4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining"

Transcrição

1 Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6. Tópicos importantes de estudo em Data Mining 7. Aplicações 8. Sistemas Comerciais de Data Mining

2 Como surgiu MUITOS DADOS POUCA INFORMAÇÃO Grandes volumes de dados disponíveis Arquivos de dados cemitério de dados : raramente visitados. Necessidade de transformar estes dados em informação útil necessidade de desenvolvimento de ferramentas de mineração.

3 Como surgiu Decisões são tomadas utilizando intuição. Tecnologias de sistemas especialistas que inserem manualmente o conhecimento na base de dados : procedimento passível de erros e extremamente custoso em tempo. Ferramentas de Data mining realizam análise de grandes volumes de dados e podem descobrir padrões interessantes frequentes nos dados. O grande abismo entre dados e informação requer o desenvolvimento de ferramentas de datamining que vão transformar os cemitérios de dados em minas de conhecimento.

4 O que é Data Mining Uma das etapas do processo de Descoberta de Conhecimento Limpeza dos dados : eliminação de ruídos e dados inconsistentes. Integração dos dados : diversas fontes de dados são combinadas. Seleção dos dados dados relevantes às tarefas de análise são extraidos do banco de dados. Transformação dos dados : formas apropriadas para mineração.

5 O que é Data Mining - continuação Data Mining : métodos inteligentes são aplicados nos dados já preparados a fim de extrair padrões interessantes (de acordo com critérios do usuário). Pós-processamento dos padrões minerados para identificar quais são realmente interessantes para o usuário. Visualização : técnicas de visualização e representação de conhecimento são utilizadas para apresentar o conhecimento minerado ao usuário.

6 Em que tipo de dados pode ser aplicado Bancos de Dados Relacionais : Consultas clássicas SQL : dar a lista dos artigos comprados no último trimestre. Data Mining : predizer os riscos de crédito a novos clientes baseados em seus rendimentos, idade e informações sobre créditos passados.

7 Em que tipo de dados pode ser aplicado Data Warehouse : Modelo Multidimensional ou data cubes Consultas OLAP (On Line Analytical Processing) : permitem obter os dados sob diferentes graus de sumarização. Exemplo : obter o total de vendas por região, por país, etc, a partir de dados de vendas organizados por cidade. Data Mining : Descobrir existência de clusters de clientes em diferentes localidades, ou em diferentes faixas de salário.

8 Em que tipo de dados pode ser aplicado Bancos de Dados de Transações : tickets de supermercado, por exemplo : Trans-id T100 ItensComprados Pão, Leite, Açúcar Consultas Clássicas : Quantas transações incluem o item Pão? Data Mining : Quais itens têm boa saída conjuntamente? Exemplo: se impressoras são normalmente compradas conjuntamente com um computador, então uma boa estratégia seria oferecer modelos caros de impressoras com desconto para clientes que compram certas marcas de computadores.

9 Em que tipo de dados pode ser aplicado Sistemas de Bancos de Dados Avançados Orientado-objeto / Relacional-estendido Espacial : bancos de dados geográficos, imagens médicas e de satélite. Ex: mapas de cidades, incluindo informações sobre ruas de mão-única, sugestões de caminhos para ser ir de um ponto A a um ponto B, hora do rush, localização de restaurantes e hospitais, etc. Possíveis padrões : características de casas localizadas em certas regiões (parques, por exemplo). Temporal Textos e Multimídia Não estruturados ou Semi-estruturados (XML)

10 Que tipos de padrões podem ser minerados Numa grande loja de departamentos... Regras de Associação : Clientes entre 20 e 29 anos, com rendimentos mensais entre 2000 e 5000 normalmente compram DVD Players. idade(x, ) AND rend(x, ) compra(x, DVD-Player ). Classificação e Predição : encontrar critérios que classifiquem os artigos da loja em vende bem, vende mais ou menos, não vende ; poder-se-ia descobrir que os critérios seriam preço, marca, categoria, lugar de fabricação.

11 Que tipos de padrões podem ser minerados Análise de Clusters : Detecção de clusters correspondendo à localização de clientes numa cidade. Os clientes estão aglutinados em torno de três locais na cidade. Análise de Outliers : Deteção de eventos raros, fora do padrão; Clientes que excepcionalmente fazem uma compra de grande valor e pagam com cartão de crédito provavelmente estão tendo um comportamento fraudulento. Sequências (ou Análise Evolutiva) : clientes têm tendência a comprar aparelhos de TV, depois Vídeo-Cassete e depois DVD. Padrão Sequencial : <TV,Vídeo,DVD>

12 Critérios de classificação de sistemas de Data Mining Quanto ao tipo de bancos de dados : relacional, transacional, orientado-objeto, relacional-estendido, datawarehouse; Quanto ao tipo de conhecimento minerado : regras de associação, classificação, clustering, outliers, análise de sequências; Quanto ao tipo de técnicas utilizadas : técnicas de aprendizado de máquina (Machine Learning), estatística, redes neurais, algoritmos genéticos, etc; tipos de interação com o usuário; Quanto ao tipo de aplicações a que são dirigidos : telecomunicações, análise financeira, bio-informática, mercado de ações, comércio eletrônico; Diferentes aplicações requerem a integração de metódos específicos.

13 Tópicos importantes de estudo em Data Mining Mineração de diferentes tipos de padrões; Mineração interativa; Desenvolvimento de Linguagens de Mineração : permitindo ao usuário solicitar tarefas de mineração; Desenvolvimento de Ferramentas de Visualização do conhecimento minerado; Gerenciamento de ruídos e dados incompletos; Eficiência e escalabilidade dos algoritmos de mineração;

14 Aplicações Análise Financeira predição de pagamentos de empréstimos, política de créditos para clientes. classificação e clustering de clientes para fins de marketing direcionado. detecção de lavagem de dinheiro e outros crimes financeiros. Necessita integração de diferentes bancos de dados : dados bancários, registros de polícias estaduais e federais.

15 Aplicações Comércio varejista, E-comércio Marketing - Campanhas publicitárias Sugestões de compras aos clientes Melhor design de sites de compras Distribuição de artigos nas prateleiras Análise de fidelidade da clientela

16 Aplicações Indústria de Telecomunicações Identificação de atividades fraudulentas - padrões atípicos de comportamento. Regras de associação e padrões sequenciais : Se um cliente mora em São Paulo e trabalha fora de São Paulo, então é bem provável que ele faça uma chamada interurbana entre as duas localidades por volta de 17:00h e duas horas depois utilize o celular por pelo menos 30 minutos.

17 Aplicações Análises biomédicas e de DNA Identificação de sequências de genes que desempenham papel importante em diversas doenças. Path Analysis : diferentes genes podem tornar-se ativos em diferentes estágios de uma doença. Se sequências de atividades genéticas durante as diferentes etapas do desenvolvimento de uma doença podem ser identificadas, é possível desenvolver remédios que atuam em sequência nas diferentes etapas. Sequências de sintomas associados a determinadas doenças.

18 Sistemas Comerciais de Data Mining Nome Fabricante Funções Destaque Intelligent Miner IBM algoritmos para regras de associação, classificação, regressão, padrões sequenciais, clustering. SAS Institute algoritmos Inc. classificação, regressão, pacotes de análise estatística. MineSet Silicon Graphics Inc. algoritmos para regras de associação, classificação, análise estatística. Enterprise Miner Integrado com o SGBD DB2 da IBM. Grande escalabilidade dos algoritmos. Grande variedade de ferramentas estatísticas. Um robusto conjunto de ferramentas avançadas de visualização.

19 Sistemas Comerciais de Data Mining Nome Fabricante Funções Destaque Clementine Integral Solutions Ltd. DBMiner DBMiner Technology Inc. De- Genamics veloper Genamics Expression algoritmos de regras de indução, redes neurais, classificação e ferramentas de visualização. algoritmos de regras de associação, classificação, clustering. algoritmos de análise de sequências Interface orientadaobjeto. Data Mining utilizando OLAP Revolutionary new Windows application for DNA and protein sequence analysis.

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Mining Os métodos tradicionais de Data Mining são: Classificação Associa ou classifica um item a uma ou várias classes categóricas pré-definidas.

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

Banco de Dados I. Introdução. Fabricio Breve

Banco de Dados I. Introdução. Fabricio Breve Banco de Dados I Introdução Fabricio Breve Introdução SGBD (Sistema Gerenciador de Banco de Dados): coleção de dados interrelacionados e um conjunto de programas para acessar esses dados Coleção de dados

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto OLPT x OLAP Roteiro OLTP Datawarehouse OLAP Operações OLAP Exemplo com Mondrian e Jpivot

Leia mais

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o DATABASE MARKETING No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o empresário obter sucesso em seu negócio é

Leia mais

Administração de Sistemas de Informação Gerenciais

Administração de Sistemas de Informação Gerenciais Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Gerenciamento de Dados e Gestão do Conhecimento

Gerenciamento de Dados e Gestão do Conhecimento ELC1075 Introdução a Sistemas de Informação Gerenciamento de Dados e Gestão do Conhecimento Raul Ceretta Nunes CSI/UFSM Introdução Gerenciando dados A abordagem de banco de dados Sistemas de gerenciamento

Leia mais

Data Mining: Conceitos e Técnicas

Data Mining: Conceitos e Técnicas Data Mining: Conceitos e Técnicas DM, DW e OLAP Data Warehousing e OLAP para Data Mining O que é data warehouse? De data warehousing para data mining Data Warehousing e OLAP para Data Mining Data Warehouse:

Leia mais

Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com

Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Introdução a Banco de Dados Docente: Éberton da Silva Marinho e-mail: ebertonsm@gmail.com 12/06/2013 Sumário Motivação da Disciplina

Leia mais

MINERAÇÃO DE DADOS. Mineração de Dados

MINERAÇÃO DE DADOS. Mineração de Dados MINERAÇÃO DE DADOS Mineração de Dados Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Conceitos de Mineração de Dados... 5 3. Aplicações de Mineração de Dados... 7 4. Ferramentas de Mineração

Leia mais

Microsoft Innovation Center

Microsoft Innovation Center Microsoft Innovation Center Mineração de Dados (Data Mining) André Montevecchi andre@montevecchi.com.br Introdução Objetivo BI e Mineração de Dados Aplicações Exemplos e Cases Algoritmos para Mineração

Leia mais

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence.

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence. Tópicos Avançados Business Intelligence Banco de Dados Prof. Otacílio José Pereira Unidade 10 Tópicos Avançados Business Inteligence Roteiro Introdução Níveis organizacionais na empresa Visão Geral das

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Exemplos de aplicação. Mineração de Dados 2013

Exemplos de aplicação. Mineração de Dados 2013 Exemplos de aplicação Mineração de Dados 2013 Luís Rato Universidade de Évora, 2013 Mineração de dados / Data Mining 1 Classificação: Definição Dado uma conjunto de registos (conjunto de treino training

Leia mais

ADMINISTRAÇÃO DOS RECURSOS DE DADOS

ADMINISTRAÇÃO DOS RECURSOS DE DADOS Capítulo 7 ADMINISTRAÇÃO DOS RECURSOS DE DADOS 7.1 2003 by Prentice Hall OBJETIVOS Por que as empresas sentem dificuldades para descobrir que tipo de informação precisam ter em seus sistemas de informação?

Leia mais

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5 Para entender bancos de dados, é útil ter em mente que os elementos de dados que os compõem são divididos em níveis hierárquicos. Esses elementos de dados lógicos constituem os conceitos de dados básicos

Leia mais

Motivação: inundação de informação. Data warehouse. Inteligência computacional aplicada em finanças, comércio e indústria

Motivação: inundação de informação. Data warehouse. Inteligência computacional aplicada em finanças, comércio e indústria Programa de Especialização em Inteligência Computacional Motivação: inundação de informação Morrendo de sede por conhecimento em um oceano de dados Inteligência computacional aplicada em finanças, comércio

Leia mais

Aula 02: Conceitos Fundamentais

Aula 02: Conceitos Fundamentais Aula 02: Conceitos Fundamentais Profa. Ms. Rosângela da Silva Nunes 1 de 26 Roteiro 1. Por que mineração de dados 2. O que é Mineração de dados 3. Processo 4. Que tipo de dados podem ser minerados 5. Que

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

http://www.publicare.com.br/site/5,1,26,5480.asp

http://www.publicare.com.br/site/5,1,26,5480.asp Página 1 de 7 Terça-feira, 26 de Agosto de 2008 ok Home Direto da redação Última edição Edições anteriores Vitrine Cross-Docking Assine a Tecnologística Anuncie Cadastre-se Agenda Cursos de logística Dicionário

Leia mais

Módulo 4: Gerenciamento de Dados

Módulo 4: Gerenciamento de Dados Módulo 4: Gerenciamento de Dados 1 1. CONCEITOS Os dados são um recurso organizacional decisivo que precisa ser administrado como outros importantes ativos das empresas. A maioria das organizações não

Leia mais

Inteligência de Negócio. Brian Cowhig

Inteligência de Negócio. Brian Cowhig Inteligência de Negócio Brian Cowhig Inteligência de Negócio O Que é Inteligência de Negócio? Três Níveis de Inteligência de Negócio Database Query OLAP Data Mining Produtos de Inteligência de Negócio

Leia mais

Programação com acesso a BD. Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br

Programação com acesso a BD. Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br Programação com acesso a BD Prof.: Clayton Maciel Costa clayton.maciel@ifrn.edu.br 1 Introdução BD desempenha papel crítico em todas as áreas em que computadores são utilizados: Banco: Depositar ou retirar

Leia mais

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Sumário Conceitos / Autores chave... 3 1. Introdução... 3 2. Tarefas desempenhadas por Técnicas de 4 Mineração de Dados...

Leia mais

Exemplo de Aplicação do DataMinig

Exemplo de Aplicação do DataMinig Exemplo de Aplicação do DataMinig Felipe E. Barletta Mendes 19 de fevereiro de 2008 INTRODUÇÃO AO DATA MINING A mineração de dados (Data Mining) está inserida em um processo maior denominado Descoberta

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Os Sistemas de Informação para as Operações das Empresas e o Comércio Eletrônico Simulado Verdadeiro ou Falso

Os Sistemas de Informação para as Operações das Empresas e o Comércio Eletrônico Simulado Verdadeiro ou Falso Os Sistemas de Informação para as Operações das Empresas e o Comércio Eletrônico Simulado Verdadeiro ou Falso 1. Muitas organizações estão utilizando tecnologia da informação para desenvolver sistemas

Leia mais

Como melhorar a tomada de decisão. slide 1

Como melhorar a tomada de decisão. slide 1 Como melhorar a tomada de decisão slide 1 P&G vai do papel ao pixel em busca da gestão do conhecimento Problema: grande volume de documentos em papel atrasavam a pesquisa e o desenvolvimento. Solução:

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

Prova INSS RJ - 2007 cargo: Fiscal de Rendas

Prova INSS RJ - 2007 cargo: Fiscal de Rendas Prova INSS RJ - 2007 cargo: Fiscal de Rendas Material de Apoio de Informática - Prof(a) Ana Lucia 53. Uma rede de microcomputadores acessa os recursos da Internet e utiliza o endereço IP 138.159.0.0/16,

Leia mais

SISTEMAS DE INFORMAÇÃO GERENCIAIS

SISTEMAS DE INFORMAÇÃO GERENCIAIS SISTEMAS DE INFORMAÇÃO GERENCIAIS O PODER DA INFORMAÇÃO Tem PODER quem toma DECISÃO Toma DECISÃO correta quem tem SABEDORIA Tem SABEDORIA quem usa CONHECIMENTO Tem CONHECIMENTO quem possui INFORMAÇÃO (Sem

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

Business Intelligence e ferramentas de suporte

Business Intelligence e ferramentas de suporte O modelo apresentado na figura procura enfatizar dois aspectos: o primeiro é sobre os aplicativos que cobrem os sistemas que são executados baseados no conhecimento do negócio; sendo assim, o SCM faz o

Leia mais

AULA 2 Marketing de Serviços

AULA 2 Marketing de Serviços AULA 2 Marketing de Serviços Categorias de serviços Uma das formas de se classificar serviços é baseada na natureza dos processos pelos quais os serviços são criados e entregues. Um processo é um método

Leia mais

Conceitos Básicos. Conceitos Básicos. Sistema de Arquivos. Prof. Edilberto Silva - edilms@yahoo.com. Sistemas de Informação Brasília/DF

Conceitos Básicos. Conceitos Básicos. Sistema de Arquivos. Prof. Edilberto Silva - edilms@yahoo.com. Sistemas de Informação Brasília/DF 2 Conceitos Básicos Material baseado nas notas de aula: Maria Luiza M. Campos IME/2005 Carlos Heuser - livro Projeto de Banco de Dados CasaNova / PUC/RJ Prof. MSc. Edilberto Silva edilms@yahoo.com Sistemas

Leia mais

Classificação dos Sistemas de Informação

Classificação dos Sistemas de Informação Sistemas de Informação Classificação dos Sistemas de Informação O que veremos? Estaremos examinando o tipo de sistema de informação Gerencial. Veremos também, outras classificações dos sistemas de informação.

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

ADMINISTRAÇÃO DE SISTEMAS DE INFORMAÇÃO (AULA 04)

ADMINISTRAÇÃO DE SISTEMAS DE INFORMAÇÃO (AULA 04) Prof. Breno Leonardo Gomes de Menezes Araújo brenod123@gmail.com http://blog.brenoleonardo.com.br ADMINISTRAÇÃO DE SISTEMAS DE INFORMAÇÃO (AULA 04) 1 CRM Sistema de Relacionamento com clientes, também

Leia mais

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence Juntamente com o desenvolvimento desses aplicativos surgiram os problemas: & Data Warehouse July Any Rizzo Oswaldo Filho Década de 70: alguns produtos de BI Intensa e exaustiva programação Informação em

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Dados como recurso para a organização

Dados como recurso para a organização Faculdade Pitágoras de Uberlândia Pós-graduação Sistemas de Informação Gerenciais Segunda Aula Prof. Me. Walteno Martins Parreira Júnior www.waltenomartins.com.br waltenomartins@yahoo.com Maio -2013 Dados

Leia mais

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

Dado: Fatos conhecidos que podem ser registrados e têm um significado implícito. Banco de Dados:

Dado: Fatos conhecidos que podem ser registrados e têm um significado implícito. Banco de Dados: MC536 Introdução Sumário Conceitos preliminares Funcionalidades Características principais Usuários Vantagens do uso de BDs Tendências mais recentes em SGBDs Algumas desvantagens Modelos de dados Classificação

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Análise Espacial 2 1 Distribuição Espacial A compreensão da distribuição

Leia mais

Chapter 3. Análise de Negócios e Visualização de Dados

Chapter 3. Análise de Negócios e Visualização de Dados Chapter 3 Análise de Negócios e Visualização de Dados Objetivos de Aprendizado Descrever a análise de negócios (BA) e sua importância par as organizações Listar e descrever brevemente os principais métodos

Leia mais

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD)

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) AULA 07 MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) JAMES A. O BRIEN MÓDULO 01 Páginas 286 à 294 1 AULA 07 SISTEMAS DE APOIO ÀS DECISÕES 2 Sistemas de Apoio à Decisão (SAD)

Leia mais

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução 2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução De acordo com [FAYY96], o conceito de descoberta de conhecimento em bases de dados pode ser resumido como o processo não-trivial de identificar

Leia mais

Aula 7 Componentes de um Sistema de Informação Recursos e Atividades

Aula 7 Componentes de um Sistema de Informação Recursos e Atividades Aula 7 Componentes de um Sistema de Informação Recursos e Atividades Curso: Gestão de TI - UNIP Disciplina: Sistemas de Informação Professor: Shie Yoen Fang Ementa: Item 11 e Item 12 2ª semestre de 2011

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

AULA 01-02-03 SISTEMAS DE GERENCIAMENTO DE BANCO DE DADOS

AULA 01-02-03 SISTEMAS DE GERENCIAMENTO DE BANCO DE DADOS AULA 01-02-03 SISTEMAS DE GERENCIAMENTO DE BANCO DE DADOS Curso: Sistemas de Informação (Subseqüente) Disciplina: Administração de Banco de Dados Prof. Abrahão Lopes abrahao.lopes@ifrn.edu.br História

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

Introdução a Computação

Introdução a Computação Introdução a Computação Aula 04 SGBD Sistemas Gerenciadores de Bancos de Dados Prof. MSc. Edilberto Silva edilms@yahoo.com Conceitos Básicos DADOS: são fatos em sua forma primária. Ex: nome do funcionário,

Leia mais

Banco de Dados I. Quantidade de informação gerada em um dia. Aula 1. 59 milhões de clientes ativos; Mais de 42 terabytes de dados; Salários na área

Banco de Dados I. Quantidade de informação gerada em um dia. Aula 1. 59 milhões de clientes ativos; Mais de 42 terabytes de dados; Salários na área Banco de Dados I Aula 1 Quantidade de informação gerada em um dia E-mails Compras Bate-papo Notícias Blogs Transações bancárias Etc... 59 milhões de clientes ativos; Mais de 42 terabytes de dados; 100

Leia mais

Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br

Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br Ementa Introdução a Banco de Dados (Conceito, propriedades), Arquivos de dados x Bancos de dados, Profissionais de Banco de dados,

Leia mais

Universidade Federal de Itajubá EPR 806 Sistemas de Informação

Universidade Federal de Itajubá EPR 806 Sistemas de Informação Tipos de Sistemas de Informação Sistemas sob a Perspectiva de Grupos Usuários Sistemas de apoio ao executivo (SAE); Universidade Federal de Itajubá EPR 806 Sistemas de Informação Segundo semestre de 2012

Leia mais

Data Warehouse Mineração de Dados

Data Warehouse Mineração de Dados Data Warehouse Mineração de Dados Profa. Roberta Macêdo M. Gouveia robertammg@gmail.com 1 18/12/2014 Data Warehouse Data Mining Big Data A mina de ouro debaixo dos bits 2 Data Warehouse: A Memória da Empresa

Leia mais

APERFEIÇOAMENTO DO PROCESSO DE DECISÃO PARA A EMPRESA DIGITAL

APERFEIÇOAMENTO DO PROCESSO DE DECISÃO PARA A EMPRESA DIGITAL APERFEIÇOAMENTO DO PROCESSO DE DECISÃO PARA A EMPRESA DIGITAL 1 OBJETIVOS 1. Como os sistemas de informação podem ajudar cada gerente a tomar as melhores decisões em caso de problemas não-rotineiros e

Leia mais

BIG DATA INTRODUÇÃO. Humberto Sandmann humberto.sandmann@gmail.com

BIG DATA INTRODUÇÃO. Humberto Sandmann humberto.sandmann@gmail.com BIG DATA INTRODUÇÃO Humberto Sandmann humberto.sandmann@gmail.com Apresentação Humberto Sandmann humberto.sandmann@gmail.com Possui graduação em Ciências da Computação pelo Centro Universitário da Faculdade

Leia mais

Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios

Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios Sistemas de Informações Gerenciais Prof. Esp. André Luís Belini Bacharel em Sistemas de Informações MBA em Gestão Estratégica de Negócios Como Melhorar a Tomada de Decisão e a Gestão do Conhecimento Capítulo

Leia mais

Bancos de Dados não Convencionais

Bancos de Dados não Convencionais Bancos de Dados não Convencionais Profa. Valéria Gonçalves Soares DI/UFPB Conteúdo 1. Introdução Integração de BDs com outras áreas Visão dos sistemas Visão das aplicações Limitações dos BDs Relacionais

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Guia definitivo de ferramentas de Planejamento para Micro Empreendedores Individuais

Guia definitivo de ferramentas de Planejamento para Micro Empreendedores Individuais Guia definitivo de ferramentas de Planejamento para Micro Empreendedores Individuais Introdução O Brasil já tem 4,7 milhões de microempreendedores individuais, segundo dados de janeiro de 2015 da Receita

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

Tema: O que, como, quando e quanto compra é o que precisamos entender. tomada de decisão do jovem na hora da compra.

Tema: O que, como, quando e quanto compra é o que precisamos entender. tomada de decisão do jovem na hora da compra. Radar Jovem 2015 Tema: Já sabemos que o jovem é um dos consumidores que mais possui poder aquisitivo do país*. O que, como, quando e quanto compra é o que precisamos entender agora. Nesse estudo iremos

Leia mais

Módulo I - Aula 3 Tipos de Sistemas

Módulo I - Aula 3 Tipos de Sistemas Módulo I - Aula 3 Tipos de Sistemas Agora que você já conheceu algumas características dos Sistemas de Informação, nesta aula você vai aprender um pouco sobre tipos de sistemas. Você conhecerá a integração

Leia mais

Fundamentos de Sistemas de Informações: Exercício 1

Fundamentos de Sistemas de Informações: Exercício 1 Fundamentos de Sistemas de Informações: Exercício 1 Fundação Getúlio Vargas Estudantes na Escola de Administração da FGV utilizam seu laboratório de informática, onde os microcomputadores estão em rede

Leia mais

Sistemas de Informação

Sistemas de Informação Sistemas de Informação Prof. M.Sc. Diego Fernandes Emiliano Silva diego.femiliano@gmail.com Agenda Banco de dados Gerenciamento de banco de dados Sistemas de gerenciamento de banco de dados Como usar banco

Leia mais

NOTAS DE AULA - TELECOMUNICAÇÕES

NOTAS DE AULA - TELECOMUNICAÇÕES NOTAS DE AULA - TELECOMUNICAÇÕES 1. Conectando a Empresa à Rede As empresas estão se tornando empresas conectadas em redes. A Internet e as redes de tipo Internet dentro da empresa (intranets), entre uma

Leia mais

MBA Analytics em Big Data

MBA Analytics em Big Data MBA Analytics em Big Data Inscrições Abertas Início das Aulas: 04/06/2015 Dias e horários das aulas: Segunda-Feira 19h00 às 23h00 Semanal Sexta-Feira 19h00 às 23h00 Semanal Carga horária: 600 Horas Duração:

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

Prof. Lucas Santiago

Prof. Lucas Santiago Classificação e Tipos de Sistemas de Informação Administração de Sistemas de Informação Prof. Lucas Santiago Classificação e Tipos de Sistemas de Informação Sistemas de Informação são classificados por

Leia mais

SISTEMAS DE INFORMAÇÃO GERENCIAL

SISTEMAS DE INFORMAÇÃO GERENCIAL SISTEMAS DE INFORMAÇÃO GERENCIAL 2015 Sabemos que as empresas atualmente utilizam uma variedade muito grande de sistemas de informação. Se você analisar qualquer empresa que conheça, constatará que existem

Leia mais

Respostas da Lista de Exercícios do Módulo 1: Fundamentos dos SI. Resposta do Exercício 1

Respostas da Lista de Exercícios do Módulo 1: Fundamentos dos SI. Resposta do Exercício 1 Respostas da Lista de Exercícios do Módulo 1: Fundamentos dos SI Resposta do Exercício 1 Fundação Getúlio Vargas Leia o texto e responda o seguinte: a) identifique os recursos de: Hardware: microcomputadores,

Leia mais

SISTEMAS DE NEGÓCIOS B) INFORMAÇÃO GERENCIAL

SISTEMAS DE NEGÓCIOS B) INFORMAÇÃO GERENCIAL 1 SISTEMAS DE NEGÓCIOS B) INFORMAÇÃO GERENCIAL 1. SISTEMAS DE INFORMAÇÃO GERENCIAL (SIG) Conjunto integrado de pessoas, procedimentos, banco de dados e dispositivos que suprem os gerentes e os tomadores

Leia mais

A solução INFOTRÂNSITO abrange sistemas web multiplataformas, podendo ser instalados em ambientes Linux, Windows e Apple.

A solução INFOTRÂNSITO abrange sistemas web multiplataformas, podendo ser instalados em ambientes Linux, Windows e Apple. INFOTRÂNSITO A plataforma INFOTRÂNSITO emprega tecnologias inovadoras para garantir ao poder público um gerenciamento eficaz da operação do trânsito nos grandes centros urbanos. A partir da coleta, em

Leia mais

Plataforma Analítica para Inteligência de Negócios

Plataforma Analítica para Inteligência de Negócios Plataforma Analítica para Inteligência de Negócios Carlos André Reis Pinheiro, D.Sc. Gerente de Desenho de Aplicações Predição de abandono Rede Neural Artificial (MLP) para predição de abandono Precisão

Leia mais

Fornecendo Inteligência, para todo o mundo, a mais de 20 anos.

Fornecendo Inteligência, para todo o mundo, a mais de 20 anos. Fornecendo Inteligência, para todo o mundo, a mais de 20 anos. Fundada em 1989, a MicroStrategy é fornecedora líder Mundial de plataformas de software empresarial. A missão é fornecer as plataformas mais

Leia mais

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 11.1

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 11.1 Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 11.1 11 OBJETIVOS OBJETIVOS APERFEIÇOAMENTO DO PROCESSO DE DECISÃO PARA A EMPRESA DIGITAL Como os sistemas de informação podem ajudar cada gerente a

Leia mais

Capítulo. Sistemas de apoio à decisão

Capítulo. Sistemas de apoio à decisão Capítulo 10 1 Sistemas de apoio à decisão 2 Objectivos de aprendizagem Identificar as alterações que estão a ter lugar na forma e função do apoio à decisão nas empresas de e-business. Identificar os papéis

Leia mais

SAD orientado a DADOS

SAD orientado a DADOS Universidade do Contestado Campus Concórdia Curso de Sistemas de Informação Prof.: Maico Petry SAD orientado a DADOS DISCIPLINA: Sistemas de Apoio a Decisão SAD orientado a dados Utilizam grandes repositórios

Leia mais

UNIMEP MBA em Gestão e Negócios

UNIMEP MBA em Gestão e Negócios UNIMEP MBA em Gestão e Negócios Módulo: Sistemas de Informações Gerenciais Aula 3 TI com foco nos Negócios: Áreas envolvidas (Parte I) Flávio I. Callegari O perfil do profissional de negócios Planejamento

Leia mais

Comércio Eletrônico AULA 15. Sistemas para Internet. Professora Ms Karen Reis

Comércio Eletrônico AULA 15. Sistemas para Internet. Professora Ms Karen Reis Comércio Eletrônico AULA 15 Professora Ms Karen Reis 2011 Sistemas para Internet 1 SISTEMAS GERENCIAMENTO COM CLIENTE CRM Customer Relationship Management PRM Partner Relationship Management ERM Employee

Leia mais

A Grande Importância da Mineração de Dados nas Organizações

A Grande Importância da Mineração de Dados nas Organizações A Grande Importância da Mineração de Dados nas Organizações Amarildo Aparecido Ferreira Junior¹, Késsia Rita da Costa Marchi¹, Jaime Willian Dias¹ ¹Universidade Paranaense (Unipar) Paranavaí PR Brasil

Leia mais

Adriano Maranhão BUSINESS INTELLIGENCE (BI),

Adriano Maranhão BUSINESS INTELLIGENCE (BI), Adriano Maranhão BUSINESS INTELLIGENCE (BI), BUSINESS INTELLIGENCE (BI) O termo Business Intelligence (BI), popularizado por Howard Dresner do Gartner Group, é utilizado para definir sistemas orientados

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

Nosso Planeta Mobile: Brasil

Nosso Planeta Mobile: Brasil Nosso Planeta Mobile: Brasil Como entender o usuário de celular Maio de 2012 1 Resumo executivo Os smartphones se tornaram indispensáveis para nosso cotidiano. A difusão dos smartphones atinge 14% da população,

Leia mais

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 SISTEMA DE APOIO À DECISÃO Grupo: Denilson Neves Diego Antônio Nelson Santiago Sabrina Dantas CONCEITO É UM SISTEMA QUE AUXILIA O PROCESSO DE DECISÃO

Leia mais

Valor Comercial das Telecomunicações. Telecomunicações nas Empresas. Superar barreiras geográficas. Superar barreiras do tempo

Valor Comercial das Telecomunicações. Telecomunicações nas Empresas. Superar barreiras geográficas. Superar barreiras do tempo Valor Comercial das Telecomunicações Superar barreiras geográficas Atendimento ao cliente/preenchimento de pedidos Superar barreiras do tempo Consultas de crédito (POS) Superar barreiras de custo Videoconferência

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais