Números inteiros Z ± 7º Ano / 2013

Tamanho: px
Começar a partir da página:

Download "Números inteiros Z ± 7º Ano / 2013"

Transcrição

1 Números inteiros Z ± 7º Ano / 2013 Sobre a origem dos sinais A idéia sobre os sinais vem dos comerciantes da época. Os matemáticos encontraram a melhor notação para expressar esse novo tipo de número. Veja como faziam tais comerciantes: Suponha que um deles tivesse em seu armazém duas sacas de feijão com 10 kg cada. Se esse comerciante vendesse num dia 8 Kg de feijão, ele escrevia o número 8 com um traço semelhante ao atual sinal de menos na frente para não se esquecer de que no saco faltavam 8 Kg de feijão. Mas se ele resolvesse despejar no outro saco os 2 Kg que restaram, escrevia o número 2 com dois traços cruzados semelhante ao atual sinal de mais na frente, para se lembrar de que no saco havia 2 Kg de feijão a mais que a quantidade inicial. Com essa nova notação, os matemáticos poderiam, não somente indicar as quantidades, mas também representar o ganho ou a perda dessas quantidades, através de números, com sinal positivo ou negativo. O conjunto Z dos Números Inteiros Definimos o conjunto dos números inteiros como a reunião do conjunto dos números naturais, o conjunto dos opostos dos números naturais e o zero. Este conjunto é denotado pela letra Z Zahlen=número em alemão. Este conjunto pode ser escrito por: Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...} Exemplos de subconjuntos do conjunto Z a Conjunto dos números inteiros excluído o número zero: Z* = {..., -4, -3, -2, -1, 1, 2, 3, 4,...} b Conjunto dos números inteiros não negativos: Z + = {0, 1, 2, 3, 4,...} c Conjunto dos números inteiros não positivos: Z - = {..., -4, -3, -2, -1, 0} Observação: Não existe padronização para estas notações. REPRESENTAÇÃO GEOMÉTRICA

2 Os segmentos de reta OA OA tem uma unidade, OB OB tem 2 unidade e OC OC tem 3. Então cada elemento número do conj. Z é representado por um ponto na reta. Como vimos no conjunto dos números naturais N as letras A,B,C são imagens geométricas dos números 1,2,3. O mesmo ocorre com A,B,C, porém agora associados a 1,-2,-3. Reta Numerada Uma forma de representar geometricamente o conjunto Z é construir uma reta numerada, considerar o número 0 como a origem e o número 1 em algum lugar, tomar a unidade de medida como a distância entre 0 e 1 e por os números inteiros da seguinte maneira: Ao observar a reta numerada notamos que a ordem que os números inteiros obedecem é crescente da esquerda para a direita, razão pela qual indicamos com uma seta para a direita. Esta consideração é adotada por convenção, o que nos permite pensar que se fosse adotada outra forma, não haveria qualquer problema. Baseando-se ainda na reta numerada podemos afirmar que todos os números inteiros possuem um e somente um antecessor e também um e somente um sucessor. Ordem e simetria no conjunto Z O sucessor de um número inteiro é o número que está imediatamente à sua direita na reta em Z e o antecessor de um número inteiro é o número que está imediatamente à sua esquerda na reta em Z. a 3 é sucessor de 2 b 2 é antecessor de 3 c -5 é antecessor de -4 d -4 é sucessor de -5 e 0 é antecessor de 1 f 1 é sucessor de 0 g -1 é sucessor de -2 h -2 é antecessor de -1 Todo número inteiro exceto o zero, possui um elemento denominado simétrico ou oposto -z e ele é caracterizado pelo fato geométrico que tanto z como -z estão à mesma distância da origem do conjunto Z que é 0. a O oposto de ganhar é perder, logo o oposto de +3 é -3. b O oposto de perder é ganhar, logo o oposto de -5 é +5. Módulo de um número Inteiro O módulo ou valor absoluto de um número Inteiro é definido como sendo o maior valor máximo entre um número e seu elemento oposto e pode ser denotado pelo uso de duas barras verticais. Assim: x = max{-x,x} a 0 = 0 b 8 = 8

3 c -6 = 6 Observação: Do ponto de vista geométrico, o módulo de um número inteiro corresponde à distância deste número até a origem zero na reta numérica inteira. ESTUDO DOS SINAIS MULTIPLICAÇÃO DIVISÃO * * * * : : : : OPERAÇÕES COM NÚMEROS INTEIROS Z Soma adição de números inteiros Para melhor entendimento desta operação, associaremos aos números inteiros positivos a idéia de ganhar e aos números inteiros negativos a idéia de perder. ganhar 3 + ganhar 4 = ganhar = +7 perder 3 + perder 4 = perder = -7 ganhar 8 + perder 5 = ganhar = +3 perder 8 + ganhar 5 = perder = -3 Atenção: O sinal + antes do número positivo pode ser dispensado, mas o sinal - antes do número negativo nunca pode ser dispensado. a = 0 b = 9 c +5-1 = 4 EXERCÍCIOS 1-O professor de Educação Física organizou um campeonato de futebol de salão entre os alunos das 6 séries. Veja, na tabela, o total de gols que cada time marcou e sofreu nesse campeonato. Times Gols pró Gols contra Saldo de gols 6'A 10 18? 6' ? 6'C 13 17? 6'D 15 7? ME 12 12? Calcule o saldo de gols de cada time. Que equipe ficou com o maior saldo? E com o menor?

4 acalcule o saldo de gols de cada time. bque equipe ficou com o maior saldo? ce com o menor? dque equipes ficaram com saldos opostos? 2-Copie, completando: I - Na comparação de um número um número negativo com zero, o maior é II - Na comparação de um número positivo com zero, o maior é III - Na comparação de um número negativo com um positivo, o maior é IV Na comparação de dois número negativos, o maior é 3-Qual é o número maior: a+230 ou +150? b-230 ou 150 c+230 ou 150? d+230 ou -150? 4-Compare, usando os sinais > ou < a b c d Qual é o número menor: a- 246 ou - 247? b+246 ou - 247? c- 470 ou - 469? d- 470 ou +469? 6-Complete a tabela, utilizando a calculadora para conferir os cálculos: Elimine os parênteses e calcule: a b c d e Eu tinha um saldo de -R$ 520,00 no banco. Depositei R$ 810,00 e paguei com cheques as seguintes contas: Aluguel: R$ 440,00; Supermercado: R$ 180,00. Descontando os cheques, qual será o meu saldo?

5 12- Elimine os parênteses e calcule: a b c Quem fez mais pontos no jogo de dardos? Quantos? Quem fez menos pontos? Quantos? 10-Um campeonato de basquete terminou com três equipes empatadas em 1º lugar. O desempate foi feito pelo saldo de cestas pontos dos jogos entre as três, cujos resultados foram Londrina 88 X 87 Franca Mogi 96 X 92 Londrina Franca 109 X 94 Mogi 1. Qual foi a equipe campeã a que teve o maior saldo 2. Qual foi a diferença entre o saldo de Londrina e Mogi 14-Que número eu devo colocar no lugar do para que a diferença seja -3? a -5 b -3 c -2 d -0 e --3 f Indique + se o resultado for positivo e - se for negativo: Agora, elimine os parênteses e calcule: a b c d Qual é a diferença? a b c d e-2 +4 f-12-1 d-1-5 e Calcule: a b c-4-4 d e f0-7

6 g-4-5 h Complete usando =,> ou < a d o -51 B e C f Resolva: a b c d e f Elimine os parênteses: a b c d 3 1 e f g h i j

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L1) 1. Em que altitude está um mergulhador que desceu num primeiro momento 5 m e depois desceu, a partir deste ponto, mais 6 m? Lembre-se de

Leia mais

Matemática Básica Intervalos

Matemática Básica Intervalos Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo

números decimais Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos 2 de um bolo se dividirmos esse bolo A UA UL LA Frações e números decimais Introdução Inicialmente, as frações são apresentadas como partes de um todo. Por exemplo, teremos de um bolo se dividirmos esse bolo em cinco partes iguais e tomarmos

Leia mais

Centro Estadual de Educação Supletiva de Votorantim

Centro Estadual de Educação Supletiva de Votorantim Centro Estadual de Educação Supletiva de Votorantim MÓDULO 6 Nesta U.E., você aprenderá um novo conjunto de números para representar situações em que apenas os elementos do conjunto N não são suficientes.

Leia mais

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina.

Matrizes e Sistemas Lineares. Professor: Juliano de Bem Francisco. Departamento de Matemática Universidade Federal de Santa Catarina. e Aula Zero - Álgebra Linear Professor: Juliano de Bem Francisco Departamento de Matemática Universidade Federal de Santa Catarina agosto de 2011 Outline e e Part I - Definição: e Consideremos o conjunto

Leia mais

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA

EXERCÍCIOS PREPARATÓRIOS PARA AS DISCIPLINAS INTRODUTÓRIAS DA MATEMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: Prof. Dr. Daniel Cordeiro de Morais Filho BOLSISTA: Tiago Alves

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

Somando os termos de uma progressão aritmética

Somando os termos de uma progressão aritmética A UA UL LA Somando os termos de uma progressão aritmética Introdução Um pouco de História Na aula passada, mostramos como calcular qualquer termo de uma progressão aritmética se conhecemos um de seus termos

Leia mais

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas:

ORIENTAÇÕES: 1) Considere as expressões algébricas dos quadros abaixo: Responda às perguntas: 6ª LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA POLINÔMIOS E OPERAÇÕES COM POLINÔMIOS ORIENTAÇÕES: Ensino Fundamental 8 Ano Realize os exercícios em folhas de fichário com a identificação completa,

Leia mais

Congruências Lineares

Congruências Lineares Filipe Rodrigues de S Moreira Graduando em Engenharia Mecânica Instituto Tecnológico de Aeronáutica (ITA) Agosto 006 Congruências Lineares Introdução A idéia de se estudar congruências lineares pode vir

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

FUNDAMENTOS DA MATEMÁTICA

FUNDAMENTOS DA MATEMÁTICA FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º

Leia mais

Disciplina: Matemática Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33.

Disciplina: Matemática Período: 1º. Equipe - 3 ano - turmas: 31, 32 e 33. Número natural; Números e medidas; Contando de 10 em 10; Cem unidades ou uma centena; Centenas, dezenas e unidades; Antecessor e sucessor de um número natural; Comparando números naturais; Identificar

Leia mais

Seleção de módulos do Sistema de Ensino Ser 2014

Seleção de módulos do Sistema de Ensino Ser 2014 ABEU COLÉGIOS Disciplina: Matemática Série: 1 ano / Fundamental I (Bimestres) 1 Caderno 1 Seleção de módulos do Sistema de Ensino Ser 2014 Módulos Primeiras Noções - Comparação de tamanhos - Noções de

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

Um pouco da História dos Logaritmos

Um pouco da História dos Logaritmos Um pouco da História dos Logaritmos Os logaritmos, como instrumento de cálculo, surgiram para realizar simplificações, uma vez que transformam multiplicações e divisões nas operações mais simples de soma

Leia mais

Planificação Anual de Matemática 5º Ano

Planificação Anual de Matemática 5º Ano Planificação Anual de Matemática 5º Ano DOMÍNI OS CONTEÚDOS METAS AULA S Números naturais Compreender as propriedades e regras das operações e usá-las no cálculo. Propriedades das operações e regras operatórias:

Leia mais

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio.

As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio. NÚMEROS COMPLEXOS Prof Eduardo Nagel. DEFINIÇÃO No conjunto dos números reais R, temos que a = a. a é sempre um número não negativo para todo a. Ou seja, não é possível extrair a rai quadrada de um número

Leia mais

Matemática Revisão de Decimais

Matemática Revisão de Decimais Matemática Revisão de Decimais Aluno: Ficha: Turma: Data: Material\Fundamental_II\Matemática\F7\F_078 1) Complete o quadro abaixo: Escrita de Números Decimais com algarismos por extenso 1,3 dezoito milésimos

Leia mais

Geometria Analítica. Prof Marcelo Maraschin de Souza

Geometria Analítica. Prof Marcelo Maraschin de Souza Geometria Analítica Prof Marcelo Maraschin de Souza Disciplina Aulas: Segunda-feira e terça-feira: 8:00 até 9:50 Avaliações: listas de exercícios e três provas; Sala: 222; Livros. Conteúdos Plano de Ensino

Leia mais

SÍMBOLOS MATEMÁTICOS. adição Lê-se como "mais" Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5.

SÍMBOLOS MATEMÁTICOS. adição Lê-se como mais Ex: 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. SÍMBOLOS MATEMÁTICOS Símbolo Nome Explicação + adição Lê-se como "mais" 2+3 = 5, significa que se somarmos 2 e 3 o resultado é 5. - subtração Lê-se como "menos" 5-3 = 2, significa que se subtrairmos 3

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS CONJUNTO DOS NÚMEROS INTEIROS INTRODUÇÃO um pouco de história Foi difícil a aceitação da idéia da existência de números negativos. Os próprios gregos, na Antiguidade, reconhecidos como grandes pensadores

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 5B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Conjunto dos números racionais O conjunto dos números racionais é uma ampliação do conjunto dos números inteiros.

Leia mais

Nesta aula vamos rever operações com frações,

Nesta aula vamos rever operações com frações, A UA UL LA Operações com frações Introdução Nesta aula vamos rever operações com frações, verificando a validade das propriedades operatórias dos números racionais. Veremos também o cálculo de expressões

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente

Leia mais

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA

ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA ORIENTAÇÕES CURRICULARES 7º ANO MATEMÁTICA Objetivos Conteúdos Habilidades Reconhecer números inteiros, e as diferentes formas de representá-los e relacioná-los, apropriando-se deles. Números inteiros:

Leia mais

Unidade 5. A letra como incógnita equações do segundo grau

Unidade 5. A letra como incógnita equações do segundo grau Unidade 5 A letra como incógnita equações do segundo grau Para início de conversa... Vamos avançar um pouco mais nas resoluções de equações. Desta vez, vamos nos focar nas equações do segundo grau. Esses

Leia mais

Aluno(a) Turma N o Ano 6 o Ensino Fundamental Data / / 15 Matéria Matemática Professora Maíza Silveira. Lista de Exercícios

Aluno(a) Turma N o Ano 6 o Ensino Fundamental Data / / 15 Matéria Matemática Professora Maíza Silveira. Lista de Exercícios Aluno(a) Turma N o Ano 6 o Ensino Fundamental Data / / 15 Matéria Matemática Professora Maíza Silveira Lista de Exercícios http://mirhyamcanto.blogspot.com.br/2009/06/preparativos-para-festa-de-sao-joao.html

Leia mais

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo

MÓDULO XVI MEDIDAS DE ÂNGULOS. Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. 1. Definição de ângulo MÓDUL XVI 1. Definição de ângulo MEDIDS DE ÂNGULS Um ângulo é classificado como agudo quando sua medida é maior que 0º e menor que 90º. Ângulo é a união de duas semi-retas e de mesma origem e não colineares.

Leia mais

PROJETO PILOTO O uso do Material Dourado como ferramenta para compreender o Sistema de Numeração Decimal-posicional.

PROJETO PILOTO O uso do Material Dourado como ferramenta para compreender o Sistema de Numeração Decimal-posicional. ESCOLA MUNICIPAL JOAQUIM DO RÊGO CAVALCANTI PROJETO PILOTO O uso do Material Dourado como ferramenta para compreender o Sistema de Numeração Decimal-posicional. Ipojuca/2012 O uso do Material Dourado como

Leia mais

NÚMEROS NATURAIS < > Matemática = = Editora Exato 41 1. INTRODUÇÃO 4. OPERAÇÕES COM NÚMEROS NATURAIS

NÚMEROS NATURAIS < > Matemática = = Editora Exato 41 1. INTRODUÇÃO 4. OPERAÇÕES COM NÚMEROS NATURAIS NÚMEROS NATURAIS. INTRODUÇÃO Desde épocas mais antigas, a idéia de números a- companha a humanidade, e sempre o homem utilizou-se de símbolos, como marcações em paredes de cavernas, em ossos, para registrar

Leia mais

PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO. Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações

PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO. Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações PLANIFICAÇÃO ANUAL 2015/2016 MATEMÁTICA- 3º ANO Calendarização Domínio/ Subdomínio Objetivos gerais Descritores de desempenho Números e Operações Conhecer os números Números naturais ordinais 1.Utilizar

Leia mais

Programa de Matemática 2º ano

Programa de Matemática 2º ano Programa de Matemática 2º ano Introdução: A Matemática é uma das ciências mais antigas e é igualmente das mais antigas disciplinas escolares, tendo sempre ocupado, ao longo dos tempos, um lugar de relevo

Leia mais

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 1 _ Função Polinomial do 2º Grau Professor Luciano Nóbrega Maria Auxiliadora FUNÇÃO POLINOMIAL DO 2º GRAU 2 Uma função polinomial do 2º grau (ou simplesmente, função do 2º grau) é uma relação

Leia mais

Usando potências de 10

Usando potências de 10 Usando potências de 10 A UUL AL A Nesta aula, vamos ver que todo número positivo pode ser escrito como uma potência de base 10. Por exemplo, vamos aprender que o número 15 pode ser escrito como 10 1,176.

Leia mais

Apontamentos de matemática 5.º ano - Múltiplos e divisores

Apontamentos de matemática 5.º ano - Múltiplos e divisores Múltiplos e divisores (revisão do 1.º ciclo) Os múltiplos de um número inteiro obtêm-se multiplicando esse número pela sequência dos números inteiros. Exemplos: Alguns múltiplos de 6 são: 0, 6, 12, 18,

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

1.2. Grandezas Fundamentais e Sistemas de Unidades

1.2. Grandezas Fundamentais e Sistemas de Unidades CAPÍTULO 1 Grandezas, Unidades e Dimensões 1.1. Medidas Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenómeno, susceptível de ser medida, i.e. à qual se pode atribuir um

Leia mais

Números escritos em notação científica

Números escritos em notação científica Notação Científica Números escritos em notação científica Escrever um número em notação científica tem muitas vantagens: Para números muito grandes ou muito pequenos poderem ser escritos de forma abreviada.

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª Série do Ensino Médio Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 O perímetro de um piso retangular de cerâmica mede 14 m e sua área, 12

Leia mais

Estruturas de Repetição

Estruturas de Repetição Estruturas de Repetição Lista de Exercícios - 04 Algoritmos e Linguagens de Programação Professor: Edwar Saliba Júnior Estruturas de Repetição O que são e para que servem? São comandos que são utilizados

Leia mais

SIMULADO MATEMÁTICA. 3) Com os algarismos 2, 5, 7, e 8, quantos números naturais de três algarismos distintos podem ser escritos?

SIMULADO MATEMÁTICA. 3) Com os algarismos 2, 5, 7, e 8, quantos números naturais de três algarismos distintos podem ser escritos? NOME: DATA DE ENTREGA: / / SIMULADO MATEMÁTICA 1) Uma sorveteria oferece uma taça de sorvete que pode vir coberta com calda de chocolate, ou de morango ou de caramelo. O sorvete pode ser escolhido entre

Leia mais

a) 2 b) 3 c) 4 d) 5 e) 6

a) 2 b) 3 c) 4 d) 5 e) 6 Recordando operações básicas 01. Calcule as expressões abaixo: a) 2254 + 1258 = b) 300+590 = c) 210+460= d) 104+23 = e) 239 54 = f) 655-340 = g) 216-56= h) 35 x 15 = i) 50 x 210 = j) 366 x 23 = k) 355

Leia mais

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f

5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f 5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de

Leia mais

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais.

POTENCIAÇÂO. A potenciação é uma forma de representar uma multiplicação de fatores iguais. POTENCIAÇÂO A potenciação é uma forma de representar uma multiplicação de fatores iguais. A potência é o resultado. x x x cada termo desta multiplicação é chamado de fator, portanto temos 4 fatores iguais

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

ENS. FUNDAMENTAL COMPLETO PROCESSO SELETIVO SIMPLIFICADO Nº 001/2015 LÍNGUA PORTUGUESA. (1 à 10) 1/11

ENS. FUNDAMENTAL COMPLETO PROCESSO SELETIVO SIMPLIFICADO Nº 001/2015 LÍNGUA PORTUGUESA. (1 à 10) 1/11 LÍNGUA PORTUGUESA (1 à 10) 1/11 Leia o texto: ZICO Jogador de futebol carioca (3/3/ 1953). Segundo maior artilheiro da história da seleção brasileira. Caçula de seis filhos de um alfaiate, Arthur Antunes

Leia mais

Circuitos Aritméticos

Circuitos Aritméticos Circuitos Aritméticos Semi-Somador Quando queremos proceder à realização de uma soma em binário, utilizamos várias somas de dois bits para poderemos chegar ao resultado final da operação. Podemos, então,

Leia mais

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5

FRAÇÃO. Número de partes pintadas 3 e números de partes em foi dividida a figura 5 Termos de uma fração FRAÇÃO Para se representar uma fração através de figuras, devemos dividir a figura em partes iguais, em que o numerador representar a parte considera (pintada) e o denominador representar

Leia mais

MATEMÁTICA PROVA 2º BIMESTRE 8º ANO

MATEMÁTICA PROVA 2º BIMESTRE 8º ANO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 2º BIMESTRE 8º ANO 2010 QUESTÃO 1 Alberto quis apostar uma corrida

Leia mais

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa.

1º período. Conhecer os algarismos que compõem o SND (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Diferenciar algarismos e números. e vice-versa. 1º período Os números naturais: Sistema de Numeração Decimal. (SND) Um pouco de história: sistema de numeração dos romanos. Os números naturais Sistema de Numeração Decimal (SND). Unidades e dezenas. Unidades,

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7 11 do total de shapes, 2. segunda semana, na terceira semana,

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7 11 do total de shapes, 2. segunda semana, na terceira semana, GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 7 o ano do Ensino Fundamental Turma 2 o semestre de 2014 Data / / Escola Aluno 16 Questão 01 A empresa

Leia mais

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.

Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 Tecnólogo em Construção de Edifícios Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas de todas

Leia mais

Considere as situações:

Considere as situações: Considere as situações: 1ª situação: Observe as dimensões da figura a seguir. Qual a expressão que representa a sua área? X X x 2 ou x. x 2ª situação: Deseja se cercar um terreno de forma retangular cujo

Leia mais

Planificação Anual Departamento 1.º Ciclo

Planificação Anual Departamento 1.º Ciclo Modelo Dep-01 Agrupamento de Escolas do Castêlo da Maia Planificação Anual Departamento 1.º Ciclo Ano 3º Ano letivo 2013.2014 Disciplina: Matemática Turmas: 3º ano Professores: todos os docentes do 3º

Leia mais

INTEGRAIS INTEGRAL INDEFINIDA

INTEGRAIS INTEGRAL INDEFINIDA INTEGRAIS INTEGRAL INDEFINIDA A integração indefinida ou anti-derivação é a operação inversa da derivação, da mesma forma que a subtração é a operação inversa da adição ou a divisão é a operação inversa

Leia mais

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par.

Teoria dos Números. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número par. Teoria dos Números Resultado obtido nas aulas de Teoria dos Números. Números pares e números ímpares. A soma de dois números pares é sempre um número par. O produto de dois números pares é sempre um número

Leia mais

Aula 6 Medidas de Tendência Central

Aula 6 Medidas de Tendência Central 1 Estatística e Probabilidade Aula 6 Medidas de Tendência Central Professor Luciano Nóbrega Somatório Quando queremos representar uma soma de valores que obedecem à uma sequência, podemos codificá-la através

Leia mais

=...= 1,0 = 1,00 = 1,000...

=...= 1,0 = 1,00 = 1,000... OPERAÇÕES COM NÚMEROS DECIMAIS EXATOS Os números decimais exatos correspondem a frações decimais. Por exemplo, o número 1,27 corresponde à fração127/100. 127 = 1,27 100 onde 1 representa a parte inteira

Leia mais

Lista de Exercícios Critérios de Divisibilidade

Lista de Exercícios Critérios de Divisibilidade Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 10 - Critérios de - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=1f1qlke27me Gabaritos nas últimas

Leia mais

Matemática/15 6ºmat301r 6º ano Turma: 1º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 1 Trimestre

Matemática/15 6ºmat301r 6º ano Turma: 1º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 1 Trimestre Matemática/15 6ºmat301r 6º ano Turma: 1º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano 1 Trimestre Os conteúdos estão abaixo selecionados e deverão ser estudados

Leia mais

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223. MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas

Leia mais

Atitudes: Manifestação de uma atitude positiva ante a resolução de problemas que implicam a utilização de números inteiros.

Atitudes: Manifestação de uma atitude positiva ante a resolução de problemas que implicam a utilização de números inteiros. Unidade 2. Os números inteiros. Enquadramento curricular em Espanha: Objetos de aprendizagem: Introdução aos números inteiros. Expressar situações da vida quotidiana nas que se utilizem os números inteiros.

Leia mais

FRAÇÃO Definição e Operações

FRAÇÃO Definição e Operações FRAÇÃO Definição e Operações DEFINIÇÃO: Fração é uma forma de se representar uma quantidade a partir de um valor, que é dividido por um determinado número de partes iguais. Como é que você representaria

Leia mais

FIGURAS DE LISSAJOUS

FIGURAS DE LISSAJOUS FIGURAS DE LISSAJOUS OBJETIVOS: a) medir a diferença de fase entre dois sinais alternados e senoidais b) observar experimentalmente, as figuras de Lissajous c) comparar a frequência entre dois sinais alternados

Leia mais

O SOROBAN COMO INSTRUMENTO PARA O DESENVOLVIMENTO DAS OPERAÇÕES MATEMÁTICAS

O SOROBAN COMO INSTRUMENTO PARA O DESENVOLVIMENTO DAS OPERAÇÕES MATEMÁTICAS O SOROBAN COMO INSTRUMENTO PARA O DESENVOLVIMENTO DAS OPERAÇÕES MATEMÁTICAS Resumo Alexandre Gonçalves de Lima¹ Amauri Soares da Silva Filho² Este trabalho aborda características do Soroban, e suas funções,

Leia mais

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

Sinais e Sistemas Unidade 2 Conceitos de Matemática de Variável Complexa

Sinais e Sistemas Unidade 2 Conceitos de Matemática de Variável Complexa Sinais e Sistemas Unidade 2 Conceitos de Matemática de Variável Complexa Prof. Cassiano Rech, Dr. Eng. [email protected] Prof. Rafael Concatto Beltrame, Me. Eng. [email protected] Conteúdo da

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2.

SOLUÇÕES N2 2015. item a) O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Solução da prova da 1 a fase OBMEP 2015 Nível 1 1 SOLUÇÕES N2 2015 N2Q1 Solução O maior dos quatro retângulos tem lados de medida 30 4 = 26 cm e 20 7 = 13 cm. Logo, sua área é 26 x 13= 338 cm 2. Com um

Leia mais

Resumos para a Prova de Aferição. Matemática

Resumos para a Prova de Aferição. Matemática Resumos para a Prova de Aferição de Matemática Números e operações 1.Leitura e escrita de números inteiros 1.1. Conjunto de números naturais Os números 1,, 3, 4, são números naturais. O conjunto dos números

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 5.º ANO DE MATEMÁTICA 5.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de conhecer e aplicar propriedades dos divisores e efetuar operações com números racionais

Leia mais

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos

Coeficiente de Assimetria e Curtose. Rinaldo Artes. Padronização., tem as seguintes propriedades: Momentos Coeficiente de Assimetria e Curtose Rinaldo Artes 2014 Padronização Seja X uma variável aleatória com E(X)=µ e Var(X)=σ 2. Então a variável aleatória Z, definida como =, tem as seguintes propriedades:

Leia mais

Planificação do 2º Período

Planificação do 2º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 2º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 0 Ano

Leia mais

Jogos com números Colocando números

Jogos com números Colocando números Jogos com números Colocando números 1) Coloque os dígitos de 1 a 6 sem repeti-los, cada um em um quadrado para que a igualdade expressada a seguir seja correta. Observe que dois quadrados juntos indicam

Leia mais

Matemática. Questão 1. 8 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola Aluno RESOLUÇÃO:

Matemática. Questão 1. 8 o ano do Ensino Fundamental Turma. 1 o Bimestre de 2016 Data / / Escola Aluno RESOLUÇÃO: EF AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 8 o ano do Ensino Fundamental Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimestre de 206 Data / / Escola Aluno Questão O conjunto

Leia mais

Aritmética Computacional. Prof. Leonardo Barreto Campos 1

Aritmética Computacional. Prof. Leonardo Barreto Campos 1 Aritmética Computacional Prof. Leonardo Barreto Campos Sumário Introdução; Representação de Números Inteiros; Aritmética de Números Inteiros; Representação de Números de Ponto Flutuante; Aritmética de

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: 8º e 9º anos 1.3 Duração: 2,5 horas 1.4 Conteúdo desenvolvido: Operações com números inteiros

Leia mais

Alguns Apontamentos Sobre Cálculo Combinatório

Alguns Apontamentos Sobre Cálculo Combinatório Alguns Apontamentos Sobre Cálculo Combinatório 1 O objectivo do Cálculo Combinatório é resolver problemas do tipo: quantas matriculas de carro é possível fazer em Portugal ; quantos números de telefone

Leia mais

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B

NOTAÇÕES. : distância do ponto P à reta r : segmento de extremidades nos pontos A e B R C i z Rez) Imz) det A tr A : conjunto dos números reais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : parte real do número z C : parte imaginária do número z C

Leia mais

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer.

Em linguagem matemática, essa proprieade pode ser escrita da seguinte maneira: x. 1 = x Onde x representa um número natural qualquer. MATEMÁTICA BÁSICA 5 EXPRESSÕES ALGÉBRICAS - EQUAÇÕES A expressão numérica é aquela que apresenta uma sequência de operações e de números. Também já sabemos que as letras são usadas em Matemática para representar

Leia mais

b) Uma mercadoria que custa R$ 37,00 foi paga com uma nota de R$ 50,00. De quanto foi o troco?

b) Uma mercadoria que custa R$ 37,00 foi paga com uma nota de R$ 50,00. De quanto foi o troco? MATEMÁTICA BÁSICA - 01 Recordando operações: Adição, Subtração, Multiplicação, Divisão Vamos lembrar como essas operações são feitas e principalmente, quando devemos utilizá-las na solução de um problema

Leia mais

Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes.

Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes. Roteiro da aula MA091 Matemática básica Aula 1... Francisco A. M. Gomes UNICAMP - IMECC Março de 016 1 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 8 Francisco A.

Leia mais

Sistemas Numéricos. Tiago Alves de Oliveira

Sistemas Numéricos. Tiago Alves de Oliveira Sistemas Numéricos Tiago Alves de Oliveira Sumário Sistemas Numéricos Binário Octal Hexadecimal Operações aritméticas binária e hexadecimal Operações lógicas binárias e decimais Representação Interna de

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano

XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano XXXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 1 6 o ou 7 o ano Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES GO MG PA RS RN SC A duração

Leia mais

MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x

MATEMÁTICA. cos x : cosseno de x log x : logaritmo decimal de x MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: x : módulo do número x i : unidade imaginária sen x : seno de x cos x : cosseno de x log x : logaritmo

Leia mais

Escalas ESCALAS COTAGEM

Escalas ESCALAS COTAGEM Escalas Antes de representar objectos, modelos, peças, etc. Deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas no papel

Leia mais

O PENSAMENTO ALGÉBRICO

O PENSAMENTO ALGÉBRICO NOME: ANO: 8º ENSINO: FUNDAMENTAL TURMA: DATA: / / PROF(ª): GREGORIO TOMAS GONZAGA LÓGICA E MATEMÁTICA - APOSTILA (2º BIMESTRE) IMPORTANTE 1 Organize-se, guardando cada lista de exercícios que receber

Leia mais

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84

Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série: 8º Turma: 81,82,83 e 84 COLÉGIO LA SALLE BRASÍLIA SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: MATEMÁTICA Trimestre: 1º Professora: Ana Eudóxia Alux Bessa Série:

Leia mais

PLANO DE TRABALHO DOCENTE C.E. ATTÍLIO FONTANA 1º BIMESTRE JUSTIFICATIVA

PLANO DE TRABALHO DOCENTE C.E. ATTÍLIO FONTANA 1º BIMESTRE JUSTIFICATIVA PLANO DE TRABALHO DOCENTE C.E. ATTÍLIO FONTANA Professora: Andréia Bamberg Vieira Disciplina: Matemática AnO7 H Período: Vespertino 1º BIMESTRE NÚMEROS E ÁLGEBRA - Números Naturais: - A sequência dos números

Leia mais

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS

www.souvestibulando.com.br CURSO PRÉ-VESTIBULAR MATEMÁTICA AULA 2 TEORIA DOS CONJUNTOS 1 CURSO PRÉ-VESTIULR MTEMÁTIC UL 02 SSUNTO: TEORI DOS CONJUNTOS Esta aula é composta pelo texto da apostila abaixo e por um link de acesso à UL VIRTUL gravada. Estude com atenção o texto antes de acessar

Leia mais

condicional tem sentido porque até recentemente as escolas ensinavam que 5

condicional tem sentido porque até recentemente as escolas ensinavam que 5 Cálculo I Lista zero - solução números racionais [email protected] T. Praciano-Pereira Sobral Matemática 25 de dezembro de 204 produzido com L A TEX - Debian/Gnu/Linux página http://www.calculo.sobralmatematica.org/

Leia mais

8º Ano Planificação Matemática 14/15

8º Ano Planificação Matemática 14/15 8º Ano Planificação Matemática 14/15 Escola Básica Integrada de Fragoso 8º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Geometria e medida Dízimas finitas e infinitas periódicas

Leia mais

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)

(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 5ª SÉRIE CMB ANO 2005 / 06) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Um aluno da 5ª série do CMB saiu de casa e fez compras em quatro lojas, cada uma num bairro diferente. Em cada uma, gastou a metade

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais