UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS"

Transcrição

1 UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013

2 Sumário Introdução...3 Processamento do vídeo...3 Recuperação das informações do vídeo...4 Data Mining em Vídeos...5 Abordagens...6 Aplicações...7 Conclusão...8

3 Introdução O avanço tecnológico na aquisição e armazenamento de multimídia resultou em um crescimento enorme em bancos de dados. Data mining em multimídia é a extração de conhecimento implícito, relacionamento entre os dados e outros padrões não explícitos armazenados nestes bancos. Entre os dados há os complexos e não estruturados, que são mais difíceis de serem manipulados e estudados. Um exemplo disso são os vídeos. Hoje em dia as pessoas têm acesso a quantidades gigantescas de vídeo provindos da televisão e internet, portanto há um grande potencial para aplicações baseadas neles. Exemplos de áreas que poderiam ser beneficiadas com essas aplicações são as áreas de segurança, monitoramento, entretenimento e medicina. Dados de vídeos possuem diversos tipos de dados, como o vídeo em si, áudio e texto. O vídeo consiste em uma sequência de imagens com informação temporal, o áudio em fala, música e outros tipos de sons, enquanto que a informação textual representa as formas linguísticas. O conteúdo dos vídeos é classificado em três categorias. (i) As características de baixo nível, que são as características básicas como cor, textura, e formato, (ii) as informações sintáticas, que descrevem o conteúdo do vídeo, como objetos salientes, sua posição espaço temporal e a relação entre os objetos, e (iii) as informações semânticas, que descrevem o que está acontecendo no vídeo. Processamento do vídeo A extração de conhecimento em vídeos é uma tarefa difícil pois, entre outros motivos, estes são dados não-estruturados, e o processamento de dados demanda estruturas bem formadas, portanto o primeiro passo é fazer essa transformação. As características de vídeo, áudio e texto devem ser extraídas, eliminando ruídos e mudanças de iluminação para evitar erros. Após fazer a extração os dados devem ser armazenados, e neste ponto surge o problema do modelo de base para os dados de vídeo. Modelos relacionais e orientados a objetos não provêm funcionalidades suficientes para o gerenciamento e recuperação de conteúdos de vídeos. Vários modelos foram propostos, e um deles, de Petkovic e Jonker, descreve um modelo com quatro camadas. A primeira seria do vídeo bruto como uma sequência de frames. A segunda camada conteria as características de baixo nível. Na terceira estariam armazenadas as entidades caracterizadas por dimensões espaciais, e a quarta camada seria dos eventos, descrevendo movimentos e interações dos objetos. Após o armazenamento, o primeiro passo é a segmentação do vídeo. A figura 1 descreve a hierarquia padrão de um vídeo como sendo um conjunto de cenas. Estas são caracterizadas por uma coleção de grupos relacionados semanticamente e temporalmente. Video groups são um intermediário entre os shots e as cenas. São shots relacionados temporalmente ou espacialmente. Shots são sequências de frames sem grandes mudanças entre si. O desafio de agrupar os frames em shots é a detecção do limite de cada shot, identificando a fronteira entre eles. Por último, key frames representam um conjunto de frames. Estes são a menor parte de um vídeo, e vários são similares entre si, então é importante identificar o frame chave para evitar redundância de dados.

4 O último passo do processamento dos dados é a extração de características. Esta pode ser feita (i) baseada na descrição do vídeo, que extrai características como palavraschave e data de criação, e (ii) baseada no conteúdo, que extrai as características de baixo nível mencionada anteriormente. Recuperação das informações do vídeo Um sistema de recuperação de informações de vídeo é basicamente um Sistema Gerenciador de Banco de Dados e tem como objetivo retornar vídeos ou partes dele (cenas, shots...) baseados em uma consulta feita pelo usuário. Para tanto, deve ter sido feita uma abstração do vídeo e este deve possuir anotações. A abstração nada mais é do que um resumo do vídeo, similarmente ao trailer de filmes, baseado em regras inferidas e utilizando algoritmos de reconhecimento de padrões, enquanto que anotações são a anexação de palavras-chave ao vídeo, que pode ser feita de modo supervisionado ou não. Para o primeiro modo, especialistas inserem as anotações manualmente, e para o segundo estas são inseridas após o processo de agrupamento (clusterização).

5 Data Mining em Vídeos É a mineração de dados em vídeos que lida com a extração de conhecimento implícito, relacionamento entre vídeos ou outros padrões não armazenados explicitamente no banco de dados. É considerado uma extensão da mineração de dados em imagens incluindo a mineração de imagens em sequências espaço temporais. Os problemas-chave da mineração em vídeos em relação às outras áreas são (i) classificar os vídeos com base no seu conteúdo, extraindo a semântica dos mesmos através dos resultados baseados em características de baixo nível, (ii) extrair padrões no som, categorizando-o em fala, música, sons de ambiente, entre outros, (iii) e a modelagem da base de dados, que deve atender às necessidades de dados complexos. A figura 2 mostra um framework proposto por Oh e Bandi para data mining em vídeos brutos em tempo real. No primeiro estágio os frames de entrada são agrupados em conjuntos de unidade básicas. Em seguida o algoritmo extrai características de cada frame, para após serem agrupados em grupos similares. Os passos seguintes são a descoberta de conhecimento em si e a compressão dos dados para armazenamento. Os conhecimentos e padrões descobertos podem identificar objetos e eventos normais ou anormais. Para que a mineração em vídeos seja bem-sucedida, mais do que apenas a sequência de imagens deve ser analisada. Áudio e texto, que também formam o vídeo, devem ser extraídos e estudados. Há duas abordagens principais para a extração e análise de áudio. A primeira envolve transformar a fala em texto e então identificar as palavras em um dicionário. Se a palavra não estiver contida nele, uma similar será escolhida. A segunda abordagem consiste em analisar os sons e identificá-los em um índice fonético. A partir disso um dicionário que contém conversões de fonemas para caracteres é utilizado. Em ambos os métodos o sistema utiliza o texto de saída como termos de consulta. Em relação ao texto, há três categorias para eles. (i) Textos de cena são aqueles que estão presentes visualmente no vídeo, como escritas em roupas e placas. (ii) Texto sobreposto é o texto inserido manualmente no vídeo para prover informação adicional para um melhor entendimento, e (iii) reconhecimento automático de fala é o texto provido de conversações extraídas.

6 Abordagens Há diversas abordagens para se fazer mineração de dados em vídeos, e estas foram divididas em cinco categorias, que são: mineração de estrutura, classificação e agrupamento, associação, mineração de movimento e mineração de padrões. A associação funciona como nas outras áreas de data mining, utilizando suporte e confiança, mas se preocupando também com o fator temporal. A classificação é baseada em regras inferidas manualmente ou estatísticas. Para o primeiro caso, regras são definidas a partir do conhecimento do domínio para se alcançar a classificação semântica, mas é somente possível em vídeos cuja estrutura seja bem definida, como filmes ou noticiários. Classificação baseada em estatísticas utiliza conhecimento de máquina para alcançar a semântica e descobrir relações não-óbvias entre diferentes padrões. O agrupamento é apresentado na figura 3. Após receber uma sequência de frames como entrada, o algoritmo detecta os shots, e a partir dele extrai os key frames. Destes, as características são extraídas e similarmente comparadas para gerar os clusters. A mineração de estrutura é o processo de descoberta da lógica fundamental da estrutura de um vídeo pré-processado adotando técnicas de mineração como classificação e associação. O objetivo desta mineração é chegar à estrutura apresentada na figura 1 e, com ela, adquirir conhecimento para identificar o que está acontecendo, ou seja, adquirir semântica através do conhecimento sintático. Mineração de movimento tem como objetivo reconhecer e detectar objetos em movimento. O movimento da câmera também é importante para se extrair a semântica, já que o seu padrão de movimento ajuda a identificar o que está acontecendo. Por última, a mineração de padrões extrai os padrões de movimento e objetos, sendo este útil para identificar, por exemplo, um padrão de objeto que aparece frequentemente em um filme, identificando-o como o personagem principal.

7 Aplicações Data mining em vídeos pode ser aplicado a várias áreas, como em esportes, medicina e monitoramento do tráfego. Classificando os vídeos em (a) produzidos, (b) brutos e (c) de transmissão, podemos exemplificar algumas aplicações para cada classificação. Para vídeos produzidos, como filmes, data mining pode ajudar a identificar o seu tipo de modo não supervisionado. A figura 4 mostra como isso funcionaria. Após extrair as características do vídeo como movimento, duração das cenas, iluminação e sons, o agrupamento resulta em tipos de filmes, como ação, drama e terror. Para os vídeos chamados brutos, como vídeos de vigilância, data mining pode identificar atividades suspeitas sem que alguém fique monitorando o vídeo. No exemplo da figura 5, uma sala com estudantes realizando um teste está sendo monitorada. Como mostra o diagrama, o vídeo é segmentado em frames, a imagem de fundo é excluída e apenas a imagem de primeiro plano é utilizada. Dessa, alguns tipos de movimentos, como movimentos de cabeça e contato entre pessoas, são analisados e classificados em suspeitos ou não. Em caso de atividade suspeita a ferramente emite algum comunicado para que uma atitude seja tomada.

8 Quanto às transmissões de vídeo, como jogos de futebol, data mining pode selecionar os melhores momentos da partida, como mostra a imagem 6. Conclusão Data mining em vídeos ainda é uma área de estudo na sua fase inicial, mas, apesar disso, muito avanço já foi feito. Muitos desafios ainda precisam ser superados, como criar um modelo de dados consistente, adquirir semântica através de características de baixo nível, automatizar a detecção de eventos incomuns, e realizar a descoberta de conhecimento em dados espaço temporais. Por ser uma área de muita utilidade em questões críticas, como na medicina e vigilância, muito estudo é feito e o desenvolvimento é rápido, portanto espera-se uma evolução muito grande num futuro próximo.

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br Centro Universitário de Volta Redonda - UniFOA Curso Tecnológico de Redes de Computadores 5º período Disciplina: Tecnologia WEB Professor: José Maurício S. Pinheiro

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

Tópic i o c s s E s E p s ec e i c a i i a s Gerencia i me m nto t d e D ados e I n I fo f rma m ção Ban a co c s s d e e D ad a os s N ão ã

Tópic i o c s s E s E p s ec e i c a i i a s Gerencia i me m nto t d e D ados e I n I fo f rma m ção Ban a co c s s d e e D ad a os s N ão ã Tópicos Especiais Gerenciamento de Dados e Informação Ana Carolina Salgado Fernando Fonseca Valeria Times Bernadette Lóscio Bancos de Dados Não Banco de Dados Multimídia Banco de Dados Ativos Banco de

Leia mais

Banco de Dados Multimídia

Banco de Dados Multimídia Banco de Dados Multimídia Nomes: Ariane Bazilio Cristiano de Deus Marcos Henrique Sidinei Souza Professor Mauricio Anderson Perecim Conteúdo Banco de Dados Multimídia... 3 Conceitos... 3 Descrição... 3

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Apresentação... Nome: Vanderlei Cordeiro Frazão

Apresentação... Nome: Vanderlei Cordeiro Frazão Apresentação... Nome: Vanderlei Cordeiro Frazão Formação: - Bacharel em Sistemas de Informação (Uniguaçu) - Pós graduação em Docência no Ensino Superior (Uniguaçu) - Licenciatura em Informática (UTFPR)

Leia mais

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um

Leia mais

Fundamentos. Guillermo Cámara-Chávez

Fundamentos. Guillermo Cámara-Chávez Fundamentos Guillermo Cámara-Chávez Introdução Uma das primeiras aplicações de técnicas de PDI para interpretação humana: imagens digitalizadas para jornal Transmitidas por cabos submarinos entre Londres

Leia mais

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados

Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Sistema Gerenciador de Banco de Dados Banco de Dados Aula 1 Introdução a Banco de Dados Introdução Um Sistema Gerenciador de Banco de Dados (SGBD) é constituído por um conjunto de dados associados a um conjunto de programas para acesso a esses

Leia mais

PLATAFORMA URBANMOB Aplicativo para captura de trajetórias urbanas de objetos móveis

PLATAFORMA URBANMOB Aplicativo para captura de trajetórias urbanas de objetos móveis PLATAFORMA URBANMOB Aplicativo para captura de trajetórias urbanas de objetos móveis Gabriel Galvão da Gama 1 ; Reginaldo Rubens da Silva 2 ; Angelo Augusto Frozza 3 RESUMO Este artigo descreve um projeto

Leia mais

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA Lizianne Priscila Marques SOUTO 1 1 Faculdade de Ciências Sociais e Aplicadas

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS Obter uma imagem temática a partir de métodos de classificação de imagens multi- espectrais 1. CLASSIFICAÇÃO POR PIXEL é o processo de extração

Leia mais

Introdução ao Processamento de Imagens

Introdução ao Processamento de Imagens Introdução ao PID Processamento de Imagens Digitais Introdução ao Processamento de Imagens Glaucius Décio Duarte Instituto Federal Sul-rio-grandense Engenharia Elétrica 2013 1 de 7 1. Introdução ao Processamento

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Introdução à Multimédia conceitos

Introdução à Multimédia conceitos 1. Introdução à Multimédia conceitos Popularidade mercado potencial aparece nos anos 90 Avanços Tecnológicos que motivaram o aparecimento/ desenvolvimento da MULTIMÉDIA Indústrias envolvidas - Sistemas

Leia mais

LEVANTAMENTO DE REQUISITOS SEGUNDO O MÉTODO VOLERE

LEVANTAMENTO DE REQUISITOS SEGUNDO O MÉTODO VOLERE LEVANTAMENTO DE REQUISITOS SEGUNDO O MÉTODO VOLERE RESUMO Fazer um bom levantamento e especificação de requisitos é algo primordial para quem trabalha com desenvolvimento de sistemas. Esse levantamento

Leia mais

Sociedade da Informação

Sociedade da Informação Sociedade da Revolução Tecnológica Revolução industrial: ampliação dos músculos m dos homens em forma de equipamentos Mecanização ão. Responsável por mudanças as nas formas de produção existentes Revolução

Leia mais

Introdução. Gerenciamento de Dados e Informação. Principais Tipos de SI. Papel de SI. Principais Tipos de SI. Principais Tipos de SI.

Introdução. Gerenciamento de Dados e Informação. Principais Tipos de SI. Papel de SI. Principais Tipos de SI. Principais Tipos de SI. Introdução Gerenciamento de Dados e Informação Introdução Sistema de Informação (SI) Coleção de atividades que regulam o compartilhamento e a distribuição de informações e o armazenamento de dados relevantes

Leia mais

Modelos de Sistema. 2007 by Pearson Education. Ian Sommerville 2006 Engenharia de Software, 8ª. edição. Capítulo 8 Slide 1.

Modelos de Sistema. 2007 by Pearson Education. Ian Sommerville 2006 Engenharia de Software, 8ª. edição. Capítulo 8 Slide 1. Modelos de Sistema Ian Sommerville 2006 Engenharia de Software, 8ª. edição. Capítulo 8 Slide 1 Objetivos Explicar por que o contexto de um sistema deve ser modelado como parte do processo de RE Descrever

Leia mais

Sistemas Gerenciadores de Bancos de Dados

Sistemas Gerenciadores de Bancos de Dados Sistemas Gerenciadores de Bancos de Dados Orivaldo V. Santana Jr A partir de slides elaborados por Ivan G. Costa Filho Fernando Fonseca & Robson Fidalgo 1 Sistemas de Arquivos Sistemas de arquivos Principal

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

Grupo de Banco de Dados da UFSC

Grupo de Banco de Dados da UFSC Grupo de Banco de Dados da UFSC (GBD / UFSC) Oportunidades de Pesquisa e TCCs 2010 / 2 Objetivo GBD/UFSC Pesquisa e desenvolvimento de soluções para problemas de gerenciamento de dados LISA Laboratório

Leia mais

3 Classificação. 3.1. Resumo do algoritmo proposto

3 Classificação. 3.1. Resumo do algoritmo proposto 3 Classificação Este capítulo apresenta primeiramente o algoritmo proposto para a classificação de áudio codificado em MPEG-1 Layer 2 em detalhes. Em seguida, são analisadas as inovações apresentadas.

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados

Algoritmos Genéticos em Mineração de Dados. Descoberta de Conhecimento. Descoberta do Conhecimento em Bancos de Dados Algoritmos Genéticos em Mineração de Dados Descoberta de Conhecimento Descoberta do Conhecimento em Bancos de Dados Processo interativo e iterativo para identificar padrões válidos, novos, potencialmente

Leia mais

4 Segmentação. 4.1. Algoritmo proposto

4 Segmentação. 4.1. Algoritmo proposto 4 Segmentação Este capítulo apresenta primeiramente o algoritmo proposto para a segmentação do áudio em detalhes. Em seguida, são analisadas as inovações apresentadas. É importante mencionar que as mudanças

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM REDES SOCIAIS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM REDES SOCIAIS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM REDES SOCIAIS FELIPE GONÇALVES BOTELHO PEDRO HENRIQUE ROCHA UGIONI FLORIANÓPOLIS

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Banco de Dados I. Apresentação (mini-currículo) Conceitos. Disciplina Banco de Dados. Cont... Cont... Edson Thizon (edson@esucri.com.

Banco de Dados I. Apresentação (mini-currículo) Conceitos. Disciplina Banco de Dados. Cont... Cont... Edson Thizon (edson@esucri.com. Sistemas da Informação Banco de Dados I Edson Thizon (edson@esucri.com.br) 2008 Apresentação (mini-currículo) Formação Acadêmica Mestrando em Ciência da Computação (UFSC/ ) Créditos Concluídos. Bacharel

Leia mais

Visão computacional no reconhecimento de formas e objetos

Visão computacional no reconhecimento de formas e objetos Visão computacional no reconhecimento de formas e objetos Paula Rayane Mota Costa Pereira*, Josemar Rodrigues de Souza**, Resumo * Bolsista de Iniciação Científica da Faculdade de Tecnologia SENAI CIMATEC,

Leia mais

DIVISÃO DE REGISTROS ACADÊMICOS Registros Acadêmicos da Graduação. Ementas por Currículo 05/03/2014 10:06. Centro de Ciências Exatas e Naturais

DIVISÃO DE REGISTROS ACADÊMICOS Registros Acadêmicos da Graduação. Ementas por Currículo 05/03/2014 10:06. Centro de Ciências Exatas e Naturais 5// :6 Centro de Ciências Exatas e Naturais Curso: Ciência da Computação (Noturno) Currículo: 7/ CMP.8.- Introdução à Computação Ementa: O que é Ciência da Computação. História da Computação. Estrutura

Leia mais

Capítulo 1. Introdução. 1.1 Linguagens. OBJETIVOS DO CAPÍTULO Ao final deste capítulo você deverá ser capaz de:

Capítulo 1. Introdução. 1.1 Linguagens. OBJETIVOS DO CAPÍTULO Ao final deste capítulo você deverá ser capaz de: i Sumário 1 Introdução 1 1.1 Linguagens....................................... 1 1.2 O que é um Compilador?................................ 2 1.3 Processadores de Programas: Compiladores, Interpretadores

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

Localização de placas em imagens de veículos. Resumo

Localização de placas em imagens de veículos. Resumo Localização de placas em imagens de veículos Geovane Hilário Linzmeyer Curso de Inteligência Computacional Pontifícia Universidade Católica do Paraná Curitiba, dezembro de 2005 Resumo Um dos maiores problemas

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

Extração de Conhecimento a partir dos Sistemas de Informação

Extração de Conhecimento a partir dos Sistemas de Informação Extração de Conhecimento a partir dos Sistemas de Informação Gisele Faffe Pellegrini & Katia Collazos Grupo de Pesquisa em Eng. Biomédica Universidade Federal de Santa Catarina Jorge Muniz Barreto Prof.

Leia mais

RECONHECIMENTO DE PADRÕES RECONHECIMENTO DE VOZ

RECONHECIMENTO DE PADRÕES RECONHECIMENTO DE VOZ RECONHECIMENTO DE PADRÕES RECONHECIMENTO DE VOZ O ESQUEMA DE CLASSIFICAÇÃO É GERALMENTE BASEADO NA DISPONIBILIDADE DE UM CONJUNTO DE PADRÕES QUE FORAM ANTERIORMENTE CLASSIFICADOS, O "CONJUNTO DE TREINAMENTO";

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

Complementos de Base de Dados Enunciados de Exercícios

Complementos de Base de Dados Enunciados de Exercícios INSTITUTO SUPERIOR DE CIÊNCIAS DO TRABALHO E DA EMPRESA DEPARTAMENTO DE CIÊNCIAS E TECNOLOGIAS DA INFORMAÇÃO Pós Graduação em Desenvolvimento de Sistemas de Informação 2006 2007 Complementos de Base de

Leia mais

20/05/2013. Sistemas de Arquivos Sistemas de arquivos. Sistemas de Gerenciamento de Banco de Dados (SGBD) Banco de Dados. Estrutura de um BD SGBD

20/05/2013. Sistemas de Arquivos Sistemas de arquivos. Sistemas de Gerenciamento de Banco de Dados (SGBD) Banco de Dados. Estrutura de um BD SGBD Gerenciamento de Dados e Informação Fernando Fonseca Ana Carolina Robson Fidalgo Sistemas de Arquivos Sistemas de arquivos Principal característica é a replicação e isolamento de dados (ilhas de informações)

Leia mais

Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini Ralha

Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini Ralha WCGE II Workshop de Computação Aplicada em Governo Eletrônico Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini

Leia mais

Márcio Leandro Moraes Rodrigues. Frame Relay

Márcio Leandro Moraes Rodrigues. Frame Relay Márcio Leandro Moraes Rodrigues Frame Relay Introdução O frame relay é uma tecnologia de chaveamento baseada em pacotes que foi desenvolvida visando exclusivamente a velocidade. Embora não confiável, principalmente

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas

Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas Sistemas Distribuídos: Conceitos e Projeto Introdução a Tolerância a Falhas Francisco José da Silva e Silva Laboratório de Sistemas Distribuídos (LSD) Departamento de Informática / UFMA http://www.lsd.ufma.br

Leia mais

FERRAMENTA PARA CRIAÇÃO DE BASES DE CONHECIMENTO NA FORMA DE ONTOLOGIA OWL A PARTIR DE DADOS NÃO ESTRUTURADOS

FERRAMENTA PARA CRIAÇÃO DE BASES DE CONHECIMENTO NA FORMA DE ONTOLOGIA OWL A PARTIR DE DADOS NÃO ESTRUTURADOS FERRAMENTA PARA CRIAÇÃO DE BASES DE CONHECIMENTO NA FORMA DE ONTOLOGIA OWL A PARTIR DE DADOS NÃO ESTRUTURADOS Aluno: Allan Renato Sabino Orientador: Roberto Heinzle Roteiro Introdução; Objetivos; Fundamentação

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

Prova INSS RJ - 2007 cargo: Fiscal de Rendas

Prova INSS RJ - 2007 cargo: Fiscal de Rendas Prova INSS RJ - 2007 cargo: Fiscal de Rendas Material de Apoio de Informática - Prof(a) Ana Lucia 53. Uma rede de microcomputadores acessa os recursos da Internet e utiliza o endereço IP 138.159.0.0/16,

Leia mais

TWITKNOWLEDGE - OBTENDO CONHECIMENTO A PARTIR DOS TWITTES PESSOAIS

TWITKNOWLEDGE - OBTENDO CONHECIMENTO A PARTIR DOS TWITTES PESSOAIS TWITKNOWLEDGE - OBTENDO CONHECIMENTO A PARTIR DOS TWITTES PESSOAIS Miguel Airton Frantz 1 ; Angelo Augusto Frozza 2 RESUMO A proposta básica desse projeto consiste em criar uma base de conhecimento a partir

Leia mais

WebAnalytics. presença digital

WebAnalytics. presença digital WebAnalytics presença digital 1. WebAnalytics O que é WA Monitoramento e reporte sobre o uso das mídias digitais para que se possa ter melhor entendimento entre as interações dos visitantes e as ações

Leia mais

11/3/2009. Software. Sistemas de Informação. Software. Software. A Construção de um programa de computador. A Construção de um programa de computador

11/3/2009. Software. Sistemas de Informação. Software. Software. A Construção de um programa de computador. A Construção de um programa de computador Sistemas de Informação Prof. Anderson D. Moura Um programa de computador é composto por uma seqüência de instruções, que é interpretada e executada por um processador ou por uma máquina virtual. Em um

Leia mais

Suporte à Engenharia Reversa para o ambiente SEA

Suporte à Engenharia Reversa para o ambiente SEA Otavio Pereira Suporte à Engenharia Reversa para o ambiente SEA Orientador: Ricardo Pereira e Silva Universidade Federal de Santa Catarina - UFSC Departamento de Informática e Estatística - INE Florianópolis

Leia mais

COMPARAÇÃO DOS MÉTODOS DE SEGMENTAÇÃO DE IMAGENS OTSU, KMEANS E CRESCIMENTO DE REGIÕES NA SEGMENTAÇÃO DE PLACAS AUTOMOTIVAS

COMPARAÇÃO DOS MÉTODOS DE SEGMENTAÇÃO DE IMAGENS OTSU, KMEANS E CRESCIMENTO DE REGIÕES NA SEGMENTAÇÃO DE PLACAS AUTOMOTIVAS COMPARAÇÃO DOS MÉTODOS DE SEGMENTAÇÃO DE IMAGENS OTSU, KMEANS E CRESCIMENTO DE REGIÕES NA SEGMENTAÇÃO DE PLACAS AUTOMOTIVAS Leonardo Meneguzzi 1 ; Marcelo Massoco Cendron 2 ; Manassés Ribeiro 3 INTRODUÇÃO

Leia mais

Processo de análise estruturada - Abordagem clássica

Processo de análise estruturada - Abordagem clássica Processo de análise estruturada - Abordagem clássica Desenvolver modelo físico actual Modelo físico actual Modelos a desenvolver tendo em conta a abordagem clássica Desenvolver modelo lógico actual Modelo

Leia mais

Módulo 6: Inteligência Artificial

Módulo 6: Inteligência Artificial Módulo 6: Inteligência Artificial Assuntos: 6.1. Aplicações da IA 6.2. Sistemas Especialistas 6.1. Aplicações da Inteligência Artificial As organizações estão ampliando significativamente suas tentativas

Leia mais

Integração de Dados na Web. Ana Carolina Salgado Bernadette Lóscio

Integração de Dados na Web. Ana Carolina Salgado Bernadette Lóscio Integração de Dados na Web Ana Carolina Salgado Bernadette Lóscio Conteúdo Introdução Integração de Informações Consultando a Web Introdução Motivação Web e BD Arquitetura na Web Introdução Evolução da

Leia mais

O QUE SÃO SISTEMAS DE INFORMAÇÃO? Prof. Angelo Augusto Frozza, M.Sc. frozza@ifc-camboriu.edu.br

O QUE SÃO SISTEMAS DE INFORMAÇÃO? Prof. Angelo Augusto Frozza, M.Sc. frozza@ifc-camboriu.edu.br O QUE SÃO SISTEMAS DE INFORMAÇÃO? Prof. Angelo Augusto Frozza, M.Sc. frozza@ifc-camboriu.edu.br O QUE SÃO SISTEMAS DE INFORMAÇÃO? Dado Informação Conhecimento Sistemas de Informação DADO O DADO consiste

Leia mais

Introdução. Banco de dados. Por que usar BD? Por que estudar BD? Exemplo de um BD. Conceitos básicos

Introdução. Banco de dados. Por que usar BD? Por que estudar BD? Exemplo de um BD. Conceitos básicos Introdução Banco de Dados Por que usar BD? Vitor Valerio de Souza Campos Adaptado de Vania Bogorny 4 Por que estudar BD? Exemplo de um BD Os Bancos de Dados fazem parte do nosso dia-a-dia: operação bancária

Leia mais

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3.

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3. Sumário Data Warehouse Modelagem Multidimensional. Data Mining BI - Business Inteligence. 1 2 Introdução Aplicações do negócio: constituem as aplicações que dão suporte ao dia a dia do negócio da empresa,

Leia mais

Dado: Fatos conhecidos que podem ser registrados e têm um significado implícito. Banco de Dados:

Dado: Fatos conhecidos que podem ser registrados e têm um significado implícito. Banco de Dados: MC536 Introdução Sumário Conceitos preliminares Funcionalidades Características principais Usuários Vantagens do uso de BDs Tendências mais recentes em SGBDs Algumas desvantagens Modelos de dados Classificação

Leia mais

Universidade Federal de Santa Catarina. Text Mining. Data Mining INE5644

Universidade Federal de Santa Catarina. Text Mining. Data Mining INE5644 Universidade Federal de Santa Catarina Text Mining Data Mining INE5644 Augusto Fredigo Hack Luis Felipe Nunes Matheus Hoffmann Silva Thiago Thalison Firmino de Lima Florianópolis, 19 de outrubro de 2013

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a

Leia mais

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Prof. Hélio Pedrini Instituto de Computação UNICAMP 2º Semestre de 2015 Roteiro 1 Introdução 2 Áreas de Aplicação 3 Etapas de um Sistema

Leia mais

Laboratório de Mídias Sociais

Laboratório de Mídias Sociais Laboratório de Mídias Sociais Aula 02 Análise Textual de Mídias Sociais parte I Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Universidade Federal de Goiás O que é Análise Textual? Análise

Leia mais

3 Estado da arte em classificação de imagens de alta resolução

3 Estado da arte em classificação de imagens de alta resolução 37 3 Estado da arte em classificação de imagens de alta resolução Com a recente disponibilidade de imagens de alta resolução produzidas por sensores orbitais como IKONOS e QUICKBIRD se tornou-se possível

Leia mais

Introdução Banco de Dados

Introdução Banco de Dados Introdução Banco de Dados Vitor Valerio de Souza Campos Adaptado de Vania Bogorny Por que estudar BD? Os Bancos de Dados fazem parte do nosso dia-a-dia: operação bancária reserva de hotel matrícula em

Leia mais

Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br

Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br Prof. Marcelo Machado Cunha www.marcelomachado.com mcelobr@yahoo.com.br Ementa Introdução a Banco de Dados (Conceito, propriedades), Arquivos de dados x Bancos de dados, Profissionais de Banco de dados,

Leia mais

PROCESSAMENTO DIGITAL DE IMAGENS

PROCESSAMENTO DIGITAL DE IMAGENS PROCESSAMENTO DIGITAL DE IMAGENS Motivado por duas principais aplicações: Melhorar a informação da imagem para interpretação humana Processamento de cenas para percepção de máquinas (Visão Computacional)

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso 5 Estudo de Caso De modo a ilustrar a estruturação e representação de conteúdos educacionais segundo a proposta apresentada nesta tese, neste capítulo apresentamos um estudo de caso que apresenta, para

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

Modelagem de Requisitos com Casos de Uso. Descrever em detalhe a técnica de Modelagem com Use Cases

Modelagem de Requisitos com Casos de Uso. Descrever em detalhe a técnica de Modelagem com Use Cases Engenharia de Software Modelagem de Requisitos com Casos de Uso 1 Objetivos Descrever em detalhe a técnica de Modelagem com Use Cases 2 1 Use Case É uma forma específica de uso do sistema através da execução

Leia mais

Serviços de Mídia Contínua Em Redes de Pacotes

Serviços de Mídia Contínua Em Redes de Pacotes Serviços de Mídia Contínua Em Redes de Pacotes Caracterização das Aplicações e Requisitos PUC -Rio Departamento de Informática Luiz Fernando Gomes Soares lfgs@inf.puc-rio.br Tópicos Aplicações de Banda

Leia mais

Multimídia. Conceitos Básicos (Parte II)

Multimídia. Conceitos Básicos (Parte II) Universidade do Estado de Minas Gerais Campus de Frutal Sistemas de Informação 7º Período Multimídia Conceitos Básicos (Parte II) Prof. Sérgio Carlos Portari Jr profsergio@frutalhost.com.br Carga Horária:

Leia mais

SISTEMAS INTELIGENTES DE APOIO À DECISÃO

SISTEMAS INTELIGENTES DE APOIO À DECISÃO SISTEMAS INTELIGENTES DE APOIO À DECISÃO As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas

Leia mais

Codificação/Compressão de Vídeo. Tópico: Vídeo (Codificação + Compressão)

Codificação/Compressão de Vídeo. Tópico: Vídeo (Codificação + Compressão) Tópico: Vídeo (Codificação + Compressão) Um vídeo pode ser considerado como uma seqüência de imagens estáticas (quadros). Cada um desses quadros pode ser codificado usando as mesmas técnicas empregadas

Leia mais

CURSO TECNOLÓGICO 2008/01 1º SEMESTRE. Programação e Estruturas de Dados Fundamentais

CURSO TECNOLÓGICO 2008/01 1º SEMESTRE. Programação e Estruturas de Dados Fundamentais 1º SEMESTRE Programação e Estruturas de Dados Fundamentais 8 Créditos Desenvolver a lógica de programação através da construção de algoritmos utilizando português estruturado Representar a solução de problemas

Leia mais

Laboratório de Banco de Dados

Laboratório de Banco de Dados Universidade Federal de Mato Grosso-UFMT Sistemas de Informação Laboratório de Banco de Dados Prof. Clóvis Júnior Laboratório de Banco de Dados Conteúdo Administração de Usuários de Papéis; Linguagens

Leia mais

Data Mining na Web para Inteligência Competitiva

Data Mining na Web para Inteligência Competitiva Data Mining na Web para Inteligência Competitiva Simone de Almeida (CEFET/PR) simonea@pg.cefetpr.br Rui Francisco Martins Marçal (CEFET/PR) marcal@pg.cefetpr.br Luciano Scandelari (CEFET/PR) luciano@cefetpr..br

Leia mais

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

REDES DE COMPUTADORES Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula Complementar - MODELO DE REFERÊNCIA OSI Este modelo se baseia em uma proposta desenvolvida pela ISO (International Standards Organization) como um primeiro passo em direção a padronização dos protocolos

Leia mais

Sistemas Gerenciadores de Bancos de Dados

Sistemas Gerenciadores de Bancos de Dados Sistemas Gerenciadores de Bancos de Dados Fernando Castor A partir de slides elaborados por Fernando Fonseca & Robson Fidalgo 1 Sistemas de Arquivos Sistemas de arquivos Principal característica é a replicação

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Mineração de Textos. E. A. M. Morais A. P. L. Ambrósio. Instituto de Informática Universidade Federal de Goiás www.inf.ufg.br

Mineração de Textos. E. A. M. Morais A. P. L. Ambrósio. Instituto de Informática Universidade Federal de Goiás www.inf.ufg.br Mineração de Textos E. A. M. Morais A. P. L. Ambrósio Technical Report - INF_005/07 - Relatório Técnico December - 2007 - Dezembro The contents of this document are the sole responsibility of the authors.

Leia mais

UNIP Ciência da Computação AES Análise Essencial de Sistemas

UNIP Ciência da Computação AES Análise Essencial de Sistemas 1 Análise Essencial UNIP Ciência da Computação A análise essencial pode ser considerada um refinamento da análise estruturada. O problema existente (ou situação que requer a informatização) é estudado,

Leia mais

Conteúdo. Disciplina: INF 02810 Engenharia de Software. Monalessa Perini Barcellos

Conteúdo. Disciplina: INF 02810 Engenharia de Software. Monalessa Perini Barcellos Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Informática Disciplina: INF 02810 Prof.: (monalessa@inf.ufes.br) Conteúdo 1. Introdução 2. Processo de Software 3. Gerência de

Leia mais

Business Intelligence e ferramentas de suporte

Business Intelligence e ferramentas de suporte O modelo apresentado na figura procura enfatizar dois aspectos: o primeiro é sobre os aplicativos que cobrem os sistemas que são executados baseados no conhecimento do negócio; sendo assim, o SCM faz o

Leia mais

Engenharia de Softwares e Sistema IF682 (2012.1) Bruno Medeiros(bmo@cin.ufpe.br)

Engenharia de Softwares e Sistema IF682 (2012.1) Bruno Medeiros(bmo@cin.ufpe.br) Engenharia de Softwares e Sistema IF682 (2012.1) Bruno Medeiros(bmo@cin.ufpe.br) Algumas definições Engenharia de Software conjunto de tecnologias e práticas usadas para construir software de qualidade

Leia mais

Aula 02 Modelagem de Dados. Banco de Dados. Aula 02 Modelagem de Dados. Superior /2011 Redes Computadores - Disciplina: Banco de Dados -

Aula 02 Modelagem de Dados. Banco de Dados. Aula 02 Modelagem de Dados. Superior /2011 Redes Computadores - Disciplina: Banco de Dados - Banco de Dados Aula 02 Modelagem de Dados Roteiro Definição Evolução Projeto de BD Abstração Esquema e Instância Definição É uma representação, normalmente gráfica, de estruturas de dados reais. Auxilia

Leia mais

Consistência da Base Cadastral e Controle da Qualidade dos Dados de Faturamento

Consistência da Base Cadastral e Controle da Qualidade dos Dados de Faturamento XVIII Seminário Nacional de Distribuição de Energia Elétrica SENDI 2008-06 a 10 de outubro Olinda - Pernambuco - Brasil Consistência da Base Cadastral e Controle da Qualidade dos Dados de Faturamento Carlos

Leia mais

Desenvolvimento do Módulo de Pré-processamento e Geração de Imagens de. Imagens de Teste do Sistema DTCOURO

Desenvolvimento do Módulo de Pré-processamento e Geração de Imagens de. Imagens de Teste do Sistema DTCOURO Desenvolvimento do Módulo de Pré-processamento e Geração de Imagens de Teste do Sistema DTCOURO Willian Paraguassu Amorim 27 de julho de 2005 1 Título Desenvolvimento do Módulo de Pré-processamento e Geração

Leia mais

Banco de Dados. Tópicos. CIn/UFPE. Conceitos Básicos

Banco de Dados. Tópicos. CIn/UFPE. Conceitos Básicos Banco de Dados CIn/UFPE Ana Carolina Salgado Fernando Fonseca Valéria Times Conceitos Básicos Modelagem Conceitual Modelo Relacional Mapeamento ER/Relacional SQL / Aplicações Modelos Orientados a Objetos

Leia mais

Produção de Vídeo: Uma Proposta para Gestão de Acervo 1. Instituição: Pontifícia Universidade Católica de Minas Gerais

Produção de Vídeo: Uma Proposta para Gestão de Acervo 1. Instituição: Pontifícia Universidade Católica de Minas Gerais Produção de Vídeo: Uma Proposta para Gestão de Acervo 1 Flávia da Costa Medina 2 Juliana Lima Eduardo 3 Adriane Maria Arantes de Carvalho 4 Instituição: Pontifícia Universidade Católica de Minas Gerais

Leia mais

Conceitos de Mineração de Dados Multimídia

Conceitos de Mineração de Dados Multimídia Capítulo 1 Conceitos de Mineração de Dados Multimídia Rafael Santos Resumo Avanços recentes em várias áreas tecnológicas possibilitaram um crescimento explosivo na capacidade de gerar, coletar e armazenar

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

Empresa de Informática e Informação do Município de Belo Horizonte S/A PRODABEL

Empresa de Informática e Informação do Município de Belo Horizonte S/A PRODABEL Empresa de Informática e Informação do Município de Belo Horizonte S/A PRODABEL Diretoria de Sistema - DS Superintendência de Arquitetura de Sistemas - SAS Gerência de Arquitetura de Informação - GAAS

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Análise Espacial 2 1 Distribuição Espacial A compreensão da distribuição

Leia mais

Introdução à Computação

Introdução à Computação Aspectos Importantes - Desenvolvimento de Software Motivação A economia de todos países dependem do uso de software. Cada vez mais, o controle dos processos tem sido feito por software. Atualmente, os

Leia mais

Linguagem Específica de Domínio para Programação de Robôs

Linguagem Específica de Domínio para Programação de Robôs Linguagem Específica de Domínio para Programação de Robôs François Jumes, Luiz Claudio Rossafa Honda Curso de Bacharelado em Sistemas de Informação Departamento de Informática e Estatística Universidade

Leia mais