Movimento unidimensional com aceleração constante
|
|
|
- João Lucas Amado Vieira
- 9 Há anos
- Visualizações:
Transcrição
1 Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis vaiam com o tempo, não só em diecção e sentido, mas também em módulo. Estes movimentos chamam-se vaiados. Num movimento vaiado os copos movem-se com aceleação. Jogado de golfe duante a execução de uma tacada, fotogafia estoboscópica 1
2 MOVIMENTOS ACELERADOS E MOVIMENTOS RETARDADOS Num movimento vaiado há intevalos de tempo duante os quais o módulo da velocidade ou aumenta ou diminui. Quando num intevalo de tempo: o módulo da velocidade, v aumenta, diz-se que o movimento é aceleado; o módulo da velocidade, v diminui, diz-se que o movimento é etadado. MOVIMENTOS ACELERADOS E MOVIMENTOS RETARDADOS No caso do movimento se ectilíneo, o caácte de «aceleado» ou «etadado» ente duas posições está elacionado com o sentido da vaiação da velocidade, v do móvel ente essas posições. Se v tem o sentido do movimento, diz-se que o movimento é aceleado;
3 MOVIMENTOS ACELERADOS E MOVIMENTOS RETARDADOS Se v tem sentido contáio ao do movimento, diz-se que o movimento é etadado; Nota: nos intevalos de tempo em que o movimento é aceleado ou etadado, o sentido do movimento é sempe o mesmo. ACELERAÇÃO MÉDIA Como vimos num movimento vaiado ocoe uma vaiação de velocidade num dado intevalo de tempo, inteessa sabe com que apidez ela ocoe na unidade de tempo. À vaiação da velocidade de um copo, num dado intevalo de tempo, chamamos aceleação média. a m v t 3
4 ACELERAÇÃO MÉDIA NUM MOVIMENTO RECTILÍNEO De acodo com a equação de definição, esta gandeza é vectoial e, no intevalo de tempo consideado, mede (em média) a apidez da vaiação da velocidade e tem as seguintes caacteísticas: a m v t Diecção e sentido os de Intensidade a m v v t ou a m v t A unidade SI da aceleação é o meto po segundo quadado, m s - ou m/s. ACELERAÇÃO A aceleação instantânea, ou simplesmente aceleação, tem um significado idêntico ao de aceleação média, apenas é calculada num intevalo de tempo muito pequeno. A gandeza assim obtida a é a aceleação,. a lim a t0 m v lim t0 t Num movimento ectilíneo, se a aceleação fo constante, o módulo da aceleação é dado po: a v t ou v a t ou a v t v t 1 1 4
5 MOVIMENTO UNIFORMEMENTE VARIADO No movimento unifomemente vaiado (MUV) a componente da aceleação é constante. a k K - constante (Lei das aceleações do movimento unifomemente vaiado) MOVIMENTO UNIFORMEMENTE VARIADO Seja v 0 o valo da velocidade inicial, no instante inicial, t 0 e v o valo da velocidade no instante t. Na expessão v a t substituindo v v e t t t0 v 0 v v 0 at (Lei das velocidades do movimento unifomemente vaiado) Esta equação é da foma y = mx + b (equação duma ecta), em que t coesponde à vaiável independente, x, a velocidade, v, à vaiável dependente, y, a velocidade inicial, v 0, coesponde à odenada na oigem, b, e a aceleação, a, coesponde ao declive, m, da ecta. 5
6 REPRESENTAÇÃO GRÁFICA DA LEI DAS VELOCIDADES (MRUV) A epesentação gáfica da lei das velocidades v = v 0 + at seá uma linha ecta que, pode passa ou não pela oigem dos eixos e te difeentes inclinações em elação ao eixo das abcissas. Vejamos alguns casos. O móvel pate do epouso. O móvel possui velocidade inicial e o movimento é aceleado. O movimento do móvel é pimeio etadado e depois aceleado. REPRESENTAÇÃO GRÁFICA DA LEI DAS ACELERAÇÕES (MRUV) Como já sabemos, este tipo de movimento possui um valo de aceleação constante. Seá de espea, potanto, que o gáfico da vaiação do valo da aceleação em função do tempo a = f(t) seja uma ecta paalela ao eixo dos tempos. 6
7 ÁREA NO GRÁFICO a = f(t) O gáfico seguinte apesenta uma zona a tacejado que é limitada pela linha do gáfico e pelo intevalo de tempo (t t 1 ). Se calculamos a áea dessa zona a tacejado, obtemos: áea = a x t ou seja, áea = v O valo numéico de uma áea num gáfico a = f(t) é igual ao valo da vaiação da velocidade ocoida duante o coespondente intevalo de tempo. ÁREA NO GRÁFICO v = f(t) Num gáfico v = f(t) o cálculo de uma áea limitada pela linha do gáfico e pelo intevalo de tempo (t) pemite-nos detemina o valo da vaiação de posição (x) efectuada no efeido intevalo de tempo. Se calculamos a áea dessa zona a tacejado, obtemos: áea = x 7
8 RELAÇÃO ENTRE GRÁFICOS DE VELOCIDADE E GRÁFICOS DE ACELERAÇÃO PARA MOVIMENTOS RECTILÍNEOS RELAÇÃO ENTRE GRÁFICOS DE VELOCIDADE E GRÁFICOS DE ACELERAÇÃO PARA MOVIMENTOS RECTILÍNEOS 8
9 EXPRESSÃO ANALÍTICA DA LEI DO MUV Recoendo ao gáfico da velocidade e atendendo ao significado da áea vem: áea tapézio base maio base meno altua v v x v x at v 1 x v t at t t 0 1 at x x x 0 x x 0 v 0 t Lei do movimento (MRUV) GRÁFICO CORRESPONDENTE À EQUAÇÃO DA LEI DO MRUV A expessão analítica da lei do MRUV (x = x 0 + v 0 t + ½ at ) taduz gaficamente uma paábola em que o sinal de a (coeficiente de t ) indica se a concavidade está voltada paa baixo (a < 0) ou paa cima (a > 0). 9
10 GRÁFICO CORRESPONDENTE À EQUAÇÃO DA LEI DO MUV A análise do gáfico I pemite-nos infei que: duante o intevalo de tempo (0;t ) o copo movimentou-se no sentido positivo da tajectóia (o valo de x aumentou v > 0) até à posição x e, como: v 0 e a 0 O movimento do copo foi unifomemente etadado GRÁFICO CORRESPONDENTE À EQUAÇÃO DA LEI DO MRUV Continuando a análise do gáfico I: No instante t, o copo mudou de sentido (v = 0). A pati do instante t, o copo movimentou-se no sentido negativo da tajectóia (o valo de x diminuiu v < 0) e, como: v 0 e a 0 O movimento do copo foi unifomemente aceleado 10
11 GRÁFICO CORRESPONDENTE À EQUAÇÃO DA LEI DO MUV Sugestão: Faça a análise do gáfico II. Simulação ANÁLISE DO MOVIMENTO E DA ACELERAÇÃO EM MOVIMENTOS RECTILÍNEOS 11
DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.
DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se
MOVIMENTO DE QUEDA LIVRE
I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção
Componente de Física
Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se
Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos
ísica e Química 11.º Ano Poposta de Resolução da icha N.º 3 oças e ovimentos 1. Dados: v = const a = 15,0 N R N = 6,0 N Gupo I Estando o copo em equilíbio R = 0 N ou seja: a = sen e R N = cos explicitando
Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.
NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As
. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E
7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas
Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2.
1 1. Análise das elocidades Figua 1 - Sólido obseado simultaneamente de dois efeenciais Consideemos um ponto P, petencente a um espaço ígido em moimento, S 2. Suponhamos que este ponto está a se isto po
IMPULSO E QUANTIDADE DE MOVIMENTO
AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma
Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11
Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)
QUESTÕES. Prof. Edson Osni Ramos v 10. Questão 1 - (BP )
C U R S O GABARITO - EXTENSIVO - ABRIL - 005 Questão 1 - (BP - 005) QUESTÕES Pof. Edson Osni Ramos 01. Está coeta. Obseve a figua acima. 0. Está coeta. Se Jadel consegui salta impimindo uma velocidade
ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE
TRABALHO PRÁTICO ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objectivo Petende-se estuda o movimento ectilíneo e unifomemente aceleado medindo o tempo gasto po um
Electricidade e magnetismo
Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.
TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.
AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um
MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE
AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma
MATEMÁTICA - 3o ciclo
MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela
Prof. Dirceu Pereira
Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas
Campo Gravítico da Terra
Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível
APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*
48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento
Geometria: Perímetro, Área e Volume
Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos
Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:
UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)
Aula Invariantes Adiabáticos
Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do
a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura?
1. (Espcex (Aan) 17) U cubo de assa 4 kg está inicialente e epouso sobe u plano hoizontal se atito. Duante 3 s, aplica-se sobe o cubo ua foça constante, hoizontal e pependicula no cento de ua de suas faces,
MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO
AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de
Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)
INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício
DINÂMICA ATRITO E PLANO INCLINADO
AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes
7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais
7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas
Campo Magnético produzido por Bobinas Helmholtz
defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de
MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios
MECÂNICA DO MEIO CONTÍNUO Execícios Mecânica dos Fluidos 1 Considee um fluido ideal em epouso num campo gavítico constante, g = g abendo que p( z = 0 ) = p a, detemine a distibuição das pessões nos casos
VETORES GRANDEZAS VETORIAIS
VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma
Seção 24: Laplaciano em Coordenadas Esféricas
Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente
APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL
UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA TEXTO DE APOIO ÀS AULAS PRÁTICAS DE FÍSICA APLICADA À ENGENHARIA CIVIL Rui Lança, Eq. Pofesso Adjunto David Peeia, Eq. Pofesso Adjunto SETEMBRO DE
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio
Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas
Geodésicas 151. A.1 Geodésicas radiais nulas
Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são
E = F/q onde E é o campo elétrico, F a força
Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono
Energia no movimento de uma carga em campo elétrico
O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.
REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS
REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas [email protected] Resumo Nesse teto apesentamos algumas deduções que Leibniz
Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)
Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de
Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.
Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página
REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla
REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)
Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10
Pova final Pova final 6 Soluções das 0 Pova final ESCOLA: NOME: N. O : TURMA: DATA: Cadeno (com calculadoa) 5 minutos Gupo I Paa cada uma das questões deste gupo, selecione a opção coeta de ente as altenativas
ASPECTOS GERAIS E AS LEIS DE KEPLER
16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,
CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES
CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da
3. Estática dos Corpos Rígidos. Sistemas de vectores
Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido
PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as
Aula 3 Introdução à Cinemática Movimento em 1 dimensão
Aula 3 Introdução à Cinemática Movimento em 1 dimensão FÍSICA Divisões da Física Quântica trata do universo do muito pequeno, dos átomos e das partículas que compõem os átomos. Clássica trata dos objetos
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11
1-0-011 Mecânica Gavitação 1ª Pate Pof. Luís Pena 010/11 Teoia geocêntica Foi com Ptolomeu de Alexandia que sugiu, po volta de 150 d.c. no seu livo Almagest, uma descição pomenoizada do sistema sola. Cláudio
ESCOLA SECUNDÁRIA JOSÉ SARAMAGO
ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta
Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A
Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule
a) A energia potencial em função da posição pode ser representada graficamente como
Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >
Dinâmica Trabalho e Energia
CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou
Teo. 5 - Trabalho da força eletrostática - potencial elétrico
Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa
Bola, taco, sinuca e física
Revista Basileia de Ensino de ísica, v. 29, n. 2, p. 225-229, (2007) www.sfisica.og. Bola, taco, sinuca e física (Ball, cue, snooke and physics) Eden V. Costa 1 Instituto de ísica, Univesidade edeal luminense,
LEIS DE NEWTON APLICADAS AO MOVIMENTO DE FOGUETES
LEIS DE NEWTON APLICADAS AO OVIENTO DE OGUETES 1ª Lei de Newton U copo e oviento continuaá e oviento, co velocidade constante, a não se que actue ua foça, ou u sistea de foças, de esultante não-nula, que
Marco F Í S I C A MOVIMENTO UNIFORME MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO [M.R.U.V]
VEST Marco @vestmapamental F Í S I C A MOVIMENTO UNIFORME MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO [M.R.U.V] Um movimento retilíneo no qual a aceleração escalar se mantém constante durante certo intervalo
Movimento retilíneo uniformemente
15 fev Movimento retilíneo uniformemente variado (MUV) 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO Ao estudarmos o Movimento Uniformemente Variado (ou MUV) estamos
