MATEMÁTICA - 3o ciclo
|
|
|
- Ana Júlia Miranda Belo
- 8 Há anos
- Visualizações:
Transcrição
1 MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela à eta e que passa no ponto de coodenadas (,). Detemina uma equação da eta s. Mosta como chegaste à tua esposta. Pova Final o Ciclo 0, Época especial. Na figua seguinte, estão epesentados, em efeencial catesiano, o ponto P e duas etas, e s. Sabe-se que: a eta é definida pela equação =,; a eta s é paalela à eta ; o ponto P tem coodenadas (,) e petence à eta s. Seja f a função afim cujo gáfico é a eta s. Qual das seguintes epessões define a função f? (A) f() =, + s (B) f() =, + (C) f() =, + (D) f() =, + Pova Final o Ciclo 0, a fase. A eta, epesentada em efeencial catesiano na figua ao lado, é o gáfico de uma função afim, f. Sabe-se que os pontos de coodenadas (0, ) e (,) petencem à eta. Detemina uma epessão algébica que defina a função f. Apesenta todos os cálculos que efetuaes. Pova Final o Ciclo 0, a fase Página de
2 . Considea, num efeencial catesiano otogonal e monomético, duas etas concoentes, e s, tais que: a eta é definida pela equação = + a eta s é definida pela equação = Paa um ceto valo de a, a eta definida pela equação = a é paalela à eta s Indica esse valo de a e justifica a tua esposta. Pova de Afeição o ano - 0. Na figua ao lado, estão epesentadas, em efeencial catesiano, a eta AB e pate do gáfico de uma função f Sabe-se que: ponto é a oigem do efeencial; os pontos A e B petencem, espetivamente, aos semieios positivos e o ponto B tem odenada a função f é definida po f() = B f A Qual das seguintes equações pode defini a eta AB? (A) = + (B) = + (C) = + (D) = + Pova Final o Ciclo 0, a fase. Considea a função h definida po h() = + Na figua ao lado, estão epesentadas, em efeencial catesiano, duas etas, e s Nem a eta nem a eta s epesentam gaficamente a função h s Apesenta uma azão que pemita gaanti que a eta não epesenta gaficamente a função h e uma azão que pemita gaanti que a eta s não epesenta gaficamente a função h Pova Final o Ciclo 0, a fase Página de
3 . Na figua seguinte, estão epesentadas, num efeencial catesiano, as etas e s Sabe-se que: a eta é definida po = 0, a eta s é definida po =, +, o ponto A é o ponto de inteseção da eta s com o eio das abcissas o ponto B é o ponto de inteseção da eta s com o eio das odenadas o ponto I é o ponto de inteseção das etas e s B s.. Qual é a odenada do ponto B? I.. Qual é a medida do compimento do segmento de eta [A]? A (A), (B), (C), (D),. Considea a função definida po f() = + Gáfico A Teste Intemédio o ano 0..0 Gáfico B Nem o gáfico A nem o gáfico B epesentam a função f Apesenta uma azão que te pemita gaanti que o gáfico A não epesenta a função f, e uma azão que te pemita gaanti que o gáfico B não epesenta a função f Pova Final o Ciclo 00 a chamada Página de
4 . Paa medi a tempeatua, podem utiliza-se temómetos gaduados em gaus Celsius ou temómetos gaduados em gaus Fahenheit. Paa elaciona gaus Celsius com gaus Fahenheit, utiliza-se a fómula F =,C + em que C epesenta o valo da tempeatua em gaus Celsius e F epesenta o coespondente valo em gaus Fahenheit... Detemina o valo da tempeatua, em gaus Fahenheit, coespondente a gaus Celsius. Mosta como chegaste à tua esposta... Detemina o valo da tempeatua, em gaus Celsius, coespondente a gaus Fahenheit. Mosta como chegaste à tua esposta... Nem o gáfico A nem o gáfico B taduzem a elação F =,C + Apesenta uma azão paa ejeita o gáfico A e uma azão paa ejeita o gáfico B. F Gáfico A F Gáfico B C 0 C Teste Intemédio o ano Considea f uma função definida po f() = Qual é a imagem de po meio da função f? (A) (B) (C) (D) Teste Intemédio o ano..00 Página de
5 . Qual das epesentações gáficas seguintes taduz a função definida po f() = +? (A) (B) (C) (D) Teste Intemédio o ano..00. apaelho de a condicionado de uma sala de cinema teve uma avaia duante a eibição de um filme. A tempeatua, C, da sala, t hoas após a avaia e até ao final do filme, pode se dada, apoimadamente, pela epessão: C = + t, com C epesso em gaus centígados e t epesso em hoas... Na sala, qual ea a tempeatua, em gaus centígados, uma hoa após a avaia?.. Qual foi, na sala, o aumento da tempeatua po hoa, em gaus centígados? Eplica como chegaste à tua esposta... No final do filme, a tempeatua na sala ea de gaus centígados. Há quanto tempo tinha ocoido a avaia? Apesenta os cálculos que efetuaes e, na tua esposta, apesenta o esultado em minutos. Pova Final o Ciclo 00 a chamada Página de
6 . Paa efetua chamadas do seu telemóvel, paa duas edes (A e B), o peço, em cêntimos, que o Paulo tem a paga po cada segundo de duação de uma chamada é o que está indicado na tabela ao lado. Rede Peço po segundo (em cêntimos) A 0, B 0, Paulo tem 0 cêntimos disponíveis paa efetua chamadas do seu telemóvel. Após te iniciado uma chamada paa a ede A, o dinheio disponível foi diminuindo, até se gasto na sua totalidade. Qual dos quato gáficos que se seguem epesenta esta situação? (A) Gáfico A (B) Gáfico B (C) Gáfico C (D) Gáfico D Eame Nacional o Ciclo - 00, a Chamada Página de
7 . Em janeio, o Víto, depois de te vindo do babeio, decidiu estuda o cescimento do seu cabelo, egistando todos os meses a sua medida. gáfico ao lado epesenta o cescimento do cabelo do Víto, desde o mês de janeio (mês 0) até ao mês de junho (mês ). (C) - compimento do cabelo (cm) 0 0 janeio feveeio maço abil maio junho (M) - Mês.. Completa a tabela seguinte, de acodo com os dados epesentados no gáfico. (M) - Mês (C) - compimento do cabelo (cm) janeio feveeio maço abil maio junho 0,,,,.. Em cada mês, quantos centímetos cesceu o cabelo do Víto?.. Qual das seguintes epessões epesenta o compimento do cabelo do Víto, em cada um dos pimeios seis meses? (A) C=,M (B) C=+,M (C) C=,+M (D) C=M.. João foi cota o cabelo no mesmo dia que o Víto, mas o seu cabelo ficou mais cuto, com apenas cm. Constói o gáfico que epesenta o cescimento do cabelo do João, desde janeio até maio, supondo que cesce, cm em cada mês. (C) - compimento do cabelo (cm) 0 0 janeio feveeio maço abil maio junho (M) - Mês Pova de Afeição 00 Página de
Provas finais. Prova final 1 1 Prova final 2 6 Soluções das Provas finais 10
Pova final Pova final 6 Soluções das 0 Pova final ESCOLA: NOME: N. O : TURMA: DATA: Cadeno (com calculadoa) 5 minutos Gupo I Paa cada uma das questões deste gupo, selecione a opção coeta de ente as altenativas
singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)
1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:
Extensão da trigonometria a ângulos retos e obtusos e resolução de triângulos
UNIDADE Etensão da tigonometia a ângulos etos e obtusos e esolução de tiângulos TAREFAS E AVALIAR CONHECIMENTOS. Razões tigonométicas de ângulos agudos () Taefa Apesente uma justificação paa cada uma das
Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)
INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício
Movimento unidimensional com aceleração constante
Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru
Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de
CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO
Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO
EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO
INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...
Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.
NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As
Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:
UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)
MATEMÁTICA A - 11o Ano Geometria - Declive e inclinação Propostas de resolução
MTEMÁTI - o no Geometia - Declive e inclinação Popota de eolução Eecício de eame e tete intemédio. omo a tangente é pependicula ao aio, a eta é pependicula à eta, ou eja, declive da eta é o imético do
Matemática Ficha de Trabalho
. Resolve e classifica os sistemas: x + y = x + y = x + y = B x y = Matemática Ficha de Tabalho Revisões 9ºano módulo inicial ( ) x + 4 = 5 y C 4x + y = 8 ( ) y = 6 x D ( 6x + 0) = y 5. Considea o pisma
TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.
CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas
VETORES GRANDEZAS VETORIAIS
VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma
CÁLCULO DIFERENCIAL E INTEGRAL II 014.2
CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do
DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA
ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo
SISTEMA DE COORDENADAS
ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos
MATEMÁTICA 3 A SÉRIE - E. MÉDIO
1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e
J. Sebastião e Silva, Compêndio de Matemática, 3º Volume
J. SEBASTAO E SLVA. 3. ntepetação geomética da multiplicação de númeos compleos. Comecemos pelo seguinte caso paticula: Poduto do númeo i po um númeo compleo qualque, z = + iy (, y e R).,------- *' "--
PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO
PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as
Prova Escrita de Matemática A
EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Pova 635/Época Especial Citéios de Classificação Páginas 06 Pova 635/E. Especial
Geometria: Perímetro, Área e Volume
Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos
Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA PONTO E RET
INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA... DISTÂNCIA ENTRE DOIS PONTOS... 5 RAZÃO DE SECÇÃO... DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 4 PONTO MÉDIO DE UM SEGMENTO...
CPV - o cursinho que mais aprova na GV
FGV 1 a Fase conomia novembo/00 MTMÁTI PV - o cusinho que mais apova na GV 01. ois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja etensão total é de, km. nquanto
Material Teórico - Círculo Trigonométrico. Radiano, Círculo Trigonométrico e Congruência de arcos. Primeiro Ano do Ensino Médio
Mateial Teóico - Cículo Tigonomético Radiano, Cículo Tigonomético e Conguência de acos Pimeio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto de setembo de
FGE0270 Eletricidade e Magnetismo I
FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga
Todo mundo tem seu jeito singular de ser feliz, de viver e de enxergar se os olhos são maiores ou são orientais e daí, que diferença faz?
EA CFOAV/CFOINT/CFOINF 04 PROVAS DE LÍNGUA PORTUGUESA MATEMÁTICA LÍNGUA INGLESA FÍSICA REDAÇÃO VERSÃO A 5 TEXTO IV 5 - São ecusos estilísticos que foam exploados no texto da canção, EXCETO: SER DIFERENTE
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio
Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas
7º ANO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR
EBIAH 7º ANO PLANIFICAÇÃO A LONGO PRAZO DESEMPENHOS FUNDAMENTAIS A EVIDENCIAR IDENTIFICAR/DESIGNAR: O aluno deve utiliza coetamente a designação efeida, sabendo defini o conceito apesentado como se indica
Prof. Dirceu Pereira
Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas
CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO
Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis
Funções vetoriais. I) Funções vetoriais a valores reais:
Funções vetoiais I) Funções vetoiais a valoes eais: f: I R R t a f(t) (f 1 n (t), f (t),..., f n (t)) I intevalo da eta eal denominada domínio da função vetoial f {conjunto de todos os valoes possíveis
Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)
Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de
Componente de Física
Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se
4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução
4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No
5 Estudo analítico de retas e planos
GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.
Energia no movimento de uma carga em campo elétrico
O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.
Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.
Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página
1ª Ficha Global de Física 12º ano
1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado
PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO
Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,
4.4 Mais da geometria analítica de retas e planos
07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no
Questão 1. Questão 2. Questão 3. alternativa C. alternativa E
Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa
Áreas parte 2. Rodrigo Lucio Isabelle Araújo
Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que
Adriano Pedreira Cattai
Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas
Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de
GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas
GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas
é a variação no custo total dada a variação na quantidade
TP043 Micoeconomia 21/10/2009 AULA 15 Bibliogafia: PINDYCK - CAPÍTULO 7 Custos fixos e vaiáveis: Custos fixos não dependem do nível de podução, enquanto que custos vaiáveis dependem do nível de podução.
REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS
REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas [email protected] Resumo Nesse teto apesentamos algumas deduções que Leibniz
Resolução da Prova de Raciocínio Lógico
ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. [email protected] 1 21 Um io pincipal tem, ao passa em deteminado
Módulo 17 Geometria espacial métrica Pirâmides
9 Matemática 6 9 Módulo 7 Geometia espacial mética Piâmides. efinição onsideemos um plano α, uma eião polional convea S e um ponto foa de α. Piâmide é a eunião de todos os sementos com uma etemidade em
Teo. 5 - Trabalho da força eletrostática - potencial elétrico
Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa
