0.1 Tipos importantes de funções
|
|
|
- Rafaela Madalena Santiago Brezinski
- 9 Há anos
- Visualizações:
Transcrição
1 . Tipos importantes de funções Função par: Se f(x) =f(x), paratodox Dom(f) então dizemos que a função f é uma função par. (note que o gráfico é uma curva simétrica pelo eixo y). Exemplos: f(x) =x é uma função par pois f ( x) =( x) = x = f(x) g(x) =cos(x) é uma função par, já que f( x) =cos( x) = cos x = f(x) Função ímpar: Se f( x) =f(x), paratodox Dom(f) então dizemos que a função f é uma função ímpar. (note que o gráfico é uma curva simétrica pela origem). Exemplos: f(x) =x 3 é uma função impar pois f( x) =( x) 3 = x 3 = f(x). Função injetora: Separaquaisquerx e x no domínio de f, x 6= x = f (x ) 6= f(x ),então dizemos que f é uma função injetora. Exemplos: f(x) =x 3 é uma função injetora já que x 6= x x 3 6= x3 f(x ) 6= f(x ) f(x) =x não é injetora pois tomando x =3e x = 3 temos x 6= x mas f(x )=9e f(x )=9 f (x )=f(x ) Geometricamente, para uma função f : R R, se qualquer reta paralela ao eixo dos x cortar o gráfico de f em apenas um ponto a função f é uma função injetora. Função sobrejetora: é aquela em que sua imagem coincide com seu contradomínio. Função bijetora: é aquela que é ao mesmo tempo bijetora e sobrejetora. Função composta: Sejam g : A B e f :Im(g) C. A função f g : A C dada por (f g)(x) =f(g(x)) é a função composta da função f com a função g. Exemplos: g(x) =x 3 e f(x) = x então (f g)(x) =f(g(x)) = f(x 3) = x 3 h(x) =e x e v(x) =sinx então (v h)(x) =v(h(x)) = v(e x )= sin(e x ) Observação: Note que em geral (f g)(x) 6= (g f)(x).no exemplo acima (g f)(x) =g(f(x)) = g( x ) = x 3 (g f)(x) = x 3 6= x 3 =(f g)(x) Função convexa: Uma função f :[a, b] R é dita convexa se para quaisquer x e y pertencentes a [a,b] e para todo t em [,], tem-se f(tx +( t)y) f(x)+( t)f(y). Umafunçãodiz-seestritamenteconvexase: f(tx +( t)y) <tf(x)+( t)f(y), paratodot (, ) e x 6= y.
2 Propriedades * Uma função convexa não possui pontos de máximo. * Se uma função convexa possui um ponto de mínimo local, ele também será um ponto de mínimo global. * Uma função estritamente convexa possui no máximo um ponto de mínimo. * O máximo de funções convexas também é uma função convexa. Função côncava Uma função f :[a, b] R é dita côncava se para quaisquer x e y pertencentes a [a,b] e para todo t em [,], tem-se f(tx +( t)y) f(x)+( t)f(y). Uma função diz-se estritamente ccôncava se : f(tx +( t)y) >tf(x)+( t)f(y), paratodot (, ) e x 6= y. * se f(x) é uma função côncava, então todo máximo local é máximo global *sef(x)éconvexaentão-f(x)écôncava * funções lineares são convexas e côncavas * se f (x) é côncava, g (x)= / f (x)é convexa x f(x)> *sef(x)éconvexa,g(x)=/f(x)écôncava x f(x)< Função inversa: Seja y = f(x) uma função onde f : A B. Se, para cada y B, existir exatamente um valor de x A tal que y = f(x), então podemos definir uma função g : B A tal que x = g(y). Afunçãog definida desta maneira é chamada função inversa de f e denotada por f. Observação :a) Pela definição podemos concluir que para existir a função inversa a função f deve ser bijetora. b) Se a função f possui uma inversa f então f f (y) =y e f f (x) =x c) Os gráficos de f e f são simétricos em relação a reta y = x Exemplos: A função f :[, + ) [, + ), definida por f(x) =x tem como inversa a função f :[, + ) [, + ) dada por f (x) = x (observe a simetria em relação a reta y = x)
3 y x Afunçãof : R R, definida por f(x) =x 3 temcomoinversaafunção f : R R dada por f (x) = 3 x (observe a simetria em relação a eta y = x) : 3
4 Construção de Gráficos Se c é um número real positivo então: Ográfico de f(x+c) éográfico de f(x) deslocado c unidades para a esquerda. Ográfico de f(x c) éográfico de f(x) deslocado c unidades para a direita. 4
5 Exemplo: f(x) =x e g(x) =f(x +)=(x +) =x + x Ográfico de f(x)+c éográfico de f(x) deslocado c unidades para cima. Ográfico de f(x) c éográfico de f(x) deslocado c unidades para baixo. 5
6 Ográfico de f(x) é igual ao gráfico de f(x) se x épositivoeéográfico de f(x) refletido através do eixo Ox se x é negativo Exemplo: Gráfico de f(x) =x 3 x +4(linha contínua) Gráfico de h(x) = f(x) = x3 x +4 (linha tracejada) 6
7 y x Ográfico de f(x) éográfico de f(x) refletido através do eixo Ox Exemplo: Gráfico de f(x) =x 3 x +4 (linha contínua) Gráfico de g(x) = f(x) = x 3 +x 4 (linha Tracejada) y x -5-7
8 Função Recíproca Definimos função recíproca de x àfunçãof : R R definida por f(x) = x Dom(f) =R, Im(f) =R Gráfico de f(x) = x y x Funçãomáximointeiro Dado um número real x, sempre é possível dizer que ou ele será um número inteiro n, ou estará entre um inteiro n e o seu sucessor n+. Por exemplo, o número real,7 está entre os inteiros e 3; o número real - está entre os inteiros -e-,onúmerorealestáentre3e4eonúmeroreal5éopróprionúmero inteiro 5. Usando a linguagem matemática, acabamos de dizer que, para todo número real x, existe um único inteiro n tal que n menor ou igual que x menor que n+. Esse número inteiro n é chamado de "parte inteira de x", cuja notação é [x]. Em relação aos exemplos, segue que: [,7]=, [- ] = -; [3,5] = 3 e [5] = 5. Vamos ver agora uma aplicação da função parte inteira. Se eu corro x quilômetros em t minutos, como posso saber o tempo médio por quilômetro? Se corri 5 km em 3 minutos, faço a divisão de 3 por 5 e concluo que o tempo médio é de 6 minutos/ km, mas, se tivesse corrido os mesmos 5 km em 3 minutos, qual seria o significado de 3/5 que me conduziria ao número 6,? A parte inteira indica 6 minutos e a parte decimal /5 de minuto ou, de outra forma, % de 6 segundos. Usando o conceito e o símbolo da função 8
9 parte inteira, concluímos que o tempo médio por quilômetro corrido será dado por: [x/t] minutos e {(x/ t)-[x/ t]}.6 segundos. A função parte inteira, que à primeira vista pode parecer uma simples brincadeira matemática, constitui importante ferramenta para a programação de computadores. Convido agora você a construir o gráfico da função parte inteira no plano cartesiano. Definimos função parte inteira de x à função f : R R definida por f(x) =[x] onde [x] é o maior inteiro menor que x Gráfico de f(x) =[x] y x Função n-ésima potência de x Definimos função x na n-ésima potência de x à função f : Domf(f) R definida por f(x) =x n. Se n é um número par então Dom(f) =R e Im(f) =[, + ) Se n é um número impar então Dom(f) =R e Im(f) =R 5 Função Racional Particular Definimos função racional de x àfunçãof : R R definida por f(x) = x n 9
10 Toda função do tipo y = x n,comx diferentedezero,éumcasoparticular de Função Racional. São exemplos dessas funções: y = x y = x 3 y = x 4 e assim por diante. Dom(f) =R Im(f) =R + = {x RÁx>} se n épar Im(f) =R = {x RÁx 6= } se n éimpar 6 Função Raiz n-ésima de x Definimos função raiz n-ésima de x a função f : Domf(f) R definida por f(x) = n x = x n. Se n é um número par então Dom(f) =[, + ) e Im(f) =[, + ) Se n é um número impar então Dom(f) =R e Im(f) =R Exemplos
11 6. Exercicios Resolvidos Função Raiz n-ésima de x ) Se x + x =3, calcule a) x + x b) x + x ) Resolva as seguintes equações: a) 3 x +4= b) x +=x c) 4 x +4x +3= 4 x + d) x += x + 3) Calcule r n 4 n+ + n+ 4) Determine o domínio da função f(x) = 5 x + 5) Faça o gráfico da função g(x) =x 3 7 Função Hiperbólica Seno Hiperbólico: Definimos a função seno hiperbólico, denotada por sinh, à função sinh : R R definida por
12 sinh(x) = ex e x Observe que: a) O domínio da função seno hiperbólico é R b) A função função seno hiperbólico assume todos os valores reais c).a função função seno hiperbólico passa na origem do sistema cartsiano Gráficos: Ográfico da função seno hiperbólico tem a seguinte forma Cosseno Hiperbólico:Definimos a função cosseno hiperbólico, denotada por senh, à função cosh : R R definida por cosh(x) = ex + e x Observe que: a) O domínio da função cosseno hiperbólico é R b) A função função cosseno hiperbólico assume somente valores positivos c).a função função cosseno hiperbólico passa no ponto P (, ) do sistema cartesiano Gráficos: Ográfico da função cosseno hiperbólico tem a seguinte forma cosh(x) = ex +e x
13 Aplicação: Ao observar um fio usado para transporte de energia elétrica, presoemdoispostes,notamosqueopesodomesmofazcomqueelefique meio arredondado, dando a impressão que o gráfico formado pela curva representa uma parábola, mas na verdade, tal curva é o gráfico da função cosseno hiperbólico, conhecida como a catenária (do Latim catena=cadeia) pois foi através de uma corrente metálica formada por elos (cadeias) que se observou primeiramente tal curva. Outras funções Hiperbólicas Tangente Hiperbólica: tanh(x) = sinh(x) cosh(x) Contangente Hiperbólica: coth(x) = cosh(x) sinh(x) Secante Hiperbólica: Cossecante Hiperbólica: sech(x) = csch(x) = cosh(x) sinh(x) As funções acima estarão definidas onde os respectivos denominadores não se anularem. 3
14 7. Exercícios Resolvidos Funções Hiperbólicas ) Mostre que cosh (x) sinh (t) = 4
A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:
1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em
FUNÇÕES. 1.Definição e Conceitos Básicos
FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra
Função Seno. Gráfico da Função Seno
Função Seno Dado um número real, podemos associar a ele o valor do seno de um arco que possui medida de radianos. Desta forma, podemos definir uma função cujo domínio é o conjunto dos números reais que,
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação. Professora: Walnice Brandão Machado
CÁLCULO 1 Teoria 0: Revisão Gráfico de Funções elementares Núcleo de Engenharias e Ciência da Computação FUNÇÕES POLINOMIAIS Função polinomial de 1º grau Professora: Walnice Brandão Machado O gráfico de
ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação
Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:
Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema
Trigonometria. Relação fundamental. O ciclo trigonométrico. Pré. b c. B Sabemos que a 2 = b 2 + c 2, dividindo os dois membros por a 2 : a b c 2 2 2
Trigonometria Relação fundamental C b a A c B Sabemos que a = b + c, dividindo os dois membros por a : a b c = + a a a sen + cos = Temos também que: b c senα= e cosα= a a Como b tgα= c, concluímos que:
Funções reais de variável real
Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.
ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André
Funções de uma variável real a valores reais E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores
Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor
Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 005/006 Estas notas constituem um material
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO
FUNÇÕES (1) FUNÇÃO DO 1º GRAU E DOMÍNIO DE UMA FUNÇÃO 1. (Epcar (Afa) 016) Para fazer uma instalação elétrica em sua residência, Otávio contatou dois eletricistas. O Sr. Luiz, que cobra uma parte fixa
FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0
FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode
Unidade 3 Função Afim
Unidade 3 Função Afim Definição Gráfico da Função Afim Tipos Especiais de Função Afim Valor e zero da Função Afim Gráfico definidos por uma ou mais sentenças Definição C ( x) = 10. x + Custo fixo 200 Custo
TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega
1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 6 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma
Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada
Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda
Aula 3 Função do 1º Grau
1 Tecnólogo em Construção de Edifícios Aula 3 Função do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação
Aula 4 Função do 2º Grau
1 Tecnólogo em Construção de Edifícios Aula 4 Função do 2º Grau Professor Luciano Nóbrega GABARITO 46) f(x) = x 2 + x + 1 www.professorlucianonobrega.wordpress.com 2 FUNÇÃO POLINOMIAL DO 2º GRAU Uma função
21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU
1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas
Matemática I Capítulo 08 Função Inversa
Nome: Nº Curso: Mineração Interado Disciplina: Matemática I Ano Prof. Leonardo Data: / /06 Matemática I Capítulo 08 Função Inversa 8. Função Inversa Consideremos os conjuntos A = {0,, 4, 6, 8} e B = {,
Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase
Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,
FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.
PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental
Notas de aula: Cálculo e Matemática Aplicados à Notas de aula: Gestão Ambiental 1 Funções Definição: Sejam A e B, dois conjuntos, A /0, B /0. Uma função definida em A com valores em B é uma lei que associa
Universidade dos Açores Curso de Especialização Tecnológica Gestão da Qualidade Matemática
Universidade dos Açores Curso de Especialização Tecnológica Gestão da Qualidade Matemática Sinopse: Nesta disciplina são abordados conceitos básicos da teoria dos erros, funções e gráficos, derivadas,
Tópico 2. Funções elementares
Tópico. Funções elementares.6 Funções trigonométricas A trigonometria (do grego trigonon triângulo + metron medida ) é um ramo da matemática que estuda os triângulos, particularmente triângulos em um plano
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
Equações Trigonométricas
Equações Trigonométricas. (Insper 04) A figura mostra o gráfico da função f, dada pela lei 4 4 f(x) (sen x cos x) (sen x cos x) O valor de a, indicado no eixo das abscissas, é igual a a) 5. b) 4. c). d)
FUNÇÃO QUADRÁTICA. Resumo
01 / 08 / 12 FUNÇÃO QUADRÁTICA 1. Definição Resumo Função do 2º grau ou função quadrática é a função f: R R definida por f(x) = ax² + bx + c, com a, b, c reais e a 0. Em que a é o coeficiente de x²; b
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Funções Logarítmica, Exponencial e Hiperbólicas Definir as funções logarítmica, exponencial e hiperbólicas; Enunciar
é um grupo abeliano.
Notas de aulas de Álgebra Moderna Prof a Ana Paula GRUPO Definição 1: Seja G munido de uma operação: x, y x y sobre G A operação sobre G é chamada de grupo se essa operação se sujeita aos seguintes axiomas:
Função do 1 Grau - AFA
Função do 1 Grau - AFA 1. (AFA 2009) Considere as funções reais f : IR IR dada por f(x) = x + a, g : IR IR dada por g(x) = x a, h : IR IR dada por h(x) = x a Sabendo-se que a < 0, é INCORRETO afirmar que
Bases Matemáticas. Daniel Miranda 1. 23 de maio de 2011. sala 819 - Bloco B página: daniel.miranda
Daniel 1 1 email: [email protected] sala 819 - Bloco B página: http://hostel.ufabc.edu.br/ daniel.miranda 23 de maio de 2011 Elementos de Lógica e Linguagem Matemática Definição Uma proposição
Matemática. A probabilidade pedida é p =
a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade
3º Ano do Ensino Médio. Aula nº09 Prof. Paulo Henrique
Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº09 Prof. Paulo Henrique Assunto: Funções do Segundo Grau 1. Conceitos básicos Definição: É uma função que segue a lei: onde, Tipos
É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A
4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los
Cálculo I -A- Humberto José Bortolossi. Aula 1 18 de agosto de 2009. Departamento de Matemática Aplicada Universidade Federal Fluminense
Cálculo I -A- Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 1 18 de agosto de 2009 Aula 1 Cálculo I -A- 1 Apresentação do curso Aula 1 Cálculo I -A-
Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE
Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto
AULA 10 FUNÇÃO COMPOSTA. x x + 2 >0 EXERCÍCIOS DE SALA MATEMÁTICA A1. Resolução: Determinando as somas: f(x) + g(x) = x 2x 3 x 1. f(x) + g(x) = x x 4
MATEMÁTICA A AULA 0 FUNÇÃO COMPOSTA Sejam as unções : A B e g: B C, chama-se unção composta de g com à unção h: A C tal que h() = g[()] = g o (). Determinando as somas: () + g() = () + g() = e g() - ()
PARTE 11 VETOR GRADIENTE:
PARTE 11 VETOR GRADIENTE: INTERPRETAÇÃO GEOMÉTRICA 11.1 Introdução Dada a função real de n variáveis reais, f : Domf) R n R X = 1,,..., n ) f 1,,..., n ), se f possui todas as derivadas parciais de primeira
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Ensinando a trigonometria através de materiais concretos
UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA SEMANA DA MATEMÁTICA 2014 Ensinando a trigonometria através de materiais concretos PIBID MATEMÁTICA 2009 CURITIBA
Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas.
Equações Trigonométricas Uma equação trigonométrica envolve como incógnitas arcos de circunferência e relacionados por meio de funções trigonométricas. Por exemplo: A maioria das equações trigonométricas
CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS CURSO DE MATEMÁTICA
1 CENTRO UNIVERSITÁRIO DA SERRA DOS ÓRGÃOS CURSO DE MATEMÁTICA CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES REAIS DE VARIÁVEIS REAIS A PARTIR DE TRANSFORMAÇÕES ISOMÉTRICAS 1 TRANSFORMAÇÕES GEOMÉTRICAS ISOMÉTRICAS
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE EDUCAÇÃO TUTORIAL - MATEMÁTICA PROJETO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR Assuntos: Produtos Notáveis; Equações; Inequações; Função; Função Afim; Paridade;
2. Qual dos gráficos abaixo corresponde à função y= x? a) y b) y c) y d) y
EEJMO TRABALHO DE DP 01 : 1 COL MANHÃ MATEMÁTICA 1. Na locadora A, o aluguel de uma fita de vídeo é de R$, 50, por dia. A sentença matemática que traduz essa função é y =,5.. Se eu ficar 5 dias com a fita,
Aula 1 Variáveis aleatórias contínuas
Aula 1 Variáveis aleatórias contínuas Objetivos: Nesta aula iremos estudar as variáveis aleatórias contínuas e você aprenderá os seguintes conceitos: função de densidade de probabilidade; função de distribuição
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CÁLCULO L NOTAS DA VIGÉSIMA PRIMEIRA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, abordaremos a técnica de integração conhecida como frações parciais. Esta técnica pode ser utilizada para
Capítulo 3. Fig Fig. 3.2
Capítulo 3 3.1. Definição No estudo científico e na engenharia muitas vezes precisamos descrever como uma quantidade varia ou depende de outra. O termo função foi primeiramente usado por Leibniz justamente
2 - Generalidades sobre funções reais de variável real
Análise Matemática I - 006/007 - Generalidades sobre unções reais de variável real.-deinição e Propriedades De.. Sejam A e B conjuntos, e uma correspondência de A para B, isto é um processo de associar
Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro
Razão e Proporção Razão: comparação de quantidades usando uma divisão. Chama-se razão de dois números racionais a e b (com b 0) ao quociente do primeiro pelo segundo. Indica-se: a/b ou a : b e, lê-se:
Aplicações de integração. Cálculo 2 Prof. Aline Paliga
Aplicações de integração Cálculo Prof. Aline Paliga Áreas entre curvas Nós já definimos e calculamos áreas de regiões que estão sob os gráficos de funções. Aqui nós estamos usando integrais para encontrar
CÁLCULO I. 1 Funções. Objetivos da Aula. Aula n o 01: Funções. Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 01: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Denir funções compostas e inversas.
Informática no Ensino da Matemática
Informática no Ensino da Matemática Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ Lista de Exercícios 3 ATIVIDADE 1 (a) Sejam u =(a b)/(a + b), v =(b c)/(b + c) ew =(c a)/(c + a). Mostre
Álgebra Linear Computacional
Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco. PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br Sistemas de Equações Lineares Espaços
Capítulo 4. Retas e Planos. 4.1 A reta
Capítulo 4 Retas e Planos Neste capítulo veremos como utilizar a teoria dos vetores para caracterizar retas e planos, a saber, suas equações, posições relativas, ângulos e distâncias. 4.1 A reta Sejam
Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA
Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho
Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)
CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
COMPREENDENDO AS FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS COM O AUXÍLIO DO CÁLCULO DIFERENCIAL
COMPREENDENDO AS FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS COM O AUXÍLIO DO CÁLCULO DIFERENCIAL Airton Temistocles Gonçalves de Castro Universidade Federal de Pernambuco [email protected] Ademilson do Nascimento
Aplicações das derivadas ao estudo do gráfico de funções
Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer
ÁLGEBRA LINEAR. Transformações Lineares. Prof. Susie C. Keller
ÁLGEBRA LINEAR Transformações Lineares Prof. Susie C. Keller É um tipo especial de função (aplicação), onde o domínio e o contradomínio são espaços vetoriais. Tanto a variável independente quanto a variável
Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções
Métodos Formais Relações e Funções por Mauro Silva Agenda Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções MF - Relações e Funções 2 1 Relações Binárias Definição
AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA. MATEMÁTICA B Curso de Artes Visuais
Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro AGRUPAMENTO DE ESCOLAS DA SÉ GUARDA MATEMÁTICA B Curso de Artes Visuais ANO LECTIVO: 2015/2016 11º ANO 1º PERÍODO PLANIFICAÇÃO
Inversão de Matrizes
Inversão de Matrizes Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Álgebra Matricial - 2014.2 13 de
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.
e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 O preço do litro da gasolina no Estado do Rio de Janeiro custa, em média R$ 2,90. Uma pessoa deseja abastecer seu carro, em um posto no Rio de Janeiro, com 40 reais. Com quantos
a, em que a e b são inteiros tais que a é divisor de 3
Matemática 0. Considere a expressão x x 3 5x x 6. Pede-se: A) encontrar o valor numérico da expressão para x. B) obter todas as raízes complexas do polinômio p(x) x x 3 5x x 6. Questão 0 Comentários: A
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Ludmilla Rangel Cardoso Silva Kamila Gomes Carmem Lúcia Vieira Rodrigues Azevedo
NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B
R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C
FUNÇÃO DO 2º GRAU PROF. LUIZ CARLOS MOREIRA SANTOS
Questão 01) FUNÇÃO DO º GRAU A função definida por L(x) = x + 800x 35 000, em que x indica a quantidade comercializada, é um modelo matemático para determinar o lucro mensal que uma pequena indústria obtém
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Módulo I: Cálculo Diferencial e Integral Fundamentos e tópicos de revisão Professora Renata Alcarde Sermarini Notas de aula do professor
Exercícios de Aprofundamento Mat Polinômios e Matrizes
. (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto
FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar. Simulado de Matemática ITA. ALUNO(A): N o TURMA:
C/007/MATEMATICA/ITA/IME/MAT.599ita(prova)/ Cleo5.6.07 CEARÁ 7 DE SETEMBRO FUNDADOR PROF. EDILSON BRASIL SOÁREZ O Colégio que ensina o aluno a estudar Central de Atendimento: 006.7777 o Ensino Médio Simulado
Programação de Aulas 1º Ano 3º Bimestre De 07/08 a 20/09
Programação de Aulas º Ano 3º Bimestre De 07/08 a 0/09 Data Assunto Geral Assunto Específico 07/08 Função Eponencial Introdução Revisão Potência e Radical 07/08 Definição - Gráfico 08/08 Função e 4/08
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 07: Teorema do Valor Intermediário, Teorema do Confronto e Limite Trigonométrico Fundamental Objetivos da Aula Conhecer e aplicar o Teorema
A recuperação foi planejada com o objetivo de lhe oportunizar mais um momento de aprendizagem.
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO, ADRIANA E GRAYSON DATA: / 1 / 014 VALOR: 0,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMA: NOME COMPLETO: Nº: Prezado(a) aluno(a), A recuperação foi
Prof. Doherty Andrade. 25 de outubro de 2005
Funções Hiperbólicas - Resumo Prof. Doherty Andrade 5 de outubro de 005 Sumário Funções Transcendentes. Função Logaritmo Natural............................ Funções Trigonométricas Hiperbólicas.....................
Roteiro da aula. MA091 Matemática básica. Quadrados perfeitos. Raiz quadrada. Aula 8 Raízes. Francisco A. M. Gomes. Março de 2016
Roteiro da aula MA09 Matemática básica Aula 8 Francisco A. M. Gomes UNICAMP - IMECC Março de 206 2 Francisco A. M. Gomes (UNICAMP - IMECC) MA09 Matemática básica Março de 206 / 22 Francisco A. M. Gomes
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 FUNÇÕES 1 MATEMÁTICA ELEMENTAR CAPÍTULO 3 SUMÁRIO Apresentação -------------------------------------------------------2 Capítulo 3 ------------------------------------------------------
Calculando seno(x)/x com o interpretador Hall.
Calculando seno(x)/x com o interpretador Hall. Problema Seja, por exemplo, calcular o valor do limite fundamental f(x)=sen(x)/x quando x tende a zero. Considerações Fazendo-se a substituição do valor 0
Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase
Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,
Propriedades das Funções Contínuas e Limites Laterais Aula 12
Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -
ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU
INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA DE VISEU Departamento Matemática Disciplina Matemática I Curso Gestão de Empresas Ano 1 o Ano Lectivo 2007/2008 Semestre 1 o Apontamentos Teóricos:
MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere
FUNDAMENTOS DA MATEMÁTICA
FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
01) 45 02) 46 03) 48 04) 49,5 05) 66
PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - ABRIL DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0 Sobre a função
Comunicação e Expressão em Língua portuguesa
Comunicação e Expressão em Língua portuguesa Código: Carga Horária: 60h Ementa Disciplina indispensável para o efetivo acompanhamento do curso pelo aluno, uma vez que a fluência na língua materna possibilita
5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f
5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de
UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,
Números inteiros Z ± 7º Ano / 2013
Números inteiros Z ± 7º Ano / 2013 Sobre a origem dos sinais A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número.
Planificação do 2º Período
Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 2º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 0 Ano
