PROBABILIDADES E ESTATÍSTICA
|
|
|
- Micaela Peralta Chaves
- 10 Há anos
- Visualizações:
Transcrição
1 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste 7 o SEMESTRE 5/6 Data: Sábado, 7 de Jaeiro de 6 Duração: 9:3 às :3 Tópicos de Resolução. O úmero de mesages electróicas recebidas por dia uma empresa de etregas rápidas, que fucioa iiterruptamete, tem distribuição de Poisso com variâcia igual a 5. [.] (a) Calcule a probabilidade de, em 36 horas, a empresa receber pelo meos 7 mesages, sabedo que recebeu mesages esse período. X úmero de mesages electróicas recebidas por dia (4 horas) X P (5) Y úmero de mesages electróicas recebidas em 36 horas Y P (7:5) P (Y 7 Y ) P (Y 7 e Y ) P (Y ) P (Y 7) P (Y 6) P (Y ) P (Y ) :378 :6 :6 [.5] (b) Qual é a probabilidade do itervalo etre duas mesages cosecutivas ão exceder hora? W itervalo etre duas mesages cosecutivas (em horas) W Exp (4:8) F (w) ( e P (W ) w 4:8 e ; w < ; w 4:8 :88 [.5]. O diâmetro iterior de um tubo cilídrico é uma variável aleatória X com distribuição Normal de valor esperado 3 cm e desvio padrão : cm. A espessura do mesmo tubo é uma variável aleatória Y com distribuição Normal de valor esperado :3 cm e desvio padrão :5 cm, idepedete de X. Estes tubos são vedidos uma loja que os classi ca de acordo com o seu diâmetro exterior (diâmetro iterior + espessura) do seguite modo: Pequeo: para os % mais pequeos, Médio: para os 55% seguites, Grade: para os 5% maiores. Quais os limites das classes do diâmetro exterior cosiderados? X diâmetro iterior do tubo cilídrico X N (3; :) Y espessura do tubo cilídrico Y N (:3; :5) W diâmetro exterior do tubo cilídrico W X + Y N (3:3; :6)! Z W 3:3 :6 P (W < p) :, P (W g) :5, N (; ) p 3:3 p 3:3 :, :8, p 3:3 :85, p 3:5 :6 :6 :6 g 3:3 g 3:3 :5, :75, g 3:3 :68, g 3:44 :6 :6 :6 classi cados de pequeo se w [; 3:5[ classi cados de médio se w [3:5; 3:44[ classi cados de grade se w [3:44; +[
2 3. Certo tipo de pilhas tem uma duração (em horas) que se distribui expoecialmete com parâmetro. A duração global de pilhas tomadas aleatoriamete foi de 74 horas. [.5] (a) Idique, justi cado, um possível estimador potual para o parâmetro e, caso seja possível, calcule a respectiva estimativa. População: X duração das pilhas (em horas) X Exp () Amostra: P x i 74 Como E [X] um possível estimador para é b X: Estimativa: x horas. [.] (b) Com base uma amostra aleatória de dimesão (com ), foram costruídos os seguites estimadores para b Idique, justi cado, qual escolheria. P 3 E b E E P " b 5X 3X X X E [ ] X E [X] E b X ( ) 5X E 3X E [5X 3X ] (5E [X ] 3E [X ]) (5E [X] 3E [X]) (5 3) Como E b E b, os estimadores b e b são cetrados para : V b P 3 V V " X Xi s são idepedetes, amostra aleatória X V [ ] X ( ) V [X] X ( ) ( ) ( ) V b 5X V 3X V [5X 3X ] X e X são idepedetes, amostra aleatória 4 (5V [X ] + 9V [X ]) 4 (5V [X] + 9V [X])
3 b E ef ici^ecia b E b e b são estimadores cetrados para V b V b < Como efici^ecia <, logo b é mais e ciete que b, portato escolhería o estimador b. 4. O departameto de seguraça de uma fábrica quer saber se o tempo médio que o empregado octuro da seguraça leva a dar uma volta à fábrica é de 3 miutos. Em 3 voltas a média do tempo foi de 3:8 miutos com um desvio padrão de :5 miutos. [.] (a) Com base estes resultados costrua um itervalo de co aça a 9% para o tempo médio que o empregado octuro da seguraça leva a dar uma volta à fábrica e comete o resultado obtido. População: X tempo que leva a dar uma volta à fábrica (em miutos) Amostra: 3 Querem saber se E [X] 3 x 3:8 s :5 Queremos costruir um itervalo de co aça a 9% para, como ( População descohecida 3 3 é descohecido vamos utilizar Z X Sp N (; )! P z < Z < z, P z < X < z, Sp, P S X z p < Y < X + z S p Logo o I.C a ( ) % para é: s x z p ; x + z s p cocretizado vem :9, :, :95 z :95 :645 Sedo o IC para a 9% dado por 3:8 :645 :5 p 3 ; 3:8 + :645 :5 p 3 ]3:364; 3:36[ pode a rmar-se com 9% de co aça que o tempo esperado que o empregado octuro da seguraça leva a dar uma volta à fábrica varia etre 3:364 e 3:36: Como o 3 ão pertece ao itervalo e o itervalo só tem valores superiores a 3, pode-se a rmar com 9% de co aça que o empregado octuro da seguraça demora, em média, mais de 3 miutos a dar a volta à fábrica. [.] (b) Supoha que se pretede estimar o tempo médio com uma amplitude ão superior a :5. Idique, justi cado, como deveria proceder sabedo que só existem os registos dos tempos das 3 voltas referidas. amplitude :5 e ão é possível aumetar a dimesão da amostra 3
4 s amplitude :5, z p :5, z :5 p 3 :5, z :5 p 3 :5, z :94,, :864, :347 O ível de sigi câcia () deve ser o míimo :347, isto é, o grau de co aça ão pode ultrapassar 65; 8%. 5. Num trabalho realizado há já algum tempo cocluiu-se que % dos passageiros que apaham o autocarro em Setúbal têm como destio a ESTSetúbal. Esse valor tem vido a ser utilizado em todos os estudos de trasportes realizados desde etão. Um egeheiro, recetemete cotratado pela empresa de trasportes rodoviários de Setúbal, começou a ter dúvidas sobre a actualidade daquele valor, acreditado que ele tem vido a aumetar. Resolveu, portato, realizar um iquérito a paragem de autocarro de Setúbal, tedo sido iquiridos 4 passageiros dos quais 6 idicaram a ESTSetúbal como destio. [.] (a) Diga, ao ível de sigi câcia de %, que coclusão pode tirar o egeheiro. Teste uilateral sobre a proporçãp p : H : p : H : p > : com : Como o estimador de p é a proporção amostral p, e como População Biomial 4 3 vamos utilizar Z p p p pq Logo, P (rejeitar H H verdadeiro) P (p k p :) :, P Z k p p k : q :( :) 4 p :! :, A :99, k : q :( :) 4 N (; ) :36, k :8 Logo RC [:8; ] Decisão: Como p 6 :58 RC 4 ão se rejeita H, isto é, com base a amostra ão existe evidêcias que teha ocorrido uma alteração a percetagem de passageiros que apaham o autocarro em Setúbal com destio a ESTSetúbal. [.] (b) Comete a qualidade das coclusões da alíea aterior, sabedo que a verdadeira percetagem de passageiros que apaham o autocarro em Setúbal e têm como destio a ESTSetúbal é de 3%. Potêcia do teste: (:3) P (rejeitar H H falso) P (p :8 p :8 q :3 A ( :94) (:94) :864 :3( :3) 4 Como a fução potêcia é elevada (próxima de ), a probabilidade de tomar uma decisão correcta é alta, sedo boa a qualidade do teste. 4
5 6. Uma liga metálica é submetida a várias tesões x em 3 Kgfcm ; tedo-se registado o tempo decorrido (y em horas) até se atigir a ruptura. Algus dos resultados obtidos esta experiêcia foram os seguites: x i y i 5 x i yi x i y i 5 75 [.] (a) Calcule o coe ciete de correlação liear empírico e comete o resultado obtido. O coe ciete de correlação liear empírico é r X;Y r :897 Como r X;Y é um valor próximo de, existe uma forte tedêcia liear positiva etre as variáveis, sedo o modelo liear adequado aos dados. [.5] (b) Com base a recta de míimos quadrados, calcule uma estimativa para o tempo decorrido quado a tesão aplicada é de 7 3 Kgfcm. b () 86:74 a obtém-se etão a recta de regressão liear: 86:74 3 ^y :74x Prevê-se que o tempo decorrido quado a tesão aplicada é de 7 3 Kgfcm será de ^y : :6 horas Fim. 5
Lista 9 - Introdução à Probabilidade e Estatística
UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm
PROBABILIDADES E ESTATÍSTICA
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA Exame - Época Normal 006/00 Data: 14de Julhode 00 Tópicos de Resolução Duração: 3 horas 1. SejaΩumespaçoamostraleA,BeCacotecimetoscomasseguitescaracterísticasA
ActivALEA. ative e atualize a sua literacia
ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto
Jackknife, Bootstrap e outros métodos de reamostragem
Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó [email protected] Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia
MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA
MAE 116 - Noções de Estatística Grupo A - 1 o semestre de 2014 Lista de exercício 8 - Aula 8 - Estimação para p - CASA 1. (2,5) Um provedor de acesso à iteret está moitorado a duração do tempo das coexões
Estatística stica para Metrologia
Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta
Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais
Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre
Lista de Exercícios #4. in Noções de Probabilidade e Estatística (Marcos N. Magalhães et al, 4ª. edição), Capítulo 4, seção 4.4, páginas 117-123.
Uiversidade de São Paulo IME (Istituto de Matemática e Estatística MAE Profº. Wager Borges São Paulo, 9 de Maio de 00 Ferado Herique Ferraz Pereira da Rosa Bach. Estatística Lista de Exercícios #4 i Noções
5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões
DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida
PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato
1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída
CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA
CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas
INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...
INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário
DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA
DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO Ferado Mori DISTRIBUIÇÃO AMOSTRAL DA MÉDIA E PROPORÇÃO ESTATISTICA AVANÇADA Resumo [Atraia o leitor com um resumo evolvete, em geral, uma rápida visão geral do
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA
INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA PROBABILIDADES E ESTATÍSTICA o Teste SEMESTRE PAR /7 Data: 3 de Juho de 7 Duração: h m Tóicos de Resolução.
Probabilidades. José Viegas
Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia
Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu
Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica
Capitulo 6 Resolução de Exercícios
FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial
1.1 Comecemos por determinar a distribuição de representantes por aplicação do método de Hondt:
Proposta de Resolução do Exame de Matemática Aplicada às Ciêcias Sociais Cód. 835-2ª 1ª Fase 2014 1.1 Comecemos por determiar a distribuição de represetates por aplicação do método de Hodt: Divisores PARTIDOS
Carteiras de Mínimo VAR ( Value at Risk ) no Brasil
Carteiras de Míimo VAR ( Value at Risk ) o Brasil Março de 2006 Itrodução Este texto tem dois objetivos pricipais. Por um lado, ele visa apresetar os fudametos do cálculo do Value at Risk, a versão paramétrica
1.4- Técnicas de Amostragem
1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto
O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais
José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,
O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li
O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate([email protected])
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO
Duas Fases da Estatística
Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva
d) A partir do item c) encontre um estimador não viciado para σ 2.
Uiversidade de Brasília Departameto de Estatística 6 a Lista de PE 1 Seja X 1,, X ) uma AAS tal que EX i ) = µ e VarX i ) = σ 2 a) Ecotre EXi 2 ) e E X 2) b) Calcule EX i X) X i X) 2 c) Se T =, mostre
Dispensa e Redução de Contribuições
Dispesa Temporária do Pagameto de Cotribuições Dec - Lei º 89/95, de 6 de Maio Dec - Lei º 34/96, de 18 de Abril Dec - Lei º 51/99, de 20 de Fevereiro Lei º 103/99, de 26 de Julho Taxa Cotributiva Dec
UNIVERSIDADE DA MADEIRA
Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação
Instituto Politécnico de Viseu Escola Superior de Tecnologia
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Estatística I Curso: Contabilidade e Administração Ano: 3 o Semestre: o Prova: Exame Época: Normal Ano Lectivo: 2004/2005
Lista de Exercícios #4 Assunto: Variáveis Aleatórias Contínuas
. ANPEC 8 - Questão Seja x uma variável aleatória com fução desidade de probabilidade dada por: f(x) = x, para x f(x) =, caso cotrário. Podemos afirmar que: () E[x]=; () A mediaa de x é ; () A variâcia
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS 1 Estimação de Parâmetros uiverso do estudo (população) dados observados O raciocíio idutivo da estimação de parâmetros Estimação de Parâmetros POPULAÇÃO p =? AMOSTRA Observações:
Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos
Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para
SUMÁRIO 1. AMOSTRAGEM 4. 1.1. Conceitos básicos 4
SUMÁRIO 1. AMOSTRAGEM 4 1.1. Coceitos básicos 4 1.. Distribuição amostral dos estimadores 8 1..1. Distribuição amostral da média 8 1... Distribuição amostral da variâcia 11 1..3. Distribuição amostral
Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)
Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser
VII Equações Diferenciais Ordinárias de Primeira Ordem
VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,
CAPÍTULO 9 Exercícios Resolvidos
CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159
Fundamentos de Bancos de Dados 3 a Prova
Fudametos de Bacos de Dados 3 a Prova Prof. Carlos A. Heuser Dezembro de 2007 Duração: 2 horas Prova com cosulta Questão 1 (Costrução de modelo ER - Peso 3) Deseja-se costruir um sistema WEB que armazee
Teste de Hipóteses VÍCTOR HUGO LACHOS DÁVILAD
Teste de ióteses VÍCTOR UGO LACOS DÁVILAD Teste De ióteses. Exemlo. Cosidere que uma idustria comra de um certo fabricate, ios cuja resistêcia média à rutura é esecificada em 6 kgf (valor omial da esecificação).
5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA
5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()
A TORRE DE HANÓI Carlos Yuzo Shine - Colégio Etapa
A TORRE DE HANÓI Carlos Yuzo Shie - Colégio Etapa Artigo baseado em aula miistrada a IV Semaa Olímpica, Salvador - BA Nível Iiciate. A Torre de Haói é um dos quebra-cabeças matemáticos mais populares.
CAP. I ERROS EM CÁLCULO NUMÉRICO
CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução
Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:
Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada
INTERPOLAÇÃO. Interpolação
INTERPOLAÇÃO Profa. Luciaa Motera [email protected] Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação
Analise de Investimentos e Custos Prof. Adilson C. Bassan email: [email protected]
Aalise de Ivestimetos e Custos Prof. Adilso C. Bassa email: [email protected] JUROS SIMPLES 1 Juro e Cosumo Existe juro porque os recursos são escassos. As pessoas têm preferêcia temporal: preferem
Cláudio Tadeu Cristino 1. Julho, 2014
Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino
PRESTAÇÃO = JUROS + AMORTIZAÇÃO
AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas
Séries de Potências AULA LIVRO
LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.
A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br
A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como
O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.
a) Suponha que na amostra de 20 declarações foram encontrados 15 com dados incorrectos. Construa um
Escola Superior de Tecnologia de Viseu Probabilidades e Estatística 2007/2008 Ficha nº 7 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas de vendas, A e B, para o mesmo produto.
MAE Introdução à Probabilidade e Estatística II Resolução Lista 2
MAE 9 - Itrodução à Probabilidade e Estatística II Resolução Lista Professor: Pedro Moretti Exercício 1 Deotado por Y a variável aleatória que represeta o comprimeto dos cilidros de aço, temos que Y N3,
Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologia Coordenação do Programa de Pós-Graduação em Física
Uiversidade Federal do Marahão Cetro de Ciêcias Exatas e Tecologia Coordeação do Programa de Pós-Graduação em Física Exame de Seleção para Igresso o 1º. Semestre de 2011 Disciplia: Mecâica Clássica 1.
COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA
Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir
Neste capítulo, pretendemos ajustar retas ou polinômios a um conjunto de pontos experimentais.
03 Capítulo 3 Regressão liear e poliomial Neste capítulo, pretedemos ajustar retas ou poliômios a um cojuto de potos experimetais. Regressão liear A tabela a seguir relacioa a desidade (g/cm 3 ) do sódio
Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries
Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões
Teorema Central do Limite e Intervalo de Confiança
Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
Teorema do Limite Central e Intervalo de Confiança
Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),
MATEMÁTICA APLICADA À GESTÃO I
00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James
INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA
INTERVALOS DE CONFIANÇA ESTATISTICA AVANÇADA Resumo Itervalos de Cofiaça ara médias e roorções com alicações a Egeharia. Ferado Mori [email protected] Itervallos de Cofiiaça ara Médiias e Proorções
Aula 10 Testes de hipóteses
Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos
a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.
UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital
Hipótese Estatística:
1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,
Resposta: L π 4 L π 8
. A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce
(b) Qual a probabilidade de ter sido transmitido um zero, sabendo que foi recebido um (1.0) zero?
Grupo I 5.0 valores 1. Um sistema de comunicação binária transmite zeros e uns com probabilidade 0.5 em qualquer dos casos. Devido ao ruído existente no canal de comunicação há erros na recepção: transmitido
7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora
7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,
PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS
PARECER SOBRE A PROVA DE MATEMATICA FINANCEIRA CAGE SEFAZ RS O coteúdo programático das provas objetivas, apresetado o Aexo I do edital de abertura do referido cocurso público, iclui etre os tópicos de
CAPÍTULO 8 - Noções de técnicas de amostragem
INF 6 Estatística I JIRibeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção É uma ciêcia
J. A. M. Felippe de Souza 9 Diagramas de Bode
9 Diagramas de Bode 9. Itrodução aos diagramas de Bode 3 9. A Fução de rasferêcia 4 9.3 Pólos e zeros da Fução de rasferêcia 8 Equação característica 8 Pólos da Fução de rasferêcia 8 Zeros da Fução de
Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.
Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular
Lista 2 - Introdução à Probabilidade e Estatística
UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.
Capítulo 1. Teoria da Amostragem
Capítulo 1 Teoria da Amostragem 1.1 Itrodução A amostragem e em particular os processos de amostragem aplicam-se em variadíssimas áreas do cohecimeto e costituem, muitas vezes, a úica forma de obter iformações
CURSO ON-LINE PROFESSOR GUILHERME NEVES
Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os
Os juros compostos são conhecidos, popularmente, como juros sobre juros.
Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são
Distribuições de Estatísticas Amostrais e Teorema Central do Limite
Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia
AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?
AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade
UFRGS 2007 - MATEMÁTICA
- MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas
Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan
Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus
DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES
LUIZ CLAUDIO BENCK KEVIN WONG TAMARA CANDIDO DISTRIBUIÇÃO DE WEIBULL CONCEITOS BÁSICOS APLICAÇÕES Trabalho apresentado para avaliação na disciplina de Estatística e Métodos Numéricos do Curso de Administração
Capitulo 9 Resolução de Exercícios
FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;
Análise de Dados. Introdução às técnicas de Amostragem Introdução à Estimação Introdução aos testes Métodos não paramétricos
Aálise de Dados Itrodução às técicas de Amostragem Itrodução à Estimação Itrodução aos testes Métodos ão paramétricos Maria Eugéia Graça Martis Faculdade de Ciêcias da Uiversidade de Lisboa Março 009 ÍNDICE
Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:
Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a
CURSO ON-LINE PROFESSOR: VÍTOR MENEZES. Comentários sobre as provas de estatística e financeira ICMS RJ
Comentários sobre as provas de estatística e financeira ICMS RJ Caríssimos, Acabei de voltar de uma longa auditoria em que visitamos inúmeros assentamentos federais do INCRA no interior do estado. Ou seja:
M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:
PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos
Anexo VI Técnicas Básicas de Simulação do livro Apoio à Decisão em Manutenção na Gestão de Activos Físicos
Aexo VI Técicas Básicas de Simulação do livro Apoio à Decisão em Mauteção a Gestão de Activos Físicos LIDEL, 1 Rui Assis [email protected] http://www.rassis.com ANEXO VI Técicas Básicas de Simulação Simular
A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21
Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da
JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b
JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a
Estatística e Probabilidade
Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI NÚCLEO DE EDUCAÇÃO À DISTÂNCIA CURSO DE GRADUAÇÃO EM ADMINISTRAÇÃO PÚBLICA GABARITO GRUPO: ESTATÍSTICA DATA: HORÁRIO: NOME DO CANDIDATO: CPF: ASSINATURA: INSTRUÇÕES:
Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ
Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos
2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;
2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada
