COLÉGIO MILITAR BELO HORIZONTE
|
|
|
- Dalila Festas Batista
- 9 Há anos
- Visualizações:
Transcrição
1 COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 3 DE OUTUBRO DE 004 DURAÇÃO: 10 MINUTOS CONCURSO DE ADMISSÃO 004 / 005 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO: NOME COMPLETO: SALA: INSTRUÇÕES LEIA COM ATENÇÃO: 1 Esta pova contém 0 (vinte) itens, impessos em 8 (oito) páginas, incluindo esta capa CONFIRA Falhas de impessão e paginação ou faltas de folhas devem se infomadas ao FISCAL DE PROVA que as solucionaá 3 Antes de inicia a esolução da pova, peencha o seu NÚMERO DE INSCRIÇÃO, NOME E SALA no campo IDENTIFICAÇÃO (acima especificado) 4 É PROIBIDO pedi ou empesta mateial aos colegas Peguntas ou dúvidas (de impessão) deveão se sanadas somente com os fiscais de pova 5 Somente seão consideadas as espostas macadas no Catão-Resposta; aquelas assinaladas nesta pova não têm valo paa fins de coeção, assim como os ascunhos que poventua sejam poduzidos 6 Use somente caneta esfeogáfica, de tinta azul ou peta, paa peenche o Catão-Resposta Se este fo peenchido a lápis não seá consideado 7 O candidato só podeá se ausenta do local de aplicação após tanscoidos, no mínimo, 40 minutos do início da pova 8 O veso de cada folha podeá se utilizado como ascunho BOA PROVA
2 CONCURSO DE ADMISSÃO À 1ª SÉRIE / EM CMBH 004 PÁGINA: QUESTÃO ÚNICA MÚLTIPLA ESCOLHA RESPONDA OS ITENS DE 01 A 0 E TRANSCREVA AS RESPOSTAS CORRETAS PARA O CARTÃO-RESPOSTA ITEM 01 Os gáficos das funções f(x) = x + 3x 4 e g(x) = ax + 4 se inteceptam em dois pontos, sendo um deles o ponto cuja abscissa é a meno aiz de f(x) A áea da figua cujos vétices são as aízes das funções e os pontos de inteseção das duas funções vale: ITEM 0 Sejam A = {1,, 3, 4, 5} e B = { 3,, 1, 0, 1,, 3, 4, 5, 6, 7} Se f : A B é uma função tal que f(x) = x +, então a soma de todos os valoes do conjunto imagem desta função é: ITEM 03 A fação algébica 3 3 x y 3x y + 3xy ( x y) ( x y ), onde x ± y, equivale a: x y x + y x + y x y 1 x + y x 3 y 3 x x y
3 CONCURSO DE ADMISSÃO À 1ª SÉRIE / EM CMBH 004 PÁGINA: 3 ITEM 04 Um númeo x mais o seu inveso é igual a 5 Então o valo de de x, é igual a: 1 y +, onde y é a teceia potência y ITEM 05 Aumenta o compimento de uma cicunfeência em 4 cm é o mesmo que aumenta seu aio em: π cm 4 cm π π cm 1 π cm 4 cm π ITEM 06 Foam ealizadas, em um município mineio, tês pesquisas de intenção de voto, duante o peíodo da campanha eleitoal Concoeam ao cago de pefeito dois candidatos, X e Y Na pimeia pesquisa, constatou-se que 0% dos entevistados petendiam anula o voto Na segunda pesquisa, 5% dos que petendiam vota em X mudaam sua opção paa Y e vice vesa Na teceia e última pesquisa, 60% dos que petendiam vota em Y decidiam anula seu voto, o que aumentou o pecentual do total de votos nulos paa 36,8% Sabendo-se que nenhum entevistado optou po vota em banco e que foam entevistadas sempe as mesmas pessoas, se o esultado das eleições obedecesse igoosamente o esultado da última pesquisa ealizada, então o pecentual de eleitoes do candidato X seia: 64% 60% 48% 5% 5%
4 CONCURSO DE ADMISSÃO À 1ª SÉRIE / EM CMBH 004 PÁGINA: 4 ITEM 07 A pática de descontos é muito comum nas pomoções concedidas em divesos setoes do mecado Sendo assim, nas pomoções do tipo Leve 3, pague, o valo de cada unidade do poduto passa a se: 3 p, sendo p o peço da unidade foa da pomoção R$ 3,00, se o peço nomal da unidade do poduto fo R$ 6,00 um valo meno que a metade do peço nomal da unidade do poduto 3 4 p, sendo p o peço da unidade sem desconto R$ 7,00, se o peço da unidade, sem desconto, fo R$ 10,00 ITEM 08 Na figua abaixo, // s Então, os valoes do complemento, do suplemento e do eplemento de x são, espectivamente: x s 313, 133 e , 43 e , 137 e , 47 e , 133 e 313 (desenho foa de popoção) ITEM 09 O luco da podução de bonecas de pano, feitas po um atesão, vaia de acodo com a quantidade poduzida, segundo a elação L = 60p p, onde L é o luco em eais e p, o númeo de unidades poduzidas Nessas condições, é coeto afima que: é possível obte um luco de R$ 1000,00 na venda das bonecas quanto maio o númeo de bonecas poduzido, maio o luco o atesão lucaá o máximo se poduzi 30 bonecas o maio luco possível, neste caso, é R$ 600,00 a podução de 50 unidades dá pejuízo ao atesão
5 CONCURSO DE ADMISSÃO À 1ª SÉRIE / EM CMBH 004 PÁGINA: 5 ITEM 10 Um pescado atavessou um io, com seu baco, da magem A até a magem B Poém, devido a uma fote coenteza, o baco pecoeu uma tajetóia etilínea que fomava 30 com a eta supote da meno tajetóia possível Dessa foma, pecoeu 15 m a mais do que se tivesse pecoido o meno caminho Então, sabendo que as magens são paalelas ente si, pode-se afima que a lagua do io é, em metos: igual a 90 igual a 15 meno que 5 maio que 80 maio que 100 ITEM 11 Um hexágono egula e um quadado estão inscitos em um mesmo cículo, de tal modo que um dos lados do hexágono é paalelo a um lado do quadado Sendo o aio deste cículo igual a, pode-se afima que a meno distância ente o lado do hexágono e o lado do quadado, nas condições dadas, é igual a: ITEM 1 Considee a figua dada: C A B (desenho foa de popoção) Sabe-se que os acos AB, BC e AC são semi-cicunfeências, que AB = 10 cm e que a distância do ponto C ao segmento AB é igual a 4,8 cm Potanto, a áea hachuada vale, em cm : π 5 π 4 π ANULADA π 4
6 CONCURSO DE ADMISSÃO À 1ª SÉRIE / EM CMBH 004 PÁGINA: 6 ITEM 13 Obseve a divisão a segui: a 4 ( b é a pate inteia do quociente da divisão de a po 4 ) 0 b, 75 * + Sendo a Z, o meno valo do dividendo, em função de a, paa que a divisão po 4 seja exata e com o quociente inteio, deve se igual a: a + 3 a + 1 a + 9 a + 7 a + 5 ITEM 14 Seja a figua: A E F B C D (desenho foa de popoção) O losango BDEF está inscito no tiângulo ABC Sabe-se que AB = 10 m e BC = 1 m Potanto, a medida do lado do losango vale: 60 m m 11 m 5 m m
7 CONCURSO DE ADMISSÃO À 1ª SÉRIE / EM CMBH 004 PÁGINA: 7 ITEM 15 Dagobeto compou uma geladeia e optou po paga em duas pacelas iguais, sendo uma no ato da compa e a outa tinta dias depois O peço à vista da geladeia é R$ 00,00 e os juos mensais cobados pela loja, 0% Potanto, a entada foi igual a: R$ 150,00 R$ 130,00 R$ 100,00 R$ 1100,00 R$ 110,00 ITEM 16 As hastes de um compasso medem 7 cm e 8 cm Utilizando uma abetua de 10 ente as hastes, um aluno desenhou uma cicunfeência sobe um papel A medida do diâmeto desta cicunfeência é igual a: 57 cm 18 3 cm 6 cm 13 cm cm ITEM 17 Em um deteminado ano, o dia 16 de abil ocoeu em uma sexta-feia Logo, 15 de setembo do mesmo ano ocoeu em um (a): sábado sexta-feia quinta-feia quata-feia teça-feia ITEM 18 O valo de m paa que a equação x mx + 0 = 0 admita aízes natuais e consecutivas é:
8 CONCURSO DE ADMISSÃO À 1ª SÉRIE / EM CMBH 004 PÁGINA: 8 ITEM 19 Considee as afimativas: I ) a = a II ) a + b = a + b III ) a m n = n a m, com mdc (m, n) = 1 Pode-se conclui que: somente III é vedadeia somente I e III são vedadeias somente II é vedadeia todas são vedadeias todas são falsas ITEM 0 Na figua dada, EB é bissetiz de AE ˆ D, EC ˆ D = 30 e ED ˆ C = 80 Então, EB ˆ D vale: 140 A B C 130 E D (desenho foa de popoção) FIM DA PROVA
UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1
UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam
PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS
RAÍZES RECÍPROCAS Pof. Macelo Renato Equação Polinomial Recípoca, ou simplesmente "Equação ecípoca", é aquela que, se possui "x " como aiz, então seu ecípoco ("/x ") também seá aiz da equação. Exemplo:
Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.
6 ENSINO FUNDMENTL 6- º ano Matemática tividades complementaes Este mateial é um complemento da oba Matemática 6 Paa Vive Juntos. Repodução pemitida somente paa uso escola. Venda poibida. Samuel Casal
Circunferência e círculo
Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu
Aula 31 Área de Superfícies - parte II
MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.
1º Ano do Ensino Médio
MINISTÉRIO DA DEFESA Manaus AM 18 de outubro de 009. EXÉRCITO BRASILEIRO CONCURSO DE ADMISSÃO 009/010 D E C E x - D E P A COLÉGIO MILITAR DE MANAUS MATEMÁTICA 1º Ano do Ensino Médio INSTRUÇÕES (CANDIDATO
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).
TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos
Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é
Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio
6 o ANO DO ENSINO FUNDAMENTAL PROVA DE MATEMÁTICA INSTRUÇÕES AOS CANDIDATOS
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DEPA COLÉGIO MILITAR DE FORTALEZA CASA DE EUDORO CORRÊA CONCURSO DE ADMISSÃO 2009/2010 6 o ANO DO ENSINO FUNDAMENTAL PROVA DE MATEMÁTICA INSTRUÇÕES AOS
AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS
L M NNI MINTL a U/USa epatamento de ngenhaia ivil da USa xpessão áfica paa ngenhaia T4 SN MÉTI SQUÊNI NSTUÇÕS MÉTIS ste texto teóico apesenta uma séie de constuções geométicas () que são consideadas básicas.
00. Qual o nome do vaso sangüíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP - DEPA (Casa de Thomaz Coelho/1889) CONCURSO DE ADMISSÃO À 1ª SÉRIE DO ENSINO MÉDIO 00/004 5 DE OUTUBRO DE 00 INSTRUÇÕES AOS CANDIDATOS 01. Duração da prova:
08/12 CONCURSO VESTIBULAR 2009 08/12/2008 INSTRUÇÕES
CONCURSO VESTIBULAR 009 08/1/008 INSTRUÇÕES Confira, abaixo, seu nome e número de inscrição e assine no local indicado. Verifique se os dados impressos no Cartão-Resposta correspondem aos seus. Caso haja
( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:
P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o
PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO
Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,
Matemática. A probabilidade pedida é p =
a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2013/2014 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 2013/2014 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 20 E TRANSCREVA
Problemas sobre Indução Electromagnética
Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO
). c) Por três pontos não colineares passam três retas não simultaneamente (P 3
Resolução das atividades complementaes Matemática M7 Geometia p. 6 Sejam tês pontos distintos, e não colineaes no espaço. a) Quantas etas passam po? infinitas b) Quantas etas passam po e po? uma única
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)
MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Um aluno da 5ª série do CMB saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma, gastou a metade
FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS
Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém
Matemática do Ensino Médio vol.2
Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2
Cap014 - Campo magnético gerado por corrente elétrica
ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate
Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 27.04.2010 3.º Ciclo do Ensino Básico 8.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de
4.4 Mais da geometria analítica de retas e planos
07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no
F-328 Física Geral III
F-328 Física Geal III Aula exploatóia Cap. 23 UNICAMP IFGW 1 Ponto essencial O fluxo de água atavessando uma supefície fechada depende somente das toneias no inteio dela. 2 3 1 4 O fluxo elético atavessando
Questão 1. Questão 2. Questão 3. alternativa C. alternativa E
Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa
APÊNDICE. Revisão de Trigonometria
E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E
Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)
00. Qual o nome do vaso sanguíneo que sai do ventrículo direito do coração humano? (A) Veia pulmonar direita
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx - DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/889) CONCURSO DE ADMISSÃO AO º ANO DO ENSINO MÉDIO 0/05 PROVA DE MATEMÁTICA DE SETEMBRO DE
Resolução da Prova de Raciocínio Lógico
ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. [email protected] 1 21 Um io pincipal tem, ao passa em deteminado
Áreas parte 2. Rodrigo Lucio Isabelle Araújo
Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que
GEOMETRIA ESPACIAL DE POSIÇÃO. - Ponto: - Reta: - Plano: - Espaço: Dois pontos distintos determinam uma reta. ou. Posições Relativas
GEOMETRIA ESPACIAL DE POSIÇÃO Conceitos Pimitivos: - Ponto: - Reta: - Plano: - Espaço: A B Postulados de Existência: Existem infinitos pontos, infinitas etas, infinitos planos e um único espaço. Algumas
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma
Nome: N.º: Turma: Classificação: Professor: Enc. Educação:
Escola EB, de Ribeirão (Sede) ANO LECTIVO 010/011 Dezembro 010 Nome: Nº: Turma: Classificação: Professor: Enc Educação: Ficha de Avaliação de Matemática Versão Duração do Teste: 90 minutos 6 de Dezembro
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 96 / 97 MÚLTIPLA ESCOLHA
18 1 a QUESTÃO. (VALOR: 0 ESCORES) - ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. Item 01. A representação gráfica de M ( M N) P é a. ( )
suur 03) (UPE 2007) Na figura abaixo a reta tangencia, em N, o círculo que passa por L, suur
Eta Geometia Plana Pof Eweton Paiva 01) (UFF 007) fim de elaboa um elemento de ua oba de ate, um eculto ua um pedaço de aame e contói uma cicunfeência, confome mota a figua P b) Pove que med(» ) med( E»
Versão 2. Identifica claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 07.02.2011 9.º Ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro Identifica claramente,
COLÉGIO MILITAR BELO HORIZONTE
COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 23 DE OUTUBRO DE 200 DURAÇÃO: 20 MINUTOS CONCURSO DE ADMISSÃO 200 / 200 PROVA DE MATEMÁTICA ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO:
O perímetro da circunferência
Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe
NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B
R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente
COLÉGIO MILITAR DE BELO HORIZONTE DIVISÃO DE ENSINO SEÇÃO TÉCNICA DE ENSINO CONCURSO DE ADMISSÃO AO CMBH 2002/2003 PROVA DE MATEMÁTICA 5ª SÉRIE / EF
COLÉGIO MILITAR DE BELO HORIZONTE DIVISÃO DE ENSINO SEÇÃO TÉCNICA DE ENSINO CONFERE COM O ORIGINAL CONCURSO DE ADMISSÃO AO CMBH 2002/2003 PROVA DE MATEMÁTICA ª SÉRIE / EF DURAÇÃO: 120 minutos DATA DA REALIZAÇÃO:
QUESTÃO 18. Cada um dos cartões abaixo tem de um lado um número e do outro uma letra.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 3 8 + 30 = a) 8 b) 9 c) 8 d) 9 e) 58 5 5 3 3 8
singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)
1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:
ESCOLA SECUNDÁRIA DE CASQUILHOS
ESCOLA SECUNDÁRIA DE CASQUILHOS 2º Ano Turma B - C.C.H. de Ciências e Tecnologias - Teste de Avaliação de Matemática A V Duração: 90 min 03 Fev. 200 Prof.: Na folha de respostas, indicar de forma legível
ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação
a) 2 b) 3 c) 4 d) 5 e) 6
Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS ESCOLA SARGENTO MAX WOLF FILHO EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO DE SARGENTOS 015-16 GABARITO DAS QUESTÕES DE MATEMÁTICA Sendo
7 a Série (8 o Ano) Avaliação Diagnóstica Matemática (Entrada) Ensino Fundamental. Gestão da Aprendizagem Escolar. Nome da Escola.
Gestão da Aprendizagem Escolar Avaliação Diagnóstica Matemática (Entrada) 7 a Série (8 o Ano) Ensino Fundamental Nome da Escola Cidade Estado Nome do Aluno Idade Sexo feminino masculino Classe Nº 1. Para
AEFG. Sabe-se que: ABCD e. AD, respetivamente.
Escola Básica de Ribeirão (Sede) ANO LETIVO 04/0 Nome: N.º: Turma: Classificação: Professor: Enc. Educação: 9.º Ano Ficha de Avaliação de Matemática Versão Duração do Teste: 0 minutos (Caderno ) + 0 minutos
FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar. Simulado de Matemática ITA. ALUNO(A): N o TURMA:
C/007/MATEMATICA/ITA/IME/MAT.599ita(prova)/ Cleo5.6.07 CEARÁ 7 DE SETEMBRO FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar Central de Atendimento: 006.7777 o Ensino Médio Simulado
Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta
Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.
AV2 - MA 12-2011 UMA SOLUÇÃO
Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade
Gabarito de Matemática do 6º ano do E.F.
Gabarito de Matemática do 6º ano do E.F. Lista de Exercícios (L11) Querido(a) aluno(a), vamos retomar nossos estudos relembrando os conceitos de divisores, múltiplos, números primos, mmc e mdc. Divisor
Caderno 2: 60 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 2.º Ciclo do Ensino Básico Prova 62/1.ª Fase/2015 Decreto-Lei n.º 139/2012, de 5 de julho A PREENCHER PELO ALUNO Nome completo Documento de identificação Assinatura do Aluno CC
17. (PUC-SP)Se a 16. 19. (GV) Se x 3200000 e y 0, 00002, calcule o valor do produto x. y.
Um navio dipõe de eeva uficiente paa alimenta homen duante dia, ma ecebe obevivente de um naufágio eeva de alimento daão paa no máimo quanto dia? LIST 0 XRÍIOS GOMTRI PLN PROF ROGRINHO º nino Médio (Razão
MATEMÁTICA PROVA 1º BIMESTRE 9º ANO
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 1º BIMESTRE 9º ANO 2010 PROVA MATEMÁTICA 9º ANO QUESTÃO 01 Artur
01) 45 02) 46 03) 48 04) 49,5 05) 66
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função
Teo. 5 - Trabalho da força eletrostática - potencial elétrico
Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa
RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS CORRETAS PARA O CARTÃO-RESPOSTA
CONCURSO DE ADMISSÃO 2014/2015 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Chefe da Subcomissão de Matemática Dir Ens CPOR / CM-BH PÁGINA 1 RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS
Lista de Exercícios Critérios de Divisibilidade
Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas
Solução Comentada Prova de Matemática
18. Se x e y são números inteiros maiores do que 1, tais que x é um divisor de 0 e y é um divisor de 35, então o menor valor possível para y x é: A) B) C) D) E) 4 35 4 7 5 5 7 35 Questão 18, alternativa
a, em que a e b são inteiros tais que a é divisor de 3
Matemática 0. Considere a expressão x x 3 5x x 6. Pede-se: A) encontrar o valor numérico da expressão para x. B) obter todas as raízes complexas do polinômio p(x) x x 3 5x x 6. Questão 0 Comentários: A
II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes )
Primeira Fase Nível ( Série EM e Concluintes ). Quantas soluções do tipo (x,y), com x,y inteiros, existem para a equação xy=x+y? a) b) c) d) e)nenhuma. Na figura, o triângulo ABC é eqüilátero, o raio da
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 95 / 96 QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA
QUESTÃO ÚNICA. ESCORES OBTIDOS MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA OS ITENS DE 01 A 06 DEVERÃO SER RESPONDIDOS COM BASE NA TEORIA DOS CONJUNTOS.
Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio
Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas
Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 9 Ọ ANO EM 2012. Disciplina: matemática
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 Observe a tabela: Número Antecessor Sucessor 10 A B C zero D
Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro
Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12
Desenho Geométrico 9º ano Prof. Jorge Marcelo. Lugares Geométricos
Desenho Geoético 9º ano of. Joge Macelo Lugaes Geoéticos Luga Geoético é o conjunto de pontos, de u eso plano, que possue a esa popiedade. Estudaeos aqui aqueles que são consideados os cindo pincipais
GEOMETRIA. Noções básicas de Geometria que deves reter:
Noçõe báica de Geometia que deve ete: nte de iniciae qualque tabalho geomético, deve conhece o conjunto de intumento que deveá te empe: lgun cuidado a te: 1 Mante égua e equado limpo. 2 Não ua x-acto ou
38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA
38 a OLIMPÍADA BRASILEIRA DE MATEMÁ TICA Primeira Fase Nível 2 (8 o ou 9 o ano) Sexta-feira, 17 de junho de 2016. Caro(a) aluno(a): A duração da prova é de 3 horas. Você poderá, se necessário, solicitar
Canguru Matemático sem Fronteiras 2014
http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões
Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)
Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de
Versão 2. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.
Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro
maior é de 12π cm, pode-se afirmar que o valor da área da parte hachurada é, em cm 2 : a) 6 π b) 8 π c) 9 π d) 18 π e) 36 π Exercícios
Geometria Plana II Exercícios 1. A figura abaixo é plana e composta por dois trapézios isósceles e um losango. O comprimento da base maior do trapézio ABCD é igual ao da base menor do trapézio EFGH, que
Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)
INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício
MATEMÁTICA POLINÔMIOS
MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um
Aula 4 Função do 2º Grau
1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função
UNIGRANRIO
1) UNIGRANRIO Dados os polinômios p1 = x 2 5x + 6, p2 = 2x² 6x + 7 e p3 = x² 3x + 4. A respeito destes polinômios, sabe-se que p3 = ap1 + bp2. Dessa forma, pode-se afirmar que a b vale: a) 1 b) 2 c) 3
PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:
PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas
= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.
VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
Exercícios de Matemática Equações de Terceiro Grau
Exercícios de Matemática Equações de Terceiro Grau 1. (Unesp 89) Com elementos obtidos a partir do gráfico adiante, determine aproximadamente as raízes das equações a) f(x) = 0 b) f(x) -2x = 0 6. (Uel
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.
ESTADO DE MINAS GERAIS ADVOCACIA-GERAL DO ESTADO. CONCURSO PÚBLICO Edital n 1/2006 PROCURADOR DO ESTADO NÍVEL I GRAU A. Caderno de Questões
ESTADO DE MINAS GERAIS ADVOCACIA-GERAL DO ESTADO CONCURSO PÚBLICO Edital n 1/2006 PROCURADOR DO ESTADO NÍVEL I GRAU A Caderno de Questões Prova de Questões Abertas SÁBADO - TARDE ESTADO DE MINAS GERAIS
CONCURSO DE ADMISSÃO 2010/2011 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONFERÊNCIA:
CONCURSO DE ADMISSÃO 2010/2011 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONFERÊNCIA: Chefe da Subcomissão de Matemática Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA
