Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS"

Transcrição

1 Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

2 Sumário Conceitos / Autores chave Introdução Tarefas desempenhadas por Técnicas de 4 Mineração de Dados Técnicas de Mineração de Dados Conclusões Atividades... 9 Materiais complementares Bibliografia Curso - Tarefas e Técnicas de Mineração de Dados

3 Conceitos / Autores-chave Glossário Árvore de Decisão Uma forma de estruturar e representar conhecimento. Especificamente no contexto de mineração de dados, a expressão se refere a um tipo de algoritmo de aprendizado de máquina. Associação (entre produtos) Um tipo de análise que pode ser feita utilizando mineração de dados. Através da exploração das transações já realizadas pelos clientes, descobrir produtos que normalmente são vendidos na mesma transação ou para o mesmo cliente em um determinado tempo. Segmentação (Clustering) Agrupamento de clientes com comportamento similar ou de produtos afins. Existem muitas técnicas estatísticas e de mineração de dados (baseadas em inteligência artificial). Mineração de Dados (Data Mining) Assim denominada no início da década de 90, esta área tem objetivo de realizar descobertas a partir de bases de dados, de forma automática. Market basket analysis Aplicação de mineração de dados para descobrir produtos que tendem a ser adquiridos na mesma transação. Pontos Críticos É importante distinguir o que é uma tarefa e o que é uma técnica de mineração. A tarefa consiste na especificação do que estamos querendo buscar nos dados, que tipo de regularidades ou categoria de padrões temos interesse em encontrar, ou que tipo de padrões poderiam nos surpreender (por exemplo, um gasto exagerado de um cliente de cartão de crédito, fora dos padrões usuais de seus gastos). A técnica de mineração consiste na especificação de métodos que nos garantam como descobrir os padrões que nos interessam. 1. Introdução As tecnologias disponíveis para processar e analisar as informações têm permitido que as pessoas coletem e armazenem informações de um amplo conjunto de fontes. Há alguns anos atrás, está quantidade de informações armazenadas era inimaginável de ser atingida. As modernas tecnologias de armazenamento, disponíveis nos atuais sistemas de banco de dados, permitem uma grande economia no armazenamento destes grandes fluxos de dados. O armazenamento tornou-se mais do que possível, mas as técnicas de análise para entendimento dos dados e visualização destas coleções de dados não se desenvolveram na mesma proporção. Como exemplificação de crescimento em geração e captação de dados pode-se destacar áreas como: finanças, bancos, vendas a varejo, manufatura, monitoramento e diagnóstico (humano ou em máquinas, como tráfego de redes de computadores), Marketing, etc. Curso - Tarefas e Técnicas de Mineração de Dados

4 Atualmente as empresas são pobres em informação, mas ricas em dados. 2. Tarefas desempenhadas por técnicas de Mineração de Dados Com o intuito de facilitar a análise e visualização de dados, bem como a descoberta de informações úteis à tomada de decisão, é que surgiram as ferramentas de mineração de dados, ou seja, ferramentas computacionais que procuram por informações em grandes bases de dados, informações ditas como não triviais. Estas informações são ditas não triviais, pois não seriam encontradas ou percebidas por simples sistemas de análise, e as mesmas são de caráter desconhecido até a sua mineração. O autor afirma que o objetivo da mineração não é o de encontrar um alfinete em um monte de feno, pois os sistemas gerenciadores de banco de dados sabem como realizar esta tarefa, mas sim, tentar entender qual será a conseqüência da existência deste alfinete, caso ele realmente exista (ZAIANE, 2000). As técnicas de mineração de dados podem ser aplicadas a tarefas (Neste contexto, tarefa é um tipo de problema de descoberta de conhecimento a ser solucionado) como classificação, estimativa, associação, segmentação, sumarização e análise de outliers. Essas tarefas são descritas a seguir. 2.1 Classificação A tarefa de classificação consiste em construir um modelo de algum tipo que possa ser aplicado a dados não classificados visando categorizálos em classes. Um objeto é examinado e classificado de acordo com uma classe definida (HARRISON, 1998). A tarefa de classificação pode ser considerada uma tarefa mal definida, não determinísta, que é inevitável pelo fato de envolver predição (FREITAS, 2000). São exemplos de tarefas de classificação: classificar pedidos de créditos como de baixo, médio e alto risco; esclarecer pedidos de seguros fraudulentos; identificar a forma de tratamento na qual um paciente está mais propício a responder, baseandose em classes de pacientes que respondem bem a determinado tipo de tratamento médico. 2.2 Estimativa (ou Regressão) A estimativa é usada para definir um valor para alguma variável contínua desconhecida como, por exemplo, receita, altura ou saldo de cartão de crédito (HARRISON, 1998). Ela lida com resultados contínuos, enquanto que a classificação lida com resultados discretos. Ela pode ser usada para executar uma tarefa de classificação, convencionandose que diferentes faixas (intervalos) de valores contínuos correspondem a diferentes classes. Regressão é aprender uma função que mapeia um item de dado para uma variável de predição real estimada (FAYYAD, 1996) Como exemplo de tarefas de estimativa tem-se (FAYYAD, 1996; HARRISON, 1998): estimar o número de filhos em uma família; estimar a renda total de uma família; estimar o valor em tempo de vida de um cliente; estimar a probabilidade de que um paciente morrerá baseando-se nos resultados de um conjunto de diagnósticos médicos; prever a demanda de um consumidor para um novo produto. Curso - Tarefas e Técnicas de Mineração de Dados

5 2.3 Associação 2.4 Segmentação (ou Clustering) A tarefa de associação consiste em determinar quais itens tendem a concorrer (serem adquiridos juntos) em uma mesma transação. O exemplo clássico é determinar quais produtos costumam ser colocados juntos em um carrinho de supermercado, daí o termo análise de market basket. As cadeias de varejo usam associação para planejar a disposição dos produtos nas prateleiras das lojas ou em um catálogo, de modo que os itens geralmente adquiridos na mesma compra sejam vistos próximos entre si (HARRISON, 1998). A segmentação é um processo de partição de uma população heterogênea em vários subgrupos ou clusters mais homogêneos (HARRISON, 1998). Na segmentação, não há classes predefinidas, os registros são agrupados de acordo com a semelhança, o que a diferencia da tarefa de classificação. Exemplos de segmentação: agrupar os clientes por região do país, agrupar clientes com comportamento de compra similar; agrupar seções de usuários Web para prever comportamento futuro de usuário. Na figura abaixo, apresenta-se a formação de três clusters segundo o rendimento e o valor do empréstimo. Conjunto de clusters que englobam características similares de dados 2.5 Sumarização A tarefa de associação pode ser considerada uma tarefa bem definida, determinística e relativamente simples, que não envolve predição da mesma forma que a tarefa de classificação. Segundo FAYYAD (1996), a tarefa de sumarização envolve métodos para encontrar uma descrição compacta para um subconjunto de dados. Um simples exemplo desta tarefa poderia ser tabular o significado e desvios padrão para todos os itens de dados. Métodos mais sofisticados envolvem a derivação de regras de sumarização. As tarefas de mineração de dados, descritas acima, são apresentadas de forma resumida na tabela a seguir. Curso - Tarefas e Técnicas de Mineração de Dados

6 Classificação TAREFA DESCRIÇÃO EXEMPLOS Estimativa (ou Regressão) Associação Segmentação (ou Clustering) Sumarização Constrói um modelo de algum tipo que possa ser aplicado a dados não classificados a fim de categorizá-los em classes Usada para definir um valor para alguma variável contínua desconhecida Usada para determinar quais itens tendem a co-ocorrerem (serem adquiridos juntos) em uma mesma transação Processo de partição de uma população heterogênea em vários subgrupos ou grupos mais homogêneos Envolve métodos para encontrar uma descrição compacta para um subconjunto de dados Tarefas realizadas por técnicas de mineração - Classificar pedidos de crédito - Esclarecer pedidos de seguros fraudulentos - Identificar a melhor forma de tratamento de um paciente - Estimar o número de filhos ou a renda total de uma família - Estimar o valor em tempo de vida de um cliente - Estimar a probabilidade de que um paciente morrerá baseando-se nos resultados de diagnósticos médicos - Prever a demanda de um consumidor para um novo produto - Determinar quais produtos costumam ser colocados juntos em um carrinho de supermercado - Agrupar clientes por região do país - Agrupar clientes com comportamento de compra similar - Agrupar seções de usuários Web para prever comportamento futuro de usuário - Tabular o significado e desvios padrão para todos os itens de dados - Derivar regras de síntese 2.6 Análise de Outliers Um banco de dados pode conter dados que não apresentam o comportamento geral da maioria. Estes dados são denominados outliers (exceções). Muitos métodos de mineração descartam estes outliers como sendo ruído indesejados. Entretanto, em algumas aplicações, tais como detecção de fraudes, estes eventos raros podem ser mais interessantes do que eventos que ocorrem regularmente. Por exemplo, podemos detectar o uso fraudulento de cartões de crédito ao descobrir que certos clientes efetuaram compras de valor extremamente alto, fora de seu padrão habitual de gastos. Curso - Tarefas e Técnicas de Mineração de Dados 6

7 3. Técnicas de Mineração de Dados Não há uma técnica que resolva todos os problemas de mineração de dados. Diferentes métodos servem para diferentes propósitos, cada método oferece suas vantagens e suas desvantagens. A familiaridade com as técnicas é necessária para facilitar a escolha de uma delas de acordo com os problemas apresentados. A seguir, são descritas as técnicas de mineração de dados normalmente usadas. 3.1 Regras de Associação Uma regra de associação tem a forma geral X1 ^... ^ Xn => Y [C,S], onde X1,..., Xn são itens que prevêem a ocorrência de Y com um grau de confiança C e com um suporte mínimo de S e ^ denota um operador de conjunção (AND). Um exemplo desta regra pode ser que 90% dos clientes que compram leite, também compram pão; o percentual de 90% é chamado de confiança da regra. O suporte da regra leite => pão, é o número de ocorrências deste conjunto de itens na mesma transação. A técnica de descoberta de regras de associação é apropriada à tarefa de associação. Na figura a seguir, apresenta-se um conjunto de itens que podem ser comprados em uma ou mais transações de compra que incutem algum tipo de associação. Análise de associação de transações de compras (HAN, 2001) 3.2 Redes neurais artificiais Redes Neurais Artificiais são técnicas computacionais que apresentam um modelo matemático inspirado na estrutura neural de organismos inteligentes e que adquirem conhecimento através da experiência. Saiba mais Uma grande rede neural artificial pode ter centenas ou milhares de unidades de processamento; já o cérebro de um mamífero pode ter muitos bilhões de neurônios. O sistema nervoso é formado por um conjunto extremamente complexo de células, os neurônios. Eles têm um papel essencial na determinação do funcionamento e comportamento do corpo humano e do raciocínio. Os neurônios são formados pelos dendritos, que são um conjunto de terminais de entrada, pelo corpo central, e pelos axônios que são longos terminais de saída. Todas as camadas intermediárias representam os diferentes níveis de conhecimento que são adquiridos no seu processamento, em uma tentativa de imitar o cérebro humano. Na figura abaixo é exemplificada uma rede neural artificial, composta de uma entrada, uma saída e duas camadas de neurônios intermediários. A estrutura básica está composta de um nó, que corresponde a um neurônio e o segmento de reta entre dois neurônios que representam as conexões entre neurônios. Rede Neural Artificial com duas camadas intermediárias Curso - Tarefas e Técnicas de Mineração de Dados

8 Camada de Entrada: onde os padrões são apresentados à rede; Camadas Intermediárias ou Escondidas: onde é feita a maior parte do processamento, através das conexões ponderadas; podem ser consideradas como extratoras de características; Camada de Saída: onde o resultado final é concluído e apresentado. Uma rede neural é especificada, principalmente pela sua tipologia, pelas características dos nós e pelas regras de treinamento. A seguir, serão analisados os processos de aprendizado. Dois aspectos fazem com que as redes se assemelhem ao cérebro humano: o primeiro é adquirido pela rede de seu ambiente por meio de um processo de aprendizagem e o segundo são as forças de conexão entre neurônios, conhecidos como pesos sinápticos, que são utilizados para armazenar o conhecimento adquirido. As redes neurais que utilizam, por exemplo, backpropagation, um tipo de rede neural, assim como muitos outros tipos de redes neurais artificiais, pode ser vista como caixas pretas, na qual quase não se sabe porque a rede chega a um determinado resultado, uma vez que os modelos não apresentam justificativas para suas respostas. Neste sentido, muitas pesquisas vêm sendo realizadas visando à extração de conhecimento de redes neurais artificiais, e na criação de procedimentos explicativos, onde se tenta justificar o comportamento da rede em determinadas situações (FREITAS, 2001). 3.3 Árvores de decisão A mineração de modelos de classificação em bases de dados é um processo composto por duas fases: aprendizado e teste. Na fase de aprendizado, um algoritmo classificador é aplicado sobre um conjunto de dados de treinamento. Como resultado, obtémse a construção do classificador propriamente dito. Tipicamente, o conjunto de treinamento corresponde a um subconjunto de observações selecionadas de maneira aleatória, a partir da base de dados que se deseja analisar. Cada observação do conjunto de treinamento é caracterizada por dois tipos de atributo: o atributo classe, que indica a classe à qual a observação pertence; e os atributos preditivos, cujos valores serão analisados para que seja descoberto o modo como eles se relacionam com o atributo classe. Nó 2 (10 pessoas) Sexo = Masculino Comprador = 9 Não comprador = 1 Nó 1 (20 pessoas) Salário > 4000 Comprador = 16 Não comprador = 4 Nó 4 (6 pessoas) Casado = True Comprador = 5 Não comprador = 1 Nó 3 (10 pessoas) Sexo = Feminino Comprador = 7 Não comprador = 3 Raiz Total = 100 Comprador = 30 Não comprador = 70 Nó 5 (4 pessoas) Casado = False Comprador = 2 Não comprador = 2 Exemplo de visualização de uma arvore de decisão A figura a seguir apresenta uma classificação utilizando um algoritmo de árvore de decisão, para prognosticar o grupo de clientes mais propício a comprar um determinado produto. Nesta Figura, observa-se que 90% dos homens com salário superior a R$ 4.000,00 são candidatos a comprarem o produto, enquanto que apenas 5% das pessoas que ganham menos de R$ 4.000,00 e que não possuem casa própria devem comprar o produto. Nó 7 (40 pessoas) Casa própria? = Sim Comprador = 12 Não comprador = 28 Nó 6 (80 pessoas) Salário < 4000 Comprador = 14 Não comprador = 66 Nó 8 (40 pessoas) Casa própria? = Não Comprador = 2 Não comprador = 38 Curso - Tarefas e Técnicas de Mineração de Dados 8

9 4. Conclusões A questão da descoberta de conhecimento tomou destaque em pesquisas e aplicações na indústria e empresas. O Data Warehouse ou as bases de dados operacionais fornecem e garantem a memória da empresa, permitindo a organização dos dados coletados. Considerando que os dados apresentados neste DW passaram por um processo de classificação e limpeza. Mas, a memória apresenta pouco uso sem a inteligência. A inteligência permite a análise de dados e extração das informações.. A inteligência em questão referese à aplicação de ferramentas e técnicas de mineração que permite a descoberta de informações ou conhecimento que até a mineração, apesar de estar fisicamente na base de dados da empresa, não os percebia por não serem triviais. Em função da importância deste assunto, este módulo apresentou uma visão geral dos conceitos de mineração de dados, especificamente no que tange às tarefas que podem ser desempenhadas e as técnicas que podem ser utilizadas como apoio a estas tarefas, no sentido de saber quais são os possíveis resultados que se pode obter com a área de mineração de dados. 5. Atividade Introdução O objetivo desta atividade é mostrar um exemplo prático de aplicação da tecnologia de mineração de dados na área médica; e verificar a habilidade do aluno em identificar cada passo seguido no processo de descoberta de conhecimento. Processo Para realizar esta atividade considere o artigo Descoberta de Conhecimento em Base de Imagens Mamo gráficas (<Arquivo Artigo_KDD_ Unidade8.pdf>), apresentado em anexo. 1. Identifique qual foi a tarefa realizada pelo grupo de pesquisa composto pelos pesquisadores: Adriana Cristina e Homero Schiabel. 2. Identifique qual ou quais foram as técnicas utilizadas por eles. 3. Quais foram os resultados obtidos com a técnica utilizada. Curso - Tarefas e Técnicas de Mineração de Dados 9

10 Materiais complementares TAN, P.; Steinbach M., Kumar, V. Introduction to data mining. Boston, Addison-Wesley,2006. CARVALHO, L.A.V. A Mineração de Dados no Marketing, Medicina, Economia, Engenharia e Administração. São Paulo: Editora Érica, Bibliografia HAN, J., KAMBER, M. Data Mining concepts and techniques. Ed. Morgan Kauffmann Publichers, HARRISON, T. H. Intranet data warehouse. São Paulo: Berkeley Brasil, FAYYAD,U.M.,G.PIATETSKY SHAPIRO, P.SMYTH, Knowledge Discovery and Data Mining: Towards a Unifying Framework. Proceeding of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, august, ZAIANE, O. R., WEB Mining: Concepts, Practices and Research. In: Simpósio Brasileiro de Banco de Dados, Tutorial, XV SBBD, 2000, João Pessoa. Anais. João Pessoa: SBBD, p FREITAS J R., O.G. et a l. Sistema de Apoio à Decisão usando a tecnologia Data Mining com estudo de caso na Universidade Estadual de Maringá. I Congresso Brasileiro de Computação Curso - Tarefas e Técnicas de Mineração de Dados 10

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Microsoft Innovation Center

Microsoft Innovation Center Microsoft Innovation Center Mineração de Dados (Data Mining) André Montevecchi andre@montevecchi.com.br Introdução Objetivo BI e Mineração de Dados Aplicações Exemplos e Cases Algoritmos para Mineração

Leia mais

Mineração de Dados: Introdução e Aplicações

Mineração de Dados: Introdução e Aplicações Mineração de Dados: Introdução e Aplicações Luiz Henrique de Campos Merschmann Departamento de Computação Universidade Federal de Ouro Preto luizhenrique@iceb.ufop.br Apresentação Luiz Merschmann Engenheiro

Leia mais

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Pollyanna Carolina BARBOSA¹; Thiago MAGELA² 1Aluna do Curso Superior Tecnólogo em Análise e Desenvolvimento de Sistemas

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento

Data Mining. Origem do Data Mining 24/05/2012. Data Mining. Prof Luiz Antonio do Nascimento Data Mining Prof Luiz Antonio do Nascimento Data Mining Ferramenta utilizada para análise de dados para gerar, automaticamente, uma hipótese sobre padrões e anomalias identificadas para poder prever um

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA

APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA APLICAÇÃO DE MINERAÇÃO DE DADOS PARA O LEVANTAMENTO DE PERFIS: ESTUDO DE CASO EM UMA INSTITUIÇÃO DE ENSINO SUPERIOR PRIVADA Lizianne Priscila Marques SOUTO 1 1 Faculdade de Ciências Sociais e Aplicadas

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS

DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS DWARF DATAMINER: UMA FERRAMENTA GENÉRICA PARA MINERAÇÃO DE DADOS Tácio Dias Palhão Mendes Bacharelando em Sistemas de Informação Bolsista de Iniciação Científica da FAPEMIG taciomendes@yahoo.com.br Prof.

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas e técnicas

Leia mais

Introdução. Capítulo 1

Introdução. Capítulo 1 Capítulo 1 Introdução Em computação, muitos problemas são resolvidos por meio da escrita de um algoritmo que especifica, passo a passo, como resolver um problema. No entanto, não é fácil escrever um programa

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

Uso de Técnicas de Data mining no Monitoramento de Alunos On-line *

Uso de Técnicas de Data mining no Monitoramento de Alunos On-line * Uso de Técnicas de Data mining no Monitoramento de Alunos On-line * Fabrício Rangel Cunha Rafael Lucena Pessoa de Araújo Neide dos Santos neide@ime.uerj.br Resumo A Internet oferece amplas possibilidades

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

MINERAÇÃO DE DADOS. Mineração de Dados

MINERAÇÃO DE DADOS. Mineração de Dados MINERAÇÃO DE DADOS Mineração de Dados Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Conceitos de Mineração de Dados... 5 3. Aplicações de Mineração de Dados... 7 4. Ferramentas de Mineração

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

KDD E MINERAÇÃO DE DADOS:

KDD E MINERAÇÃO DE DADOS: KDD E MINERAÇÃO DE DADOS: Introdução e Motivação Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt Fatos: Avanços em TI e o crescimento

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Aplicações de Behavior Scoring Roteiro - Introdução - Diferença entre Credit scoring e

Leia mais

15 Computador, projeto e manufatura

15 Computador, projeto e manufatura A U A UL LA Computador, projeto e manufatura Um problema Depois de pronto o desenho de uma peça ou objeto, de que maneira ele é utilizado na fabricação? Parte da resposta está na Aula 2, que aborda as

Leia mais

Aprendizagem de Máquina. Ivan Medeiros Monteiro

Aprendizagem de Máquina. Ivan Medeiros Monteiro Aprendizagem de Máquina Ivan Medeiros Monteiro Definindo aprendizagem Dizemos que um sistema aprende se o mesmo é capaz de melhorar o seu desempenho a partir de suas experiências anteriores. O aprendizado

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é?

KDD. Fases limpeza etc. Datamining OBJETIVOS PRIMÁRIOS. Conceitos o que é? KDD Conceitos o que é? Fases limpeza etc Datamining OBJETIVOS PRIMÁRIOS TAREFAS PRIMÁRIAS Classificação Regressão Clusterização OBJETIVOS PRIMÁRIOS NA PRÁTICA SÃO DESCRIÇÃO E PREDIÇÃO Descrição Wizrule

Leia mais

O que é a estatística?

O que é a estatística? Elementos de Estatística Prof. Dr. Clécio da Silva Ferreira Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os

Leia mais

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011 Revisão Inteligência Artificial ENADE Prof a Fabiana Lorenzi Outubro/2011 Representação conhecimento É uma forma sistemática de estruturar e codificar o que se sabe sobre uma determinada aplicação (Rezende,

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa - PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa - PUCPR Muitos dados são coletados e armazenados Web data, e-commerce Compras em departamentos/ supermercados Bancos / Transações com cartão de crédito Computadores se tornaram baratos e mais potentes Pressão

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA LABORATÓRIO DE GUERRA ELETRÔNICA

INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA LABORATÓRIO DE GUERRA ELETRÔNICA INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA LABORATÓRIO DE GUERRA ELETRÔNICA CURSO DE ESPECIALIZAÇÃO EM ANÁLISE DE AMBIENTE ELETROMAGNÉTICO CEAAE /2008 DISCIPLINA EE-09: Inteligência

Leia mais

Extração de Conhecimento & Mineração de Dados

Extração de Conhecimento & Mineração de Dados Extração de Conhecimento & Mineração de Dados Nesta apresentação é dada uma breve introdução à Extração de Conhecimento e Mineração de Dados José Augusto Baranauskas Departamento de Física e Matemática

Leia mais

Mineração de Dados Funcionalidades, Técnicas e Abordagens

Mineração de Dados Funcionalidades, Técnicas e Abordagens Mineração de Dados Funcionalidades, Técnicas e Abordagens Sérgio da Costa Côrtes 1 scortes@inf.puc-rio.br Rosa Maria Porcaro 2 rporcaro@ibge.gov.br Sérgio Lifschitz 3 sergio@inf.puc-rio.br PUC-RioInf.MCC10/02

Leia mais

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining

Gestão da Informação. Gestão da Informação. AULA 3 Data Mining Gestão da Informação AULA 3 Data Mining Prof. Edilberto M. Silva Gestão da Informação Agenda Unidade I - DM (Data Mining) Definição Objetivos Exemplos de Uso Técnicas Tarefas Unidade II DM Prático Exemplo

Leia mais

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados Universidade Federal de Pernambuco Graduação em Ciência da Computação Centro de Informática 2006.2 Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 12 Aprendizado de Máquina Agentes Vistos Anteriormente Agentes baseados em busca: Busca cega Busca heurística Busca local

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

FACULDADE DE TECNOLOGIA DE SÃO PAULO LUCIANA MENDES. Data Mining Estudo de Técnicas e Aplicações na Área Bancária

FACULDADE DE TECNOLOGIA DE SÃO PAULO LUCIANA MENDES. Data Mining Estudo de Técnicas e Aplicações na Área Bancária FACULDADE DE TECNOLOGIA DE SÃO PAULO LUCIANA MENDES Data Mining Estudo de Técnicas e Aplicações na Área Bancária São Paulo 2011 FACULDADE DE TECNOLOGIA DE SÃO PAULO LUCIANA MENDES Data Mining Estudo de

Leia mais

Aula 02: Conceitos Fundamentais

Aula 02: Conceitos Fundamentais Aula 02: Conceitos Fundamentais Profa. Ms. Rosângela da Silva Nunes 1 de 26 Roteiro 1. Por que mineração de dados 2. O que é Mineração de dados 3. Processo 4. Que tipo de dados podem ser minerados 5. Que

Leia mais

SISTEMAS INTELIGENTES DE APOIO À DECISÃO

SISTEMAS INTELIGENTES DE APOIO À DECISÃO SISTEMAS INTELIGENTES DE APOIO À DECISÃO As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO Fernanda Delizete Madeira 1 ; Aracele Garcia de Oliveira Fassbinder 2 INTRODUÇÃO Data

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

Redes Neurais. A IA clássica segue o paradigma da computação simbólica

Redes Neurais. A IA clássica segue o paradigma da computação simbólica Abordagens não simbólicas A IA clássica segue o paradigma da computação simbólica Redes Neurais As redes neurais deram origem a chamada IA conexionista, pertencendo também a grande área da Inteligência

Leia mais

Modelo de dados do Data Warehouse

Modelo de dados do Data Warehouse Modelo de dados do Data Warehouse Ricardo Andreatto O modelo de dados tem um papel fundamental para o desenvolvimento interativo do data warehouse. Quando os esforços de desenvolvimentos são baseados em

Leia mais

Simulação Computacional de Sistemas, ou simplesmente Simulação

Simulação Computacional de Sistemas, ou simplesmente Simulação Simulação Computacional de Sistemas, ou simplesmente Simulação Utilização de métodos matemáticos & estatísticos em programas computacionais visando imitar o comportamento de algum processo do mundo real.

Leia mais

3 Market Basket Analysis - MBA

3 Market Basket Analysis - MBA 2 Mineração de Dados 3 Market Basket Analysis - MBA Market basket analysis (MBA) ou, em português, análise da cesta de compras, é uma técnica de data mining que faz uso de regras de associação para identificar

Leia mais

Radar de Penetração no Solo e Meio- Ambiente

Radar de Penetração no Solo e Meio- Ambiente UNIVERSIDADE DE SÃO PAULO INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS DEPARTAMENTO DE GEOFÍSICA Curso 3ª Idade Radar de Penetração no Solo e Meio- Ambiente Vinicius Rafael Neris dos Santos

Leia mais

Web Data mining com R: aprendizagem de máquina

Web Data mining com R: aprendizagem de máquina Web Data mining com R: aprendizagem de máquina Fabrício Jailson Barth Faculdade BandTec e VAGAS Tecnologia Junho de 2013 Sumário O que é Aprendizagem de Máquina? Hierarquia de aprendizado. Exemplos de

Leia mais

O QUE É E COMO FUNCIONA O BEHAVIOR SCORING

O QUE É E COMO FUNCIONA O BEHAVIOR SCORING O QUE É E COMO FUNCIONA O BEHAVIOR! O que é o gerenciamento do crédito através do behavior scoring?! Como construir o behavior scoring?! Como calcular a função discriminante usando o Excel?! Como implantar

Leia mais

Instituto de Educação Tecnológica Pós-graduação Gestão e Tecnologia da Informação - Turma 25 20/03/2015. Big Data Analytics:

Instituto de Educação Tecnológica Pós-graduação Gestão e Tecnologia da Informação - Turma 25 20/03/2015. Big Data Analytics: Instituto de Educação Tecnológica Pós-graduação Gestão e Tecnologia da Informação - Turma 25 20/03/2015 Big Data Analytics: Como melhorar a experiência do seu cliente Anderson Adriano de Freitas RESUMO

Leia mais

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3.

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3. Definição de Data Mining (DM) Mineração de Dados (Data Mining) Doutorado em Engenharia de Produção Michel J. Anzanello Processo de explorar grandes quantidades de dados à procura de padrões consistentes

Leia mais

Introdução aos Sistemas de Informação Geográfica

Introdução aos Sistemas de Informação Geográfica Introdução aos Sistemas de Informação Geográfica Mestrado Profissionalizante 2015 Karla Donato Fook karladf@ifma.edu.br IFMA / DAI Análise Espacial 2 1 Distribuição Espacial A compreensão da distribuição

Leia mais

Para construção dos modelos físicos, será estudado o modelo Relacional como originalmente proposto por Codd.

Para construção dos modelos físicos, será estudado o modelo Relacional como originalmente proposto por Codd. Apresentação Este curso tem como objetivo, oferecer uma noção geral sobre a construção de sistemas de banco de dados. Para isto, é necessário estudar modelos para a construção de projetos lógicos de bancos

Leia mais

Criação de Consultas e Relatórios no Access CRIAÇÃO DE CONSULTAS E RELATÓRIOS NO ACCESS

Criação de Consultas e Relatórios no Access CRIAÇÃO DE CONSULTAS E RELATÓRIOS NO ACCESS Criação de Consultas e Relatórios no Access CRIAÇÃO DE CONSULTAS E RELATÓRIOS NO ACCESS Sumário Conceitos / Autores chave... 3 1. Introdução... 4 2. Consultas... 5 3. Relatórios... 8 4. Conclusões... 11

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Objetivos. Engenharia de Software. O Estudo de Viabilidade. Fase do Estudo de Viabilidade. Idéias chave. O que Estudar? O que concluir?

Objetivos. Engenharia de Software. O Estudo de Viabilidade. Fase do Estudo de Viabilidade. Idéias chave. O que Estudar? O que concluir? Engenharia de Software O Estudo de Viabilidade Objetivos O que é um estudo de viabilidade? O que estudar e concluir? Benefícios e custos Análise de Custo/Benefício Alternativas de comparação 1 2 Idéias

Leia mais

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br Centro Universitário de Volta Redonda - UniFOA Curso Tecnológico de Redes de Computadores 5º período Disciplina: Tecnologia WEB Professor: José Maurício S. Pinheiro

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Hierarquia de modelos e Aprendizagem de Máquina

Hierarquia de modelos e Aprendizagem de Máquina Hierarquia de modelos e Aprendizagem de Máquina Fabrício Jailson Barth BandTec Maio de 2015 Sumário Introdução: hierarquia de modelos e aprendizagem de máquina. O que é Aprendizagem de Máquina? Hierarquia

Leia mais

Exemplo de Aplicação do DataMinig

Exemplo de Aplicação do DataMinig Exemplo de Aplicação do DataMinig Felipe E. Barletta Mendes 19 de fevereiro de 2008 INTRODUÇÃO AO DATA MINING A mineração de dados (Data Mining) está inserida em um processo maior denominado Descoberta

Leia mais

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO

SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO SISTEMA DE INFORMAÇÃO EXECUTIVA UTILIZANDO DATA MINING BASEADO NA TÉCNICA ÁRVORE DE DECISÃO OSCAR DALFOVO, M.A. dalfovo@furb.rct-sc.br Professor da Universidade Regional de Blumenau - FURB Professor do

Leia mais

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 SISTEMA DE APOIO À DECISÃO Grupo: Denilson Neves Diego Antônio Nelson Santiago Sabrina Dantas CONCEITO É UM SISTEMA QUE AUXILIA O PROCESSO DE DECISÃO

Leia mais

Apresentação final do Trabalho de Conclusão -Novembro 2002. Autenticação On-line de assinaturas utilizando Redes Neurais. Milton Roberto Heinen

Apresentação final do Trabalho de Conclusão -Novembro 2002. Autenticação On-line de assinaturas utilizando Redes Neurais. Milton Roberto Heinen Apresentação final do Trabalho de Conclusão -Novembro 2002 Autenticação On-line de assinaturas utilizando Redes Neurais Milton Roberto Heinen miltonrh@ig.com.br Motivação Falta de segurança dos sistemas

Leia mais

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL

IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES ENTRE PRODUTOS DE UMA BASE DE DADOS REAL Universidade Federal de Ouro Preto - UFOP Instituto de Ciências Exatas e Biológicas - ICEB Departamento de Computação - DECOM IMPLEMENTAÇÃO DE UM ALGORITMO DE PADRÕES DE SEQUÊNCIA PARA DESCOBERTA DE ASSOCIAÇÕES

Leia mais

Modelo Cascata ou Clássico

Modelo Cascata ou Clássico Modelo Cascata ou Clássico INTRODUÇÃO O modelo clássico ou cascata, que também é conhecido por abordagem top-down, foi proposto por Royce em 1970. Até meados da década de 1980 foi o único modelo com aceitação

Leia mais

SAIBA COMO SE PREVENIR DAS FRAUDES E EVITAR PREJUÍZOS NAS VENDAS PELA INTERNET

SAIBA COMO SE PREVENIR DAS FRAUDES E EVITAR PREJUÍZOS NAS VENDAS PELA INTERNET Conteúdo 1. FRAUDES... 2 1.1. A história das fraudes na Indústria de Cartões... 2 1.2. O que o estabelecimento deve fazer para vender de forma segura pela Internet?... 2 1.3. Como a Cielo pode ajudar seu

Leia mais

Complemento III Noções Introdutórias em Lógica Nebulosa

Complemento III Noções Introdutórias em Lógica Nebulosa Complemento III Noções Introdutórias em Lógica Nebulosa Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Módulo 6: Inteligência Artificial

Módulo 6: Inteligência Artificial Módulo 6: Inteligência Artificial Assuntos: 6.1. Aplicações da IA 6.2. Sistemas Especialistas 6.1. Aplicações da Inteligência Artificial As organizações estão ampliando significativamente suas tentativas

Leia mais

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO

XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO XIII Encontro de Iniciação Científica IX Mostra de Pós-graduação 06 a 11 de outubro de 2008 BIODIVERSIDADE TECNOLOGIA DESENVOLVIMENTO EPE0147 UTILIZAÇÃO DA MINERAÇÃO DE DADOS EM UMA AVALIAÇÃO INSTITUCIONAL

Leia mais

Exemplos de aplicação. Mineração de Dados 2013

Exemplos de aplicação. Mineração de Dados 2013 Exemplos de aplicação Mineração de Dados 2013 Luís Rato Universidade de Évora, 2013 Mineração de dados / Data Mining 1 Classificação: Definição Dado uma conjunto de registos (conjunto de treino training

Leia mais

Padronização de Processos: BI e KDD

Padronização de Processos: BI e KDD 47 Padronização de Processos: BI e KDD Nara Martini Bigolin Departamento da Tecnologia da Informação -Universidade Federal de Santa Maria 98400-000 Frederico Westphalen RS Brazil nara.bigolin@ufsm.br Abstract:

Leia mais

Tecnologias da Informação e da Comunicação Aula 01

Tecnologias da Informação e da Comunicação Aula 01 Tecnologias da Informação e da Comunicação Aula 01 Douglas Farias Cordeiro Universidade Federal de Goiás 31 de julho de 2015 Mini-currículo Professor do curso Gestão da Informação Professor do curso ESAMI

Leia mais

GERENCIAMENTO DO CONHECIMENTO NA EMPRESA DIGITAL

GERENCIAMENTO DO CONHECIMENTO NA EMPRESA DIGITAL GERENCIAMENTO DO CONHECIMENTO NA EMPRESA DIGITAL 1 OBJETIVOS 1. Por que hoje as empresas necessitam de programas de gestão do conhecimento e sistemas para gestão do conhecimento? 2. Quais são as aplicações

Leia mais

Dadas a base e a altura de um triangulo, determinar sua área.

Dadas a base e a altura de um triangulo, determinar sua área. Disciplina Lógica de Programação Visual Ana Rita Dutra dos Santos Especialista em Novas Tecnologias aplicadas a Educação Mestranda em Informática aplicada a Educação ana.santos@qi.edu.br Conceitos Preliminares

Leia mais

Extração de Conhecimento a partir dos Sistemas de Informação

Extração de Conhecimento a partir dos Sistemas de Informação Extração de Conhecimento a partir dos Sistemas de Informação Gisele Faffe Pellegrini & Katia Collazos Grupo de Pesquisa em Eng. Biomédica Universidade Federal de Santa Catarina Jorge Muniz Barreto Prof.

Leia mais

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução 2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução De acordo com [FAYY96], o conceito de descoberta de conhecimento em bases de dados pode ser resumido como o processo não-trivial de identificar

Leia mais

Nathalie Portugal Vargas

Nathalie Portugal Vargas Nathalie Portugal Vargas 1 Introdução Trabalhos Relacionados Recuperação da Informação com redes ART1 Mineração de Dados com Redes SOM RNA na extração da Informação Filtragem de Informação com Redes Hopfield

Leia mais

Web Data Mining com R

Web Data Mining com R Web Data Mining com R Fabrício J. Barth fabricio.barth@gmail.com VAGAS Tecnologia e Faculdade BandTec Maio de 2014 Objetivo O objetivo desta palestra é apresentar conceitos sobre Web Data Mining, fluxo

Leia mais

Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini Ralha

Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini Ralha WCGE II Workshop de Computação Aplicada em Governo Eletrônico Utilização de Técnicas de Mineração de Dados como Auxílio na Detecção de Cartéis em Licitações Carlos Vinícius Sarmento Silva Célia Ghedini

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

Motivação: inundação de informação. Data warehouse. Inteligência computacional aplicada em finanças, comércio e indústria

Motivação: inundação de informação. Data warehouse. Inteligência computacional aplicada em finanças, comércio e indústria Programa de Especialização em Inteligência Computacional Motivação: inundação de informação Morrendo de sede por conhecimento em um oceano de dados Inteligência computacional aplicada em finanças, comércio

Leia mais

Universidade de Brasília Departamento de Ciência da Informação e Documentação Programa de Pós Graduação em Ciência da Informação Prof a.

Universidade de Brasília Departamento de Ciência da Informação e Documentação Programa de Pós Graduação em Ciência da Informação Prof a. Universidade de Brasília Departamento de Ciência da Informação e Documentação Programa de Pós Graduação em Ciência da Informação Prof a. Lillian Alvares Tecnologia e Gestão O principal papel da Tecnologia

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD)

MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) AULA 07 MATERIAL DIDÁTICO: APLICAÇÕES EMPRESARIAIS SISTEMA DE APOIO À DECISÃO (SAD) JAMES A. O BRIEN MÓDULO 01 Páginas 286 à 294 1 AULA 07 SISTEMAS DE APOIO ÀS DECISÕES 2 Sistemas de Apoio à Decisão (SAD)

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1. O que é a ciência de dados (data science). Discussão do conceito Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.3, Outubro, 2015 Nota prévia Esta apresentação tem por objetivo, proporcionar

Leia mais

Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado

Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado Gestão do Conhecimento: Extração de Informações do Banco de Dados de um Supermercado Alessandro Ferreira Brito 1, Rodrigo Augusto R. S. Baluz 1, Jean Carlo Galvão Mourão 1, Francisco das Chagas Rocha 2

Leia mais

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI Fernando Luiz de Oliveira 1 Thereza Patrícia. P. Padilha 1 Conceição A. Previero 2 Leandro Maciel Almeida 1 RESUMO O processo

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

A Computação e as Classificações da Ciência

A Computação e as Classificações da Ciência A Computação e as Classificações da Ciência Ricardo de Almeida Falbo Metodologia de Pesquisa Departamento de Informática Universidade Federal do Espírito Santo Agenda Classificações da Ciência A Computação

Leia mais

Problema ou Oportunidade. Processo de Decisão

Problema ou Oportunidade. Processo de Decisão Prof. Dr. ANDERSON SONCINI PELISSARI Processo de Decisão INFLUÊNCIA DO AMBIENTE Cultura Classes Sociais Valores Étnicos Família Situação DIFERÊNÇAS INDIVIDUAIS Recursos do cliente Auto conceito Problema

Leia mais