Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Tamanho: px
Começar a partir da página:

Download "Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento"

Transcrição

1 Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um comportamento futuro. Objetivo: identificar novos padrões de dados válidos, compreensíveis e com potencial de uso. Origem do Data Mining Surgiu no início dos anos 90 para solucionar o problemas em se conseguir informações estratégicas nos bancos de dados das organizações. A mineração de dados surgiu como alternativa a métodos tradicionais (SQL, Planilhas, investigação manual) e inviáveis para a solução do problema. Foi utilizado idéias de várias áreas: Banco de Dados Aprendizado de Máquina Estatística 1

2 Aplicações Comuns do Data Mining Segmentação de mercado Identifica as características comuns dos clientes que compram os mesmos produtos de uma empresa. Análise das cestas de mercado Compreende como produtos e serviços podem ser comumente adquiridos juntos (cerveja e fraldas). Reclamação de cliente Prevê quais clientes estão mais propensos a abandonar uma empresa e ir para a empresa concorrente. Mineração de Dados Processo realizado através de estratégias automatizadas que tem por objetivo a descoberta de conhecimento valioso em grandes bases de dados. Um pequeno diamante de informação é extraído a partir de uma verdadeira montanha de dados. Mineração de Dados Um Data Warehouse possui Terabytes de dados. Encontrar informações em grandes bases de dados não é uma tarefa fácil. Existe a necessidade de organizar os dados e de utilizar ferramentas para recuperar informações relevantes. Ferramentas de Data Mining recuperam automaticamente informações do Data Warehouse. 2

3 Propriedades de um Conhecimento Relevante O conhecimento descoberto através de processos de mineração de dados é considerado interessante quando apresenta certas propriedades: Propriedades de um Conhecimento Relevante Conhecimento Relevante: Representava uma informação nova. Não era conhecida pelos analistas da empresa. Associação inesperada. Os analistas imaginavam que as vendas de cerveja estivessem associadas apenas a produtos como salgados, carne para churrasco e outras bebidas alcoólicas, mas nunca a produtos de higiene infantil. A regra é válida. Possuía expressividade estatística. Uma porcentagem considerável das compras realizadas nas noites de quinta-feira continha ambos os produtos. A regra é interpretável Pôde ser entendida e explicada pelos analistas. Sugere que nas noites de quinta-feira casais jovens com filhos pequenos estocam fraldas e cervejas para o fim-de-semana. A regra é útil Os gerentes puderam tomar ações capazes de aumentar as vendas de cerveja. Ex: os produtos foram colocados em prateleiras próximas. Descoberta de Associações Objetivo: descobrir combinações de itens ou valores de atributos que ocorrem com frequência significativa em uma base de dados. Exemplo: Mineração do BD de um supermercado. Regra de associação: {fraldas} Þ {cerveja} 50% das compras que contêm fraldas, também contêm cerveja e 15% de todas as compras contêm os dois produtos. Regra de associação: {milho verde} Þ {ervilhas} A compra do produto milho verde aumenta em 5 vezes a chance de um cliente comprar ervilhas. 3

4 Descoberta de Associações Exemplo: Sistema de Recomendação (sugerem itens que considera interessantes para um usuário). Regra de associação: {produto} Þ {produto recomendado} Livro 1 e Livro2. Notícia 1 e Notícia 2. Música 1 e música 2. Vídeo 1 e vídeo 2. Exemplo: Segurança de Sistemas (aprimoram banco de dado de antivírus e sistema de detecção de intrusos). Regra de associação: {serviço x} Þ {operação y} (Service = telnet ) (FailedLogins 1) (Intrusion = yes ) Regra indica que as conexões nas quais o serviço de rede utilizado foi o telnet e que apresentaram uma ou mais operações de login rejeitadas, tendem a ser tentativas de intrusões. Descoberta de Padrões Sequenciais Objetivo: descobrir sequências de eventos frequentes (leva em conta a ordem ou a data de ocorrência dos eventos). Exemplo: Mineração do BD de loja de suprimentos de eletrônica. Padrão sequencial: {netbook} Þ {hard disk} 50% dos consumidores que adquirem um netbook compram um hard disk externo de 2 a 4 meses após a aquisição do netbook. Padrão sequencial: {navegação na Web} Þ {cliques} Análise de sequência de cliques em um site de ecommerce. Classificação Objetivo: a partir de um banco de dados contendo objetos préclassificados (objetos cuja classe é conhecida), construir um modelo que seja capaz de classificar automaticamente novos objetos (objetos cuja a classe é desconhecida) em função de suas características através de um modelo classificador. Exemplo: Mineração do BD de uma seguradora. Análise de classificação de risco por característica de cliente. Sexo feminino : não se envolve em acidente Sexo masculino e idade superior a 25 anos : não se envolve em acidente. Sexo masculino e idade igual ou inferior a 25 anos: se envolve em acidente 4

5 Exemplo: Mineração do BD de uma seguradora. Análise de classificação de risco por característica de cliente. A classificação é uma tarefa preditiva. Tarefa preditiva: predizer (dizer antecipadamente o que vai acontecer) o valor de um determinado atributo baseado nos valores de outros atributos Determinação de Agrupamentos Objetivo: dividir automaticamente um conjunto de objetos em grupos (clusters) de acordo com algum de tipo de relacionamento de similaridade existente. Exemplo: Personagens Simpsons. Divisão em grupos de similaridade Determinação de Agrupamentos Exemplos de agrupamentos Simpsons 5

6 Outros tipos Mineração de Texto: descoberta de novas informações a partir da análise de texto livre (artigos, documentos WORD ou PDF, etc.) ou semiestruturado (ex: arquivos HTML ou XML). Mineração Web: uso de algoritmos para minerar conhecimento útil de documentos e serviços da Web. Regressão: similar à tarefa de classificação. A principal diferença é que o atributo alvo é do tipo contínuo. Exemplo: valor de um imóvel em função das características dele e do bairro. Padrões em Séries Temporais: os dados de séries temporais contém observações adjacentes e ordenadas, tipicamente uma sequência de valores numéricos com um atributo representando o tempo. Mineração de Exceções: o objetivo da tarefa é determinar objetos que sejam diferentes da maioria dos outros objetos. Aplicações práticas: detecção de fraudes, previsão de distúrbios no ecossistema, e outras. Tecnicas de Data Mining Cada tarefa de mineração de dados possui um conjunto de técnicas associadas, que representam os algoritmos que podem ser empregados para a sua execução. Ferramentas de Data Mining Ferramentas comerciais: Oracle SAS SPSS SQL Server Ferramentas livres: R : já existem diversos pacotes para data mining que podem ser integrados a este tradicional software open source para estatística. Weka: ferramenta para Data Mining. 6

Data Mining com a Ferramenta Weka

Data Mining com a Ferramenta Weka Data Mining com a Ferramenta Weka Eduardo Corrêa Gonçalves Escola Nacional de Ciências Estatísticas (IBGE/ENCE) Rua André Cavalcanti, 106, Centro 20.231-050 Rio de Janeiro RJ eduardo.correa@ibge.gov.br

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

3 Market Basket Analysis - MBA

3 Market Basket Analysis - MBA 2 Mineração de Dados 3 Market Basket Analysis - MBA Market basket analysis (MBA) ou, em português, análise da cesta de compras, é uma técnica de data mining que faz uso de regras de associação para identificar

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA Lizianne Priscila Marques SOUTO 1 1 Faculdade de Ciências Sociais e Aplicadas

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa - PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa - PUCPR Muitos dados são coletados e armazenados Web data, e-commerce Compras em departamentos/ supermercados Bancos / Transações com cartão de crédito Computadores se tornaram baratos e mais potentes Pressão

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Mining Os métodos tradicionais de Data Mining são: Classificação Associa ou classifica um item a uma ou várias classes categóricas pré-definidas.

Leia mais

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD)

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) AULA 07 MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) JAMES A. O BRIEN MÓDULO 01 Páginas 286 à 294 1 AULA 07 SISTEMAS DE APOIO ÀS DECISÕES 2 Sistemas de Apoio à Decisão (SAD)

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

Módulo 4: Gerenciamento de Dados

Módulo 4: Gerenciamento de Dados Módulo 4: Gerenciamento de Dados 1 1. CONCEITOS Os dados são um recurso organizacional decisivo que precisa ser administrado como outros importantes ativos das empresas. A maioria das organizações não

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

OqueéBI? QualéoobjetivodeBI? 15/03/2009

OqueéBI? QualéoobjetivodeBI? 15/03/2009 Profª. Kelly Business Intelligence (BI) OqueéBI? É um conjunto de conceitos e metodologias que, fazendo uso de acontecimentos (fatos) e sistemas baseados nos mesmos, apóia a tomada de decisões em negócios;

Leia mais

Exemplos de aplicação. Mineração de Dados 2013

Exemplos de aplicação. Mineração de Dados 2013 Exemplos de aplicação Mineração de Dados 2013 Luís Rato Universidade de Évora, 2013 Mineração de dados / Data Mining 1 Classificação: Definição Dado uma conjunto de registos (conjunto de treino training

Leia mais

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o

No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o DATABASE MARKETING No mundo atual, globalizado e competitivo, as organizações têm buscado cada vez mais, meios de se destacar no mercado. Uma estratégia para o empresário obter sucesso em seu negócio é

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

A Grande Importância da Mineração de Dados nas Organizações

A Grande Importância da Mineração de Dados nas Organizações A Grande Importância da Mineração de Dados nas Organizações Amarildo Aparecido Ferreira Junior¹, Késsia Rita da Costa Marchi¹, Jaime Willian Dias¹ ¹Universidade Paranaense (Unipar) Paranavaí PR Brasil

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

http://www.publicare.com.br/site/5,1,26,5480.asp

http://www.publicare.com.br/site/5,1,26,5480.asp Página 1 de 7 Terça-feira, 26 de Agosto de 2008 ok Home Direto da redação Última edição Edições anteriores Vitrine Cross-Docking Assine a Tecnologística Anuncie Cadastre-se Agenda Cursos de logística Dicionário

Leia mais

Data Mining Software Weka. Software Weka. Software Weka 30/10/2012

Data Mining Software Weka. Software Weka. Software Weka 30/10/2012 Data Mining Software Weka Prof. Luiz Antonio do Nascimento Software Weka Ferramenta para mineração de dados. Weka é um Software livre desenvolvido em Java. Weka é um É um pássaro típico da Nova Zelândia.

Leia mais

Data Warehouse Mineração de Dados

Data Warehouse Mineração de Dados Data Warehouse Mineração de Dados Profa. Roberta Macêdo M. Gouveia robertammg@gmail.com 1 18/12/2014 Data Warehouse Data Mining Big Data A mina de ouro debaixo dos bits 2 Data Warehouse: A Memória da Empresa

Leia mais

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5 Para entender bancos de dados, é útil ter em mente que os elementos de dados que os compõem são divididos em níveis hierárquicos. Esses elementos de dados lógicos constituem os conceitos de dados básicos

Leia mais

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Sumário Conceitos / Autores chave... 3 1. Introdução... 3 2. Tarefas desempenhadas por Técnicas de 4 Mineração de Dados...

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

Identificação rápida de gargalos Uma forma mais eficiente de realizar testes de carga. Um artigo técnico da Oracle Junho de 2009

Identificação rápida de gargalos Uma forma mais eficiente de realizar testes de carga. Um artigo técnico da Oracle Junho de 2009 Identificação rápida de gargalos Uma forma mais eficiente de realizar testes de carga Um artigo técnico da Oracle Junho de 2009 Identificação rápida de gargalos Uma forma mais eficiente de realizar testes

Leia mais

Inteligência de Negócio. Brian Cowhig

Inteligência de Negócio. Brian Cowhig Inteligência de Negócio Brian Cowhig Inteligência de Negócio O Que é Inteligência de Negócio? Três Níveis de Inteligência de Negócio Database Query OLAP Data Mining Produtos de Inteligência de Negócio

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

Web Data Mining com R

Web Data Mining com R Web Data Mining com R Fabrício J. Barth fabricio.barth@gmail.com VAGAS Tecnologia e Faculdade BandTec Maio de 2014 Objetivo O objetivo desta palestra é apresentar conceitos sobre Web Data Mining, fluxo

Leia mais

PENTAHO. História e Apresentação

PENTAHO. História e Apresentação PÓS-GRADUAÇÃO LATO SENSU Curso: Banco de Dados Disciplina: Laboratório de Data Warehouse e Business Intelligence Professor: Fernando Zaidan Unidade 2 2012 Crédito dos Slides: Clever Junior 2 PENTAHO História

Leia mais

Laboratório de Mídias Sociais

Laboratório de Mídias Sociais Laboratório de Mídias Sociais Aula 02 Análise Textual de Mídias Sociais parte I Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Universidade Federal de Goiás O que é Análise Textual? Análise

Leia mais

Tecnologias da Informação, Comunicação e Sistemas de Inteligência

Tecnologias da Informação, Comunicação e Sistemas de Inteligência , Comunicação e Sistemas de Inteligência Gestão e de Bancos de Dados IESB - Centro Universitário A importância da informação em um mundo de informação disponível em tempo real a informação menos acessível

Leia mais

2 Conceitos Gerais de Classificação de Documentos na Web

2 Conceitos Gerais de Classificação de Documentos na Web Conceitos Gerais de Classificação de Documentos na Web 13 2 Conceitos Gerais de Classificação de Documentos na Web 2.1. Páginas, Sites e Outras Terminologias É importante distinguir uma página de um site.

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

Banco de Dados I. Introdução. Fabricio Breve

Banco de Dados I. Introdução. Fabricio Breve Banco de Dados I Introdução Fabricio Breve Introdução SGBD (Sistema Gerenciador de Banco de Dados): coleção de dados interrelacionados e um conjunto de programas para acessar esses dados Coleção de dados

Leia mais

Sistemas de Informação

Sistemas de Informação Sistemas de Informação Prof. M.Sc. Diego Fernandes Emiliano Silva diego.femiliano@gmail.com Agenda Banco de dados Gerenciamento de banco de dados Sistemas de gerenciamento de banco de dados Como usar banco

Leia mais

Data Warehouse - DW ADM. MARTÍN GLASS CRA/MT 4742

Data Warehouse - DW ADM. MARTÍN GLASS CRA/MT 4742 Data Warehouse - DW Data Warehouse (Armazém de Dados) é um depósito integrado de informações, disponíveis para análise e para a construção de filtros de busca; Centraliza informações localizadas em diferentes

Leia mais

Etapas da evolução rumo a tomada de decisão: Aplicações Isoladas: dados duplicados, dados inconsistentes, processos duplicados.

Etapas da evolução rumo a tomada de decisão: Aplicações Isoladas: dados duplicados, dados inconsistentes, processos duplicados. Histórico Etapas da evolução rumo a tomada de decisão: Aplicações Isoladas: dados duplicados, dados inconsistentes, processos duplicados. Sistemas Integrados: racionalização de processos, manutenção dos

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Sistemas de Banco de Dados Aspectos Gerais de Banco de Dados

Sistemas de Banco de Dados Aspectos Gerais de Banco de Dados Sistemas de Banco de Dados Aspectos Gerais de Banco de Dados 1. Conceitos Básicos No contexto de sistemas de banco de dados as palavras dado e informação possuem o mesmo significado, representando uma

Leia mais

Edições Edge do SAP InfiniteInsight Visão geral Viabilizando insights preditivos apenas com cliques de mouse, sem códigos de computador

Edições Edge do SAP InfiniteInsight Visão geral Viabilizando insights preditivos apenas com cliques de mouse, sem códigos de computador Soluções de análise da SAP Edições Edge do SAP InfiniteInsight Visão geral Viabilizando insights preditivos apenas com cliques de mouse, sem códigos de computador Índice 3 Um caso para análise preditiva

Leia mais

Aula 7 Componentes de um Sistema de Informação Recursos e Atividades

Aula 7 Componentes de um Sistema de Informação Recursos e Atividades Aula 7 Componentes de um Sistema de Informação Recursos e Atividades Curso: Gestão de TI - UNIP Disciplina: Sistemas de Informação Professor: Shie Yoen Fang Ementa: Item 11 e Item 12 2ª semestre de 2011

Leia mais

O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de

O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de MINERAÇÃO DE DADOS MINERAÇÃO DE DADOS O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de dados. A mineração de dados é formada por um conjunto de ferramentas e técnicas

Leia mais

Como melhorar a tomada de decisão. slide 1

Como melhorar a tomada de decisão. slide 1 Como melhorar a tomada de decisão slide 1 P&G vai do papel ao pixel em busca da gestão do conhecimento Problema: grande volume de documentos em papel atrasavam a pesquisa e o desenvolvimento. Solução:

Leia mais

Sumário. Parte l. 1. Introdução à pesquisa qualitativa e quantitativa em marketing 1 1.1 Pesquisa qualitativa 1 1.2 Pesquisa quantitativa 3

Sumário. Parte l. 1. Introdução à pesquisa qualitativa e quantitativa em marketing 1 1.1 Pesquisa qualitativa 1 1.2 Pesquisa quantitativa 3 Sumário Parte l 1. Introdução à pesquisa qualitativa e quantitativa em marketing 1 1.1 Pesquisa qualitativa 1 1.2 Pesquisa quantitativa 3 2. Entrevistas 5 2.1 Tipos de entrevistas 8 2.2 Preparação e condução

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Detecção e investigação de ameaças avançadas. VISÃO GERAL

Detecção e investigação de ameaças avançadas. VISÃO GERAL Detecção e investigação de ameaças avançadas. VISÃO GERAL DESTAQUES Introdução ao RSA Security Analytics, que oferece: Monitoramento da segurança Investigação de incidente Geração de relatórios de conformidade

Leia mais

XII. Relacionamento com o e-cliente

XII. Relacionamento com o e-cliente XII. Relacionamento com o e-cliente 1. Rastreamento e Análise de Dados) 2. Personalização 3. Centrais de Contacto 4. CRM 1. Rastreamento e Análise de Dados Os anunciantes, comunidades e negócios on ine

Leia mais

MÉTODOS QUANTITATIVOS EM MARKETING. Prof.: Otávio Figueiredo e-mail: otavio@ufrj.br

MÉTODOS QUANTITATIVOS EM MARKETING. Prof.: Otávio Figueiredo e-mail: otavio@ufrj.br MÉTODOS QUANTITATIVOS EM MARKETING Prof.: Otávio Figueiredo e-mail: otavio@ufrj.br ESTATÍSTICA População e Amostra População Amostra Idéia Principal Resumir para entender!!! Algumas Técnicas Pesquisa de

Leia mais

Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br

Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br Ementa Introdução a Banco de Dados (Conceito, propriedades), Arquivos de dados x Bancos de dados, Profissionais de Banco de dados,

Leia mais

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO EPE0147 UTILIZAÇÃO DA MINERAÇÃO DE DADOS EM UMA AVALIAÇÃO INSTITUCIONAL

Leia mais

Decisão Suporte: Warehousing, OLAP e Data Mining

Decisão Suporte: Warehousing, OLAP e Data Mining Decisão Suporte: Warehousing, OLAP e Data Mining 7-1 Introdução Cada vez mais, organizações estão analizando dados correntes e históricos para identificar padrões úteis e suporte a estratégias de negócios.

Leia mais

Decisão Suporte: Warehousing, OLAP e Data Mining

Decisão Suporte: Warehousing, OLAP e Data Mining Decisão Suporte: Warehousing, OLAP e Data Mining 7-1 Introdução Cada vez mais, organizações estão analizando dados correntes e históricos para identificar padrões úteis e suporte a estratégias de negócios.

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Informática I. Aula 25. http://www.ic.uff.br/~bianca/informatica1/ Baseada no Capítulo 2 do Livro Introdução a Informática Capron e Johnson

Informática I. Aula 25. http://www.ic.uff.br/~bianca/informatica1/ Baseada no Capítulo 2 do Livro Introdução a Informática Capron e Johnson Informática I Aula 25 Baseada no Capítulo 2 do Livro Introdução a Informática Capron e Johnson http://www.ic.uff.br/~bianca/informatica1/ Aula 25-12/07/06 1 Ementa Histórico dos Computadores Noções de

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Sumário. Mineração de Dados aplicada à Gestão de Negócios. 1) Mineração de Dados

Sumário. Mineração de Dados aplicada à Gestão de Negócios. 1) Mineração de Dados Aula 1 Introdução -Mineração de Dados Prof. Dr. Sylvio Barbon Junior barbon@uel.br Sumário 1) Mineração de Dados 1) Atividades Relacionadas; 2) Desafios; 3) Exemplos de aplicativos; 4) Últimos assuntos;

Leia mais

ADMINISTRAÇÃO DOS RECURSOS DE DADOS

ADMINISTRAÇÃO DOS RECURSOS DE DADOS 7 ADMINISTRAÇÃO DOS RECURSOS DE DADOS OBJETIVOS Por que as empresas sentem dificuldades para descobrir que tipo de informação precisam ter em seus sistemas de informação ão? Como um sistema de gerenciamento

Leia mais

Segurança na Web: Proteja seus dados na nuvem

Segurança na Web: Proteja seus dados na nuvem White paper Segurança na Web: Proteja seus dados na nuvem Resumo Sabemos que as equipes de segurança não podem estar em todos os locais, mas o cenário atual exige que as empresas estejam prontas para proteger

Leia mais

milenaresende@fimes.edu.br

milenaresende@fimes.edu.br Fundação Integrada Municipal de Ensino Superior Sistemas de Informação A Internet, Intranets e Extranets milenaresende@fimes.edu.br Uso e funcionamento da Internet Os dados da pesquisa de TIC reforçam

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

CAPÍTULO 8 Conexões de banco de dados para programadores ASP.NET

CAPÍTULO 8 Conexões de banco de dados para programadores ASP.NET CAPÍTULO 8 Conexões de banco de dados para programadores ASP.NET Para utilizar um banco de dados com um aplicativo ASP.NET, é necessário criar uma conexão de banco de dados no Macromedia Dreamweaver MX.

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br Centro Universitário de Volta Redonda - UniFOA Curso Tecnológico de Redes de Computadores 5º período Disciplina: Tecnologia WEB Professor: José Maurício S. Pinheiro

Leia mais

Unidade III PRINCÍPIOS DE SISTEMAS DE. Prof. Luís Rodolfo

Unidade III PRINCÍPIOS DE SISTEMAS DE. Prof. Luís Rodolfo Unidade III PRINCÍPIOS DE SISTEMAS DE INFORMAÇÃO Prof. Luís Rodolfo Vantagens e desvantagens de uma rede para a organização Maior agilidade com o uso intenso de redes de computadores; Grandes interações

Leia mais

TRIBUNAL DE CONTAS DO DISTRITO FEDERAL

TRIBUNAL DE CONTAS DO DISTRITO FEDERAL TRIBUNAL DE CONTAS DO DISTRITO FEDERAL TÉCNICO EM ADMINISTRAÇÃO PÚBLICA E ANALISTA (EXCETO PARA O CARGO 4 e 8) GABARITO 1. (CESPE/2013/MPU/Conhecimentos Básicos para os cargos 34 e 35) Com a cloud computing,

Leia mais

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados Algoritmos Genéticos em Mineração de Dados Descoberta de Conhecimento Descoberta do Conhecimento em Bancos de Dados Processo interativo e iterativo para identificar padrões válidos, novos, potencialmente

Leia mais

Aula 02: Conceitos Fundamentais

Aula 02: Conceitos Fundamentais Aula 02: Conceitos Fundamentais Profa. Ms. Rosângela da Silva Nunes 1 de 26 Roteiro 1. Por que mineração de dados 2. O que é Mineração de dados 3. Processo 4. Que tipo de dados podem ser minerados 5. Que

Leia mais

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Pollyanna Carolina BARBOSA¹; Thiago MAGELA² 1Aluna do Curso Superior Tecnólogo em Análise e Desenvolvimento de Sistemas

Leia mais

Programas Maliciosos. 2001 / 1 Segurança de Redes/Márcio d Ávila 182. Vírus de Computador

Programas Maliciosos. 2001 / 1 Segurança de Redes/Márcio d Ávila 182. Vírus de Computador Programas Maliciosos 2001 / 1 Segurança de Redes/Márcio d Ávila 182 Vírus de Computador Vírus de computador Código intruso que se anexa a outro programa Ações básicas: propagação e atividade A solução

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Análise Espacial 2 1 Distribuição Espacial A compreensão da distribuição

Leia mais

Aula 1: Noção Básica e Criação de Tabelas.

Aula 1: Noção Básica e Criação de Tabelas. Aula 1: Noção Básica e Criação de Tabelas. Introdução Olá! Seja bem-vindo a apostila de Microsoft Access 2010. Access 2010 é um Sistema de Gerenciamento de Banco de Dados da Microsoft, distribuído no pacote

Leia mais

Aprendizagem de Máquina. Ivan Medeiros Monteiro

Aprendizagem de Máquina. Ivan Medeiros Monteiro Aprendizagem de Máquina Ivan Medeiros Monteiro Definindo aprendizagem Dizemos que um sistema aprende se o mesmo é capaz de melhorar o seu desempenho a partir de suas experiências anteriores. O aprendizado

Leia mais

Solução e Implantação

Solução e Implantação A Empresa O Russi Supermercados foi fundado em 1966 com o nome Irmãos Russi, após a aquisição dos Supermercados Coopideal passou a ter 22 lojas espalhadas pelo interior de São Paulo, tornando-se um dos

Leia mais

Metadados. 1. Introdução. 2. O que são Metadados? 3. O Valor dos Metadados

Metadados. 1. Introdução. 2. O que são Metadados? 3. O Valor dos Metadados 1. Introdução O governo é um dos maiores detentores de recursos da informação. Consequentemente, tem sido o responsável por assegurar que tais recursos estejam agregando valor para os cidadãos, as empresas,

Leia mais

Modelagem de Casos de Uso (Parte 2)

Modelagem de Casos de Uso (Parte 2) Modelagem de Casos de Uso (Parte 2) Roteiro (1) Método para Modelagem de Casos De Uso Estudo de Caso: Sistema de Controle para Videolocadora Levantamento Inicial dos Casos de Uso Identificação dos Casos

Leia mais

Sistema Eletrônico de Editoração de RevistasSEER

Sistema Eletrônico de Editoração de RevistasSEER Sistema Eletrônico de Editoração de RevistasSEER O SEER foi traduzido e customizado pelo Instituto Brasileiro de Informação em Ciência e Tecnologia (IBICT) baseado no software desenvolvido pelo Public

Leia mais

ADMINISTRAÇÃO DE SISTEMAS DE INFORMAÇÃO (AULA 04)

ADMINISTRAÇÃO DE SISTEMAS DE INFORMAÇÃO (AULA 04) Prof. Breno Leonardo Gomes de Menezes Araújo brenod123@gmail.com http://blog.brenoleonardo.com.br ADMINISTRAÇÃO DE SISTEMAS DE INFORMAÇÃO (AULA 04) 1 CRM Sistema de Relacionamento com clientes, também

Leia mais

WF Processos. Manual de Instruções

WF Processos. Manual de Instruções WF Processos Manual de Instruções O WF Processos é um sistema simples e fácil de ser utilizado, contudo para ajudar os novos usuários a se familiarizarem com o sistema, criamos este manual. Recomendamos

Leia mais

Banco de Dados - Senado

Banco de Dados - Senado Banco de Dados - Senado Exercícios OLAP - CESPE Material preparado: Prof. Marcio Vitorino OLAP Material preparado: Prof. Marcio Vitorino Soluções MOLAP promovem maior independência de fornecedores de SGBDs

Leia mais

MESTRADO EM PESQUISA DE MERCADOS 2006 2007

MESTRADO EM PESQUISA DE MERCADOS 2006 2007 MESTRADO EM PESQUISA DE MERCADOS 2006 2007 PROGRAMA DAS DISCIPLINAS 1 1º trimestre PESQUISA DE MERCADOS Objectivos Pretende-se que os alunos: (a) adquiram os conceitos e semântica próprios do tema, (b)

Leia mais

Data, Text and Web Mining

Data, Text and Web Mining Data, Text and Web Mining Fabrício J. Barth TerraForum Consultores Junho de 2010 Objetivo Apresentar a importância do tema, os conceitos relacionados e alguns exemplos de aplicações. Data, Text and Web

Leia mais

Web Data mining com R: aprendizagem de máquina

Web Data mining com R: aprendizagem de máquina Web Data mining com R: aprendizagem de máquina Fabrício Jailson Barth Faculdade BandTec e VAGAS Tecnologia Junho de 2013 Sumário O que é Aprendizagem de Máquina? Hierarquia de aprendizado. Exemplos de

Leia mais

Backup. Permitir a recuperação de sistemas de arquivo inteiros de uma só vez. Backup é somente uma cópia idêntica de todos os dados do computador?

Backup. Permitir a recuperação de sistemas de arquivo inteiros de uma só vez. Backup é somente uma cópia idêntica de todos os dados do computador? Backup O backup tem dois objetivos principais: Permitir a recuperação de arquivos individuais é a base do típico pedido de recuperação de arquivo: Um usuário apaga acidentalmente um arquivo e pede que

Leia mais

Lista de Exercícios 1 - Estatística Descritiva

Lista de Exercícios 1 - Estatística Descritiva 1. O arquivo satisfaçãocomuniversidade.xlsx contém informações de uma amostra de 400 alunos de uma universidade. Deseja-se construir um histograma para a variável desempenho acadêmico, com intervalos de

Leia mais

Aula A 3 ula 11 Windows-Internet

Aula A 3 ula 11 Windows-Internet Aula 3 11 Aula 1 SEGURANÇA NA INTERNET Vírus 2 Vírus Código escrito com a intenção expressa de replicar a si mesmo. Ele pode causar estragos no seu computador, nos programas ou dados. 3 Diferenças entre

Leia mais

3 Um Framework Orientado a Aspectos para Monitoramento e Análise de Processos de Negócio

3 Um Framework Orientado a Aspectos para Monitoramento e Análise de Processos de Negócio 32 3 Um Framework Orientado a Aspectos para Monitoramento e Análise de Processos de Negócio Este capítulo apresenta o framework orientado a aspectos para monitoramento e análise de processos de negócio

Leia mais

Modelagem de Casos de Uso (Parte 2)

Modelagem de Casos de Uso (Parte 2) Modelagem de Casos de Uso (Parte 2) Roteiro (1) Método para Modelagem de Casos De Uso Estudo de Caso: Sistema de Controle para Videolocadora Levantamento Inicial dos Casos de Uso Identificação dos Casos

Leia mais

Exemplo de Aplicação do DataMinig

Exemplo de Aplicação do DataMinig Exemplo de Aplicação do DataMinig Felipe E. Barletta Mendes 19 de fevereiro de 2008 INTRODUÇÃO AO DATA MINING A mineração de dados (Data Mining) está inserida em um processo maior denominado Descoberta

Leia mais

Modelos de Arquiteturas. Prof. Andrêza Leite andreza.lba@gmail.com

Modelos de Arquiteturas. Prof. Andrêza Leite andreza.lba@gmail.com Modelos de Arquiteturas Prof. Andrêza Leite andreza.lba@gmail.com Agenda Introdução Arquitetura de Sistemas Distribuídos Clientes e Servidores Peer-to-Peer Variações Vários Servidores Proxy Código Móvel

Leia mais