Problemas sobre Indução Electromagnética
|
|
|
- Vitorino Figueira Fraga
- 9 Há anos
- Visualizações:
Transcrição
1 Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7
2 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO DE FARADAY PROBLEMA RESOLVIDO 1. Uma espia condutoa cicula de aio R está assente no plano y, numa egião do espaço onde eiste um campo de indução magnética B vaiável no tempo e no espaço, B = B + y sin t uˆ, onde B e ω são ( ) ( ) ω constantes. Detemine B a) o fluo magnético Φ que atavessa a espia; b) a foça electomoti ε induida na espia; c) o sentido de ciculação da coente induida no instante t = π ( ω ). R y Resolução: a) Po definição, o fluo magnético que atavessa uma supefície S é dado po Φ = B nˆ ds S onde o veso nˆ é pependicula à supefície consideada e tem o sentido que aponta segundo o campo de indução magnética. Neste caso, a supefície S é a supefície plana limitada pela espia, nˆ = uˆ e ds = ds = ρ dρ dφ (o sistema de coodenadas cilíndicas deve se escolhido po se adapta pefeitamente à geometia do poblema). Substituindo estas epessões na definição acima, temos ( ω t) π R Φ = B sin ρ 3 πr dρ dφ = B sin ( ω t) Na obtenção deste esultado, usou-se + y = ρ (ve apêndice).
3 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 b) De acodo com a lei de indução de Faaday, sempe que o fluo magnético que atavessa um dado cicuito é não estacionáio, suge nesse cicuito uma foça electomoti ε induida a qual é dada po ε dφ = dt Utiliando o esultado obtido na alínea anteio, chega-se a ε πr B ω cos = ( ω t) c) A lei de Len afima que a coente associada com a foça electomoti induida (coente induida) tende a opo-se à vaiação de fluo que lhe deu oigem. Assim, se o fluo estive a aumenta, a coente induida oiginaá um campo de indução magnética induido com o sentido contáio ao que lhe deu oigem. Se, pelo contáio, o fluo magnético estive a diminui, a coente induida iá oigina um campo de indução magnética com o mesmo sentido do que lhe deu oigem. Obsevando a epessão do fluo magnético que atavessa a espia, veifica-se que ele vaia sinusoidalmente, o que significa que duante cetos intevalos de tempo o fluo aumenta, enquanto que paa outos intevalos diminui. Assim, o sentido da coente induida não seá constante, vaiando também sinusoidalmente à medida que o tempo passa. Na vedade, se R epesenta a esistência da espia, podemos afima que a intensidade da coente induida é = R = πr B ω cos( ω t) ( R) ε. No instante consideado, ( ) d Φ dt = πr B ω cos π = πr Bω >, o que significa que o fluo está a aumenta. Po essa aão, o fluo induido (ciado pela coente induida) deveá aponta no sentido contáio ao de B, ou seja, deveá aponta segundo û. Pela ega da mão-dieita, a coente que dá oigem a esse fluo magnético tem o sentido de ûφ : û 3
4 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 NOTA: O sentido da coente induida pode se deteminado utiliando a seguinte ega pática: dφ dt nˆ + - PROBLEMAS PROPOSTOS 1. Uma espia quadada de lado a está colocada no mesmo plano de um fio conduto infinito que é pecoido po uma coente eléctica estacionáia de intensidade I. Sabendo que a espia, inicialmente a uma distância b do fio infinito, se afasta deste com uma velocidade v, detemine a) o fluo magnético que atavessa a espia (num instante de tempo t ); b) a foça electomoti induida na espia; c) o sentido de ciculação da coente induida na espia. a X a X ( t = ) = b v
5 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8. Uma espia quadada de lado a e esistência R oda em tono do eio dos (que está no mesmo plano da espia e passa pelo seu cento) com uma velocidade angula constante ω no sentido indicado na figua. A espia está colocada numa egião onde o campo de indução magnética é dado po B = B u ˆ y, onde B é uma constante. Sabendo que no instante inicial a espia se enconta no plano y ( θ = ), detemine a) o fluo magnético Φ que atavessa a espia em função de θ ; b) a epessão da coente que atavessa a espia. ω θ y 3. Um espia quadada de lado L desloca-se a velocidade constante v mesmo em fente de uma bobine de secção quadada de lado L pecoida po uma coente eléctica estacionáia. O campo magnético ciado pela bobine pode se consideado unifome, com valo absoluto B e sentido e diecção indicados na figua, em todos os pontos à saída da bobine e nulo em qualque outo ponto. A figua seguinte mosta a título de eemplo algumas posições da espia no seu movimento. a) Detemine a epessão da foça electomoti induida na espia e esboce um gáfico da vaiação dessa foça electomoti com o tempo. b) Moste que a lei de Len é também aqui válida, isto é que a foça electomoti induida tende a cia uma coente que inteactua com o campo magnético de foma a contaia o movimento da espia. 5
6 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8. Uma baa condutoa deslia sem atito sobe dois sobe o cicuito epesentado na figua. Sabendo que o campo de indução magnética na egião vaia de acodo com B = 5cos( ωt)ˆ u (mt) e que a posição da baa é dada po =.35 1 cos( ωt) detemine a coente i que atavessa o cicuito. [ ] (m), y i. m B R =. Ω O. 7 m SOLUÇÕES 1. a) µ Ia ln[ 1+ a ( b + )] ( π ); b) µ Ia v [ π ( b + vt)( a + b + vt) ] vt c) sentido hoáio. a) B a senθ ; b) B a ω cosθ R 3. a) fem BLv ; t 1 t BLv. 1.75ω sen ω t ( 1+ cosω t) ( ma) L v L v 6
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos
DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE
DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de
)25d$0$*1e7,&$62%5( &21'8725(6
73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,
PROPAGAÇÃO II. Conceitos de Antenas
Instituto Supeio de Engenhaia de Lisboa Depatamento de Engenhaia de Electónica e Telecomunicações e de Computadoes Secção de Sistemas de Telecomunicações ROAGAÇÃO II Conceitos de Antenas ISEL, opagação
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça
PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:
UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão
Cap014 - Campo magnético gerado por corrente elétrica
ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate
/(,'(%,276$9$57()/8;2 0$*1e7,&2
67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés
LISTA COMPLETA PROVA 03
LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8
FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba
FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em
Indução Magnética 1/11
Indução Magnética Fluxo de indução magnética Indução electromagnética Lei de Faraday Lei de Lenz f.e.m induzida por movimento Indutância Gerador de corrente alternada. Transformador 1/11 n = Fluxo magnético
Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)
Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de
19 - Potencial Elétrico
PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson [email protected] Última atualização:
a) A energia potencial em função da posição pode ser representada graficamente como
Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >
Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell
Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1
Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades
Campo Magnético produzido por Bobinas Helmholtz
defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de
CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA
ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala
ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:
ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo
Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;
O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de
Mecânica e Ondas. Trabalho I. Conservação da Energia Mecânica da Roda de Maxwell
Mecânica e Ondas Tabalho I Consevação da Enegia Mecânica da Roda de Maxwell Objectivo Deteminação do momento de inécia da oda de Maxwell. Estudo da tansfeência de enegia potencial em enegia de tanslação
( z) Fluido Perfeito/Ideal Força Exercida por um Escoamento Plano em Torno de um Sólido Escoamento em torno de um cilindro circular com circulação Γ
Aeodinâmica I Fluido Pefeito/Ideal Foça Execida po um Escoamento Plano em Tono de um Sólido Escoamento em tono de um cilindo cicula com ciculação Γ - Potencial complexo W V - Velocidade complexa dw Mestado
Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)
INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício
CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES
CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da
Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica
Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte
Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v
Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos
Lista 3 de CF368 - Eletromagnetismo I
Lista de CF68 - Eetomagnetismo I Fabio Iaeke de dezembo de 2. Um ane de feo ecozido, de compimento médio de 5 cm, é enoado com uma bobina tooida de espias. Detemine a intensidade magnética
Aula 6: Aplicações da Lei de Gauss
Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de
VETORES GRANDEZAS VETORIAIS
VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma
UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1
UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam
Ondas Eletromagnéticas. Física Geral F-428
Ondas letomagnéticas Física Geal F-48 1 Radiação letomagnética & Ondas letomagnéticas Ondas letomagnéticas: Veemos: Radiação eletomagnética é uma foma de enegia que se popaga no espaço, em meios mateiais
MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO
AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de
APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*
48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento
DINÂMICA ATRITO E PLANO INCLINADO
AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes
CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS
CIRCUITOS ELÉTRICOS EM CORRENTE ALTERNADA NÚMEROS COMPLEXOS Um númeo compleo Z é um númeo da foma j, onde e são eais e j. (A ai quadada de um númeo eal negativo é chamada um númeo imagináio puo). No númeo
3ª Aula do cap. 06 ATRITO E MOVIMENTO CIRCULAR.
3ª Aula do cap. 06 ATRITO E MOVIMENTO CIRCULAR. Moimento cicula e unifome Este moimento tem elocidade com módulo constante poem sua dieção muda continuamente. Exemplos: Moimento de satélites atificiais.
Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas
Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas
FORÇA MAGNÉTICA SOBRE CONDUTORES
ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
3. Introdução às Equações de Maxwell
3. Intodução às quações de Maxwell Todo o eletomagnetismo clássico pode se esumido em quato equações conhecidas como quações de Maxwell -> James Cleck Maxwell (13 de Junho de 1831, dimbugo, scócia 5 de
DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.
DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se
ESCOLA SECUNDÁRIA JOSÉ SARAMAGO
ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta
3. Estática dos Corpos Rígidos. Sistemas de vectores
Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido
10/Out/2012 Aula 6. 3/Out/2012 Aula5
3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212
Aula 31 Área de Superfícies - parte II
MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.
SISTEMA DE COORDENADAS
ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos
n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss
Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,
Electricidade e magnetismo
Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.
Aula Invariantes Adiabáticos
Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do
du mn qn( E u B) r dt + r
Aula 7 Nesta aula, continuaemos a discuti o caáte de fluido do plasma, analisando a equação de fluido que ege o movimento do plasma como fluido. 3.2 Equação de Fluido paa o Plasma Vimos no capítulo 2 que
Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de
Movimento unidimensional com aceleração constante
Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis
CÁLCULO DIFERENCIAL E INTEGRAL II 014.2
CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do
Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas
Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície
Geradores e Receptores
Geadoes e Receptoes Extensivo Física Aula 6 1. Geado elético Dispositivo que ealiza a tansfomação de outa foma de enegia ( mecânica, química, etc.) em enegia elética. Exemplos: bateias, pilhas, etc. i
Aula 05 Mecânica Celeste
Aula 05 Mecânica Celeste Expessão intoduzida po Piee Sion de Laplace (1749-187) e seu célebe livo Mécanique Celeste (1799-188) (vide BCE) O conjunto de teoias que contê todas os esultados da gavitação
