Prof. Dr. Charlie Antoni Miquelin. Reconstrução de Imagens

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prof. Dr. Charlie Antoni Miquelin. Reconstrução de Imagens"

Transcrição

1 Reconstrução de Imagens

2 Princípios Básicos ALGORITMOS! Conjunto de instruções para gerar um resultado a partir de uma entrada específica.! Em tomografia computadorizada quase todas as instruções são operações matemáticas.! TRANSFORMADA DE FOURIER! A transformada de Fourier é uma ferramenta analítica muito utilizada em matemática, astronomia, química, física e medicina (imagens).! A compreensão de seu funcionamento tem analogia com a audição.! Ela pode ser descrita como sendo uma função que descreve a amplitude e as fases de senóides, as quais correspondem a uma freqüência específica.! Esta função converte um conjunto de dados do domínio espacial para o domínio de frequências.! A transformada de Fourier divide um sinal em uma série de funções de senos e cossenos de diferentes freqüências e amplitudes.

3 Princípios Básicos O perfil de atenuação em Tomografia Computadorizada pode ser colocado em termos de uma função f(x) que por sua vez pode ser expressa em forma de uma Série de Fourier: f (x) = a (a 1 cos x + b 1 sin x) + (a 2 cos2x + b 2 sin2x) (a n cosnx + b n sinnx) CONVOLUÇÃO! Técnica para modificar imagens através de filtros. Tais filtros são muitas vezes chamados de kernel.! O processo envolve a multiplicação de porções sobrepostas do filtro e a curva de resposta do detetor de maneira seletiva para produzir uma terceira função, que é utilizada para a reconstrução das imagens.! INTERPOLAÇÃO! É usada principalmente na reconstrução de imagens obtidas por equipamentos helicoidais.! Técnica matemática para estimar valores de uma função a partir de outros valores conhecidos desta função.

4 Reconstrução a partir de projeções Prof. Dr. Charlie Antoni Miquelin Radon em 1917 desenvolveu soluções matemática para a construção de imagens a partir de projeções em problemas gravitacionais.! A aplicação na medicina só veio em 1961 na reconstrução de imagens em Medicina Nuclear.! As primeiras imagens de Hounsfield eram ruidosas devido ao método de reconstrução. Posteriormente outros métodos foram empregados, tendo sido desenvolvidos por Ramachandran e Lakshiminarayanan (1971) e posteriormente usados por Sheep e Logan (1974) para melhorar a qualidade da imagem e o tempo de aquisição.

5 O Problema em TC Considere um objeto O em coordenadas x e y e que os coeficientes de atenuação estão distribuídos no plano (x,y) sendo dados por!(x,y).! Um feixe tipo lápis dai de I o e chega em I formando uma linha reta, chamada de raio.! A projeção é dada pela integral de linha de!(x,y): T θ (x) = ln detector fonte ln I 0 I = µ(x, y) I I 0 I = I 0 e detetor fonte (x,y) Tomando o logaritmo negativo a equação anterior pode ser linearizada, onde T θ (x) é a transmissão no ângulo θ, o qual é a medida da absorção total ao longo da linha reta na figura ao lado.

6 O Problema em TC Prof. Dr. Charlie Antoni Miquelin T θ (x) é a chamado também de soma de raio, que é a integral de!(x,y) ao longo do raio.! O problema computacional em TC é encontrar os valores de!(x,y) das somas dos raios para uma número suficientemente grande de feixes de localizações conhecidas que passem através do objeto O. A geometria de aquisição assegura que cada ponto do objeto seja irradiado sucessivamente por um grande conjunto de somas de raio T θ (x).! Um conjunto de somas de raio é chamada de projeção ou perfil, como visto na figura ao lado, os quais são gerados a cada irradiação do sistema de aquisição de dados. O raio AA é igual a x cosθ+ y senθ = d. Neste caso a projeção é então dada por: P(θ,d) = f (x, y)ds A ' A

7

8

9

10

11

12

13

14

15 Algoritmos de Reconstrução Os algoritmos utilizados para calcular os coeficientes de atenuação de uma amostra de dados. A seguir abordaremos os Algoritmos de Reconstrução mais conhecidos.! RETRO-PROJEÇÃO! Também é conhecido como método somatório ou método de superposição linear. É o mais simples dos métodos de reconstrução.! Foi utilizado primeiramente por Oldendorf (1961) e Kuhl e Edwards (1963).! É um método no qual cada projeção obtida é somada as demais em função de seu centro de aquisição.

16 Algoritmos de Reconstrução Considere quatro feixes de raios X passando através de um objeto e produzindo quatro diferentes projeções P 1, P 2, P 3 e P 4.! O problema envolve o uso destes perfis para reconstruir a imagem do objeto desconhecido (buraco) na caixa.! As projeções são linearmente retroprojetadas em função da direção central em que forma geradas produzindo as imagens BP 1, BP 2, BP 3, BP 4.! A reconstrução por retroprojeção envolve o somatório destas imagens retroprojetadas para formar uma imagem do objeto original.! Esta técnica não produz imagens com boa definição e detalhamento das estruturas das imagens e por isto não é usado em equipamentos de TC de uso clínico.! O artefato de padrão de estrela é sempre visível na imagem final neste tipo de reconstrução, isto por que pontos fora do objeto recebem a mesma intensidade retroprojetada que o próprio objeto.! A retroprojeção também pode ser explicada por meio de uma matriz 2 x 2.

17 Algoritmos de Reconstrução A partir desta matriz quatro equações são geradas para quatro variáveis desconhecidas, # 1, # 2, # 3, e # 4. I 1 = I 0 e (µ 1+µ 2 ) x I 2 = I 0 e (µ 3+µ 4 ) x I 3 = I 0 e (µ 1+µ 3 ) x I 4 = I 0 e (µ 2+µ 4 ) x Estas equações podem ser resolvidas facilmente por computadores.! Um exemplo numérico também pode ajudar a entender os cálculos envolvidos.! Quatro projeções são coletadas em quatro diferentes localizações: 0, 45, 90 e 135 o.

18 1 5

19 0 3 3

20 2 4

21 3 2 1

22

23

Reconstrução de Imagens em Radiologia Médica. M.Sc. Walmor Cardoso Godoi http://www.walmorgodoi.com

Reconstrução de Imagens em Radiologia Médica. M.Sc. Walmor Cardoso Godoi http://www.walmorgodoi.com Reconstrução de Imagens em Radiologia Médica M.Sc. Walmor Cardoso Godoi http://www.walmorgodoi.com Agenda 1. Reconstrução Tomográfica em TC e MN 1. Retroprojeção e Filtros 2. Visualização Científica na

Leia mais

TOMOGRAFIA COMPUTADORIZADA. Prof. Emery Lins Curso Eng. Biomédica

TOMOGRAFIA COMPUTADORIZADA. Prof. Emery Lins Curso Eng. Biomédica TOMOGRAFIA COMPUTADORIZADA Prof. Emery Lins Curso Eng. Biomédica Objetivos Evolução Histórica Formação da Imagem Motivação Motivação Início da Tomografia Computadorizada (CT) A Tomografia Computadorizada,

Leia mais

Tomografia Computadorizada

Tomografia Computadorizada Tomografia Computadorizada Características: não sobreposição de estruturas melhor contraste ( menos radiação espalhada) usa detectores que permitem visibilizar pequenas diferenças em contraste de tecido

Leia mais

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc...

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc... RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS RUÍDOS EM IMAGENS Em Visão Computacional, ruído se refere a qualquer entidade em imagens, dados ou resultados intermediários, que não são interessantes para os propósitos

Leia mais

INSTRUMENTAÇÃO INDUSTRIAL 1. INTRODUÇÃO / DEFINIÇÕES

INSTRUMENTAÇÃO INDUSTRIAL 1. INTRODUÇÃO / DEFINIÇÕES 1 INSTRUMENTAÇÃO INDUSTRIAL 1. INTRODUÇÃO / DEFINIÇÕES 1.1 - Instrumentação Importância Medições experimentais ou de laboratório. Medições em produtos comerciais com outra finalidade principal. 1.2 - Transdutores

Leia mais

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO Respostas breves: 1.1) 9,063 N 1.2) norte, pois é positiva. 1.3) São José (Costa Rica). 2) Não, porque Santa Maria não está localizada sobre ou entre os dois

Leia mais

Apresentação do Curso e da Área de Processamento de Imagem Digital

Apresentação do Curso e da Área de Processamento de Imagem Digital Apresentação do Curso e da Área de Processamento de Imagem Digital Instituto de Computação - UNICAMP afalcao@ic.unicamp.br Introdução Este curso abordará conceitos e técnicas de processamento de imagem

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

PROCESSAMENTO DIGITAL DE IMAGENS

PROCESSAMENTO DIGITAL DE IMAGENS PROCESSAMENTO DIGITAL DE IMAGENS Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF FILTRAGEM ESPACIAL

Leia mais

Princípios Tomografia Computadorizada

Princípios Tomografia Computadorizada Princípios Tomografia Computadorizada Tomografia Computadorizada Histórico 1917 - Randon imagens projetadas > reproduziu 1967 Hounsfield >primeiro protótipo tipo Tomografia 1971 - H. Inglaterra > primeiro

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS

REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Tomografia Computadorizada

Tomografia Computadorizada Tomografia Computadorizada Helder C. R. de Oliveira N.USP: 7122065 SEL 5705: Fundamentos Físicos dos Processos de Formação de Imagens Médicas Prof. Dr. Homero Schiabel Sumário História; Funcionamento e

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Prof. Hélio Pedrini Instituto de Computação UNICAMP 2º Semestre de 2014 Roteiro 1 Registro de Imagens Transformadas Geométricas Transformações

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

Capítulo 5 Filtragem de Imagens

Capítulo 5 Filtragem de Imagens Capítulo 5 Filtragem de Imagens Capítulo 5 5.1. Filtragem no Domínio da Frequência 5.2. Filtragem no Domínio Espacial 2 Objetivo Melhorar a qualidade das imagens através da: ampliação do seu contraste;

Leia mais

Encontrando a Linha Divisória: Detecção de Bordas

Encontrando a Linha Divisória: Detecção de Bordas CAPÍTULO 1 Encontrando a Linha Divisória: Detecção de Bordas Contribuíram: Daniela Marta Seara, Geovani Cássia da Silva Espezim Elizandro Encontrar Bordas também é Segmentar A visão computacional envolve

Leia mais

FILTRAGEM ESPACIAL. Filtros Digitais no domínio do espaço

FILTRAGEM ESPACIAL. Filtros Digitais no domínio do espaço FILTRAGEM ESPACIAL Filtros Digitais no domínio do espaço Definição Também conhecidos como operadores locais ou filtros locais Combinam a intensidade de um certo número de piels, para gerar a intensidade

Leia mais

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis.

Resumo com exercícios resolvidos do assunto: Funções de duas ou mais variáveis. www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) Funções de duas ou mais variáveis; Limites; Continuidade. (I) Funções de duas ou mais variáveis. No Cálculo I

Leia mais

Visão e Processamento de Imagens. Imagem digital. Processamento Digital de Imagens. Obtenção de uma imagem digital

Visão e Processamento de Imagens. Imagem digital. Processamento Digital de Imagens. Obtenção de uma imagem digital Visão e Processamento de Imagens Hitoshi aula 1 - Introdução 1o Semestre 2004 Ao final dessa aula você deverá saber: Imagem digital Descrição de imagens digitais Processamento digital de imagens definição

Leia mais

Tomografia Computadorizada I. Walmor Cardoso Godoi, M.Sc. http://www.walmorgodoi.net Aula 04. Sistema Tomográfico

Tomografia Computadorizada I. Walmor Cardoso Godoi, M.Sc. http://www.walmorgodoi.net Aula 04. Sistema Tomográfico Tomografia Computadorizada I Walmor Cardoso Godoi, M.Sc. http://www.walmorgodoi.net Aula 04 Sistema Tomográfico Podemos dizer que o tomógrafo de forma geral, independente de sua geração, é constituído

Leia mais

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo

Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade

Leia mais

TOMOGRAFIA COMPUTADORIZADA: FORMAÇÃO DA IMAGEM E RADIOPROTEÇÃO Márcia Terezinha Carlos, LNMRI, IRD/CNEN. Introdução

TOMOGRAFIA COMPUTADORIZADA: FORMAÇÃO DA IMAGEM E RADIOPROTEÇÃO Márcia Terezinha Carlos, LNMRI, IRD/CNEN. Introdução TOMOGRAFIA COMPUTADORIZADA: FORMAÇÃO DA IMAGEM E RADIOPROTEÇÃO Márcia Terezinha Carlos, LNMRI, IRD/CNEN Introdução A tomografia computadorizada (TC), introduzida na prática clínica em 1972, é uma modalidade

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões

Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões Sinais e Sistemas Aplicações das séries e transformadas de Fourier Séries de Fourier Aplicações em Geral Transformada de Fourier (TF) Aplicações específicas da TF Conclusões Baseado no seguinte material:

Leia mais

Aula 27: Modelos Matemáticos de Sensores e Atuadores para Controle de Atitude: Modelos para Sensores Solares: Sensores Digitais.

Aula 27: Modelos Matemáticos de Sensores e Atuadores para Controle de Atitude: Modelos para Sensores Solares: Sensores Digitais. Aula 27: Modelos Matemáticos de Sensores e Atuadores para Controle de Atitude: Modelos para Sensores Solares: Sensores Digitais. Sensores Digitais Como indicado na Aula 05, sensores digitais de um e de

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA

MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA MATERIAL DE DIVULGAÇÃO DA EDITORA MODERNA Professor, nós, da Editora Moderna, temos como propósito uma educação de qualidade, que respeita as particularidades de todo o país. Desta maneira, o apoio ao

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

FÍSICA DAS RADIAÇÕES. Prof. Emerson Siraqui

FÍSICA DAS RADIAÇÕES. Prof. Emerson Siraqui FÍSICA DAS RADIAÇÕES Prof. Emerson Siraqui CONCEITO Método que permite estudar o corpo em cortes ou fatias axiais ou trasversais, sendo a imagem obtida atraves dos Raios-X com o auxílio do computador (recontrução).

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

(a) Encontre o custo total de ações, usando multiplicação de matrizes.

(a) Encontre o custo total de ações, usando multiplicação de matrizes. NIVERSIDADE ESTADAL DE SANTA CRZ - ESC DEARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET ÁLGEBRA LINEAR ASSNTO: MATRIZES EXERCÍCIOS RESOLVIDOS. Suponha que um corretor da Bolsa de Valores faça um pedido

Leia mais

SISTEMA DE PROJEÇÃO DE VISTA EM CORTE POR COMPUTADOR

SISTEMA DE PROJEÇÃO DE VISTA EM CORTE POR COMPUTADOR SISTEMA DE PROJEÇÃO DE VISTA EM CORTE POR COMPUTADOR Prof. Dr. CLAUDIO DA ROCHA BRITO JAMIL KALIL NAUFAL JÚNIOR ALEXANDRE FERNANDES DE MORAES Escola Politécnica da Universidade de São Paulo - EPUSP Depto.

Leia mais

Computação Gráfica Interativa

Computação Gráfica Interativa Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.

Leia mais

1 Modulação digital Noções básicas

1 Modulação digital Noções básicas 1 Modulação digital Noções básicas A modulação envolve operações sobre uma ou mais das três características de uma portadora (amplitude, fase, frequência). Há três técnicas básicas de modulação para transformar

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Tomografia por emissão de pósitrons (PET) Pedro Bastos Costa

Tomografia por emissão de pósitrons (PET) Pedro Bastos Costa Tomografia por emissão de pósitrons (PET) Pedro Bastos Costa Introdução Na Tomografia por Emissão de Pósitrons (PET), diferentemente dos exames de Raio-x ou CT, a emissão da radiação é realizada diretamente

Leia mais

Notas para um curso de Cálculo 1 Duilio T. da Conceição

Notas para um curso de Cálculo 1 Duilio T. da Conceição Notas para um curso de Cálculo 1 Duilio T. da Conceição 1 2 Sumário 1 WOLFRAM ALPHA 5 1.1 Digitando Fórmulas e Expressões Matemáticas......... 6 1.1.1 Expoentes......................... 6 1.1.2 Multiplicação.......................

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

PROVA MODELO 2015. Duração da prova: 120 minutos

PROVA MODELO 2015. Duração da prova: 120 minutos Página 1 de 8 Provas especialmente adequadas destinadas a avaliar a capacidade para a frequência do ensino superior dos maiores de 3 anos, Decreto-Lei n.º 64/006, de 1 de março AVALIAÇÃO DA CAPACIDADE

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

CARACTERIZAÇÃO DE MATERIAIS CERÂMICOS ATRAVÉS DA MICROTOMOGRAFIA COMPUTADORIZADA 3D

CARACTERIZAÇÃO DE MATERIAIS CERÂMICOS ATRAVÉS DA MICROTOMOGRAFIA COMPUTADORIZADA 3D Revista Brasileira de Arqueometria, Restauração e Conservação. Vol.1, No.2, pp. 022-027 Copyright 2007 AERPA Editora CARACTERIZAÇÃO DE MATERIAIS CERÂMICOS ATRAVÉS DA MICROTOMOGRAFIA COMPUTADORIZADA 3D

Leia mais

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b)

(x, y) = (a, b) + t*(c-a, d-b) ou: x = a + t*(c-a) y = b + t*(d-b) Equação Vetorial da Reta Dois pontos P e Q, definem um único vetor v = PQ, que representa uma direção. Todo ponto R cuja direção PR seja a mesma de PQ está contido na mesma reta definida pelos pontos P

Leia mais

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática Restauração de Imagens Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática 1 Tópicos Introdução Modelo de degradação/restauração Modelo

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

O AMPLIFICADOR LOCK-IN

O AMPLIFICADOR LOCK-IN O AMPLIFICADOR LOCK-IN AUTORES: RAFAEL ASTUTO AROUCHE NUNES MARCELO PORTES DE ALBUQUERQUE MÁRCIO PORTES DE ALBUQUERQUE OUTUBRO 2007-1 - SUMÁRIO RESUMO... 3 INTRODUÇÃO... 4 PARTE I: O QUE É UM AMPLIFICADOR

Leia mais

Função Logarítmica Função Exponencial

Função Logarítmica Função Exponencial ROTEIRO DE ESTUDO MATEMÁTICA 2014 Aluno (a): nº 1ª Série Turma: Data: /10/2014. 3ª Etapa Professor: WELLINGTON SCHÜHLI DE CARVALHO Caro aluno, O objetivo desse roteiro é orientá-lo em relação aos conteúdos

Leia mais

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis Transformada de Hough Cleber Pivetta Gustavo Mantovani Felipe Zottis A Transformada de Hough foi desenvolvida por Paul Hough em 1962 e patenteada pela IBM. Originalmente, foi elaborada para detectar características

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a

Leia mais

UNIVERSIDADE DO EXTREMO SUL CATARINENSE. Correção geométrica de imagens

UNIVERSIDADE DO EXTREMO SUL CATARINENSE. Correção geométrica de imagens Correção geométrica de imagens O georreferenciamento descreve a relação entre os parâmetros de localização dos objetos no espaço da imagem e no sistema de referência, transformando as coordenadas de cada

Leia mais

Experimento 8 Circuitos RC e filtros de freqüência

Experimento 8 Circuitos RC e filtros de freqüência Experimento 8 Circuitos RC e filtros de freqüência 1. OBJETIVO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito RC. 2. MATERIAL

Leia mais

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela.

FUNÇÕES. 1. Equação. 2. Gráfico. 3. Tabela. FUNÇÕES Em matemática, uma função é dada pela relação entre duas ou mais quantidades. A função de uma variável f(x) relaciona duas quantidades, sendo o valor de f dependente do valor de x. Existem várias

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

NOÇÕES DE ÁLGEBRA LINEAR

NOÇÕES DE ÁLGEBRA LINEAR ESPAÇO VETORIAL REAL NOÇÕES DE ÁLGEBRA LINEAR ESPAÇOS VETORIAIS Seja um conjunto V φ no qual estão definidas duas operações: adição e multiplicação por escalar, tais que u, v V, u+v V e α R, u V, αu V

Leia mais

O nosso trabalho. Desenvolver um sistema útil e robusto para aplicação em ambiente industrial/laboratorial. Objectivo

O nosso trabalho. Desenvolver um sistema útil e robusto para aplicação em ambiente industrial/laboratorial. Objectivo O nosso trabalho Objectivo Desenvolver um sistema útil e robusto para aplicação em ambiente industrial/laboratorial Estratégia Iniciar a investigação com um problema simples e fazer uma aproximação progressiva

Leia mais

Princípios de Telecomunicações. PRT60806 Aula 10: Efeitos da FT / Diagrama de Bode Professor: Bruno Fontana da silva 2014

Princípios de Telecomunicações. PRT60806 Aula 10: Efeitos da FT / Diagrama de Bode Professor: Bruno Fontana da silva 2014 Princípios de Telecomunicações PRT686 Aula 1: Efeitos da FT / Diagrama de Bode Professor: Bruno Fontana da silva 214 1 Análise em frequência de sinais filtrados EFEITOS DE UM CANAL OU FILTRO SOBRE O SINAL

Leia mais

2.71/2.710 Óptica. MIT 2.71/2.710 5/9/01-wk1-b- 1

2.71/2.710 Óptica. MIT 2.71/2.710 5/9/01-wk1-b- 1 2.71/2.710 Óptica Unidades: 3-0-9, Pré requisitos: 8.02, 18.03 2.71: atende aos requerimentos do Departamento Eletivo 2.710: Nível H, atende aos requerimentos da MS em Design 5/9/01-wk1-b- 1 Objetivos

Leia mais

SEL 397 - PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel

SEL 397 - PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS. Prof. Homero Schiabel SEL 397 - PRINCÍPIOS FÍSICOS DE FORMAÇÃO DE IMAGENS MÉDICAS Prof. Homero Schiabel 6. FORMAÇÃO DE IMAGENS POR RAIOS X A Radiografia 2 fatores fundamentais: padrão de intensidade de raios-x transmitido através

Leia mais

Utilização de Softwares Gráficos no Estudo de Funções

Utilização de Softwares Gráficos no Estudo de Funções Universidade Federal do Paraná UFPR Utilização de Softwares Gráficos no Estudo de Funções Amanda Carvalho de Oliveira Juliana Rodrigues de Araújo Marcelo José Cardozo Caldeira Mayara Poyer da Silva Verediana

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Tratamento da Imagem - Filtros Antonio G. Thomé thome@nce.ufrj.br Sala AEP/033 Sumário 2 Conceito de de Filtragem Filtros

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

Guia de Instalação e Utilização do plugin para Reconstrução Tomográfica em SPECT

Guia de Instalação e Utilização do plugin para Reconstrução Tomográfica em SPECT Guia de Instalação e Utilização do plugin para Reconstrução Tomográfica em SPECT Índice C Comentários 3 I Instalação 4 R Reconstrução tomográfica pelo método FBP 5 Reconstrução tomográfica pelo método

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos: Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]

Leia mais

REDUÇÃO DE DOSE DE RADIAÇÃO E AUMENTO NA VIDA ÚTIL DO TUBO DE RAIOS X EM UM EQUIPAMENTO DE TOMOGRAFIA COMPUTADORIZADA. José Augusto Marconato

REDUÇÃO DE DOSE DE RADIAÇÃO E AUMENTO NA VIDA ÚTIL DO TUBO DE RAIOS X EM UM EQUIPAMENTO DE TOMOGRAFIA COMPUTADORIZADA. José Augusto Marconato UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS DA SAÚDE FACULDADE DE MEDICINA DEPARTAMENTO DE RADIOLOGIA REDUÇÃO DE DOSE DE RADIAÇÃO E AUMENTO NA VIDA ÚTIL DO TUBO DE RAIOS X EM UM EQUIPAMENTO

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

CAMPUS CRUZ DAS ALMAS Edital 01/2010. Área de Conhecimento

CAMPUS CRUZ DAS ALMAS Edital 01/2010. Área de Conhecimento CONCURSO PÚBLICO PARA DOCENTE DO MAGISTÉRIO SUPERIOR CAMPUS CRUZ DAS ALMAS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CETEC Área de Conhecimento Materiais, Estrutura e Sistemas Eletromecânicos PONTOS DO

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de

Leia mais

Resposta em Frequência de Sistemas LTI 1

Resposta em Frequência de Sistemas LTI 1 Resposta em Frequência de Sistemas LTI A resposta em frequência de um sistema LTI fornece a caracterização intuitiva do comportamento entrada-saída do sistema. Isto ocorre porque a convolução no domínio

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Grade Curricular - Engenharia de Computação

Grade Curricular - Engenharia de Computação Grade Curricular - Engenharia de Computação SEMESTRE 1 - Obrigatórias FCM0101 Física I 6 0 6 FFI0180 Laboratório de Física Geral I 2 0 2 SAP0678 Desenho 2 0 2 SAP0679 Humanidades e Ciências Sociais 2 0

Leia mais

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas,

1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, MODELAÇÃO E DETERMINAÇÃO DE PARÂMETROS CINÉTICOS FILIPE GAMA FREIRE 1. Objectivo Durante uma experiência, medem-se certas variáveis, ex.: concentrações, pressões, temperaturas, etc. a que chamaremos y

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

Métodos Matemáticos para Engenharia de Informação

Métodos Matemáticos para Engenharia de Informação Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,

Leia mais

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido 1 INTRODUÇÃO As ondas podem sofrer o efeito de diversos fenômenos, dentre eles estão a difração e a interferência. A difração

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO DE MATEMÁTICA 8.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de relacionar números racionais e dízimas, completar a reta numérica e ordenar números

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aula 2 Ref. Butkov, cap. 8, seção 8.2 O Método de Separação de Variáveis A ideia central desse método é supor que a solução

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Evolutas e filtros. Noções antigas e problemas modernos. Carlos J. S. Alves. CEMAT Departamento de Matemática Instituto Superior Técnico

Evolutas e filtros. Noções antigas e problemas modernos. Carlos J. S. Alves. CEMAT Departamento de Matemática Instituto Superior Técnico Evolutas e filtros Noções antigas e problemas modernos Carlos J. S. Alves CEMAT Departamento de Matemática Instituto Superior Técnico Pequeno enquadramento histórico - 400 AC Antiguidade (Grécia) Geometria

Leia mais

Princípios Físicos em Raio-X

Princípios Físicos em Raio-X Serviço de Informática Instituto do Coração HC FMUSP Princípios Físicos em Raio-X Marco Antonio Gutierrez Email: marco.gutierrez@incor.usp.br 2010 Formas de Energia Corpuscular (p, e -, n, α, β, ) Energia

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j

Leia mais

Tomografia Computorizada

Tomografia Computorizada Universidade Técnica de Lisboa Instituto Superior Técnico Mestrado Integrado em Engenharia Biomédica Tomografia Computorizada Técnicas de Imagiologia Nuno Santos n.º 55746, dodgeps@hotmail.com Rúben Pereira

Leia mais

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

TRANSFORMAÇÕES LINEARES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga TRANSFORMAÇÕES LINEARES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Estudaremos um tipo especial de função, onde o domínio e o contradomínio são espaços vetoriais reais. Assim, tanto

Leia mais

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas

UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam. Lista 1. Curvas UFPR - Universidade Federal do Paraná Departamento de Matemática CM042 - Cálculo II Prof. José Carlos Eidam Lista 1 Curvas 1. Desenhe as imagens das seguintes curvas: (a) γ(t) = (1, t) (b) γ(t) = (cos

Leia mais

Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas

Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas 1 Cálculo Numérico Computacional Exercícios lista 04 Raizes aproximadas Varredura, método da tangente Prof. Tarcisio Praciano-Pereira Dep. de Matemática tarcisio@member.ams.org aluno: Univ. Estadual Vale

Leia mais