta de um manual escolar. Recomendamos a presença nas aulas e o aconselhamento com um professor. Setembro
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta
Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
Aula 8 Segmentos Proporcionais
MODULO 1 - UL 8 ula 8 Segmentos Proporcionais Nas aulas anteriores, aprendemos uma formação geométrica básica, através da Geometria Plana de Posição. prendemos que: 1. soma das medidas dos ângulos internos
Algumas Definições, Áreas, Perímetros e Fórmulas Especiais Polígono Figura Fórmulas Quadrado:
Geometi I (Pln) Pofesso Alessndo Monteio Algums Definições, Áes, Peímetos e Fómuls Especiis Polígono Figu Fómuls Quddo: plelogmo que possui dois ldos consecutivos conguentes e um ângulo eto. ) Áe: ) Peímeto:
18/06/2013. Professora: Sandra Tieppo UNIOESTE Cascavel
18/06/01 Professora: Sandra Tieppo UNIOESTE Cascavel 1 Superfícies geradas por uma geratriz (g) que passa por um ponto dado V (vértice) e percorre os pontos de uma linha dada d (diretriz), V d. Se a diretriz
10 FGV. Na figura, a medida x do ângulo associado é
urso de linguagem matemática Professor Renato Tião 6. Sabendo que ângulos geométricos têm medidas entre 0º e 180º, ângulos adjacentes têm um lado em comum, ângulos complementares têm a soma de suas medidas
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:
Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO
EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede
carga da esfera: Q densidade volumétrica de carga: ρ = r.
Detemine o módulo do campo elético em todo o espaço geado po uma esfea maciça caegada com uma caga distibuída com uma densidade volumética de caga dada po ρ =, onde α é uma constante ue tona a expessão
MATEMÁTICA. Comparando as duas modalidades de pagamento quanto ao custo para o cliente, é correto afirmar que
MATEMÁTICA 49 Um estacionamento para automóveis oferece duas modalidades de pagamento pelos seus serviços: a primeira, em que o cliente paga R$ 5, por dia de utilização, e a segunda, em que ele adquire
Linhas de Campo Magnético
Linha de Campo Magnético Popiedade da Linha de Campo Magnético Não há evidência expeimental de monopolo magnético (pólo iolado) Etutua magnética mai imple: dipolo magnético Linha de Campo Magnético ão
UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)
UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda
Geometria I Aula 3.3
Curso Turno Disciplina Carga Horária Licenciatura Plena em Noturno Geometria I 90h Matemática Aula Período Data Planejamento 3.1 2. 0 28/11/2006 3ª. feira Andréa Tempo Estratégia Descrição (Produção) 18:10
Problemas sobre Indução Electromagnética
Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO
Escola Secundária de Alcochete. 11.º Ano Matemática A Geometria no Plano e no Espaço II
Escola Secundária de Alcochete 11.º Ano Matemática A Geometria no Plano e no Espaço II Equações Trigonométricas O que são? São equações que envolvem o uso de funções trigonométricas. Mas... Ainda não se
PARTE IV COORDENADAS POLARES
PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta
Matemática. A probabilidade pedida é p =
a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade
PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as
Solução Comentada Prova de Matemática
18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 015-16 GABARITO DAS QUESTÕES DE MATEMÁTICA Sendo
Polos Olímpicos de Treinamento. Aula 7. Curso de Geometria - Nível 2. Ângulos na circunferência. Prof. Cícero Thiago
Polos límpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 7 Ângulos na circunferência efinição 1: ânguloinscrito relativo aumacircunferência éumânguloquetem ovértice na circunferência
Geometria: Perímetro, Área e Volume
Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos
